Rehabilitation or Demolition of Small Hydropower Plants: Evaluation of the Environmental and Economic Sustainability of the Case Study “El Cerrajón”
Abstract
:1. Introduction
2. Methodology
2.1. Hydropower Capacity
- -
- Total flow calculation with Manning’s formula [60], Equation (1),
2.2. Environmental and Economic Assessment Framework
2.3. Economic Assessment
2.4. Environmental Sustainability
2.5. Economic and Environmental Data
3. Case Study
3.1. Infrastructure Description
3.2. Hydraulic Exploitation Scenarios
3.3. Hydraulic Flow Scenario
4. Results
4.1. Life Cycle Cost (LCC)
4.2. Life Cycle Assessment
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACCD | Andalusian Construction Cost Database |
CEDEX | Center for studies and experimentation of Public Works (Centro de estudios y experimentación de Obras Públicas, in spanish) |
CPI | Consumer Price Index |
ESHA | European Small Hydropower Association |
CF | Carbon footprint |
IPCC | Intergovernmental Panel on Climate Change |
IPE | Inflation Price of Electricity |
LCA | Life cycle assessment |
LCC | Life cycle cost |
NEMO | Nominated Electricity market Operators |
NPV | Net Present Value |
PPB | Profit Price Breakeven |
SHP | Small Hydropower plant |
THF | Total Hydraulic Flow |
Appendix A
Code | Unit | Concept | Quantity | Cost (EUR) | EE (MJ) | CF (kgCO2) |
---|---|---|---|---|---|---|
CHAPTER | ||||||
01. Demolition | ||||||
01AAB90002 | m2 | Massive demolition dome | 51.68 | 494.58 | 0 | 0 |
01ALM00005 | m3 | Manual demolition brick wall | 9.73 | 1085.87 | 9781.219 | 595.616 |
01CMM90002 | m3 | Selective demolition concrete | 300.26 | 18,994.45 | 51,660.67 | 3448.292 |
Total Chapter 01. Demolition | 20,574.89 | 61,441.889 | 4043.908 | |||
03. Foundation | ||||||
03ERM80080 | m2 | Wall formwork | 9.73 | 400.88 | 3525.338 | −140.033 |
03HMM00002 | m3 | Concrete HM-20/P/40/I | 300.26 | 16,331.14 | 407,454.631 | 74,449.572 |
Total Chapter 03 Foundations | 16,732.02 | 410,979.969 | 74,309.54 | |||
06. Masonry | ||||||
06AEE00002 | m | Semicircular arch. Brick | 206.72 | 15,040.95 | 51,879.023 | 4165.654 |
06CMO80010 | m3 | Stone wall 50 cm. | 9.73 | 1453.18 | 3980.96 | 916.364 |
Total Chapter 06. Masonry | 16,494.12 | 55,859.983 | 5082.017 |
References
- Breyer, C.; Khalili, S.; Bogdanov, D.; Ram, M.; Oyewo, A.S.; Aghahosseini, A.; Gulagi, A.; Solomon, A.A.; Keiner, D.; Lopez, G.; et al. On the History and Future of 100% Renewable Energy Systems Research. IEEE Access 2022, 10, 78176–78218. [Google Scholar] [CrossRef]
- Estudios, Informes y Estadísticas|Idae. Available online: https://www.idae.es/informacion-y-publicaciones/estudios-informes-y-estadisticas (accessed on 27 June 2024).
- United Nations Industrial Development Organization (UNIDO). Executive Summary World Small Hydropower Development Report 2022; United Nations Industrial Development Organization: Vienna, Austria, 2022. [Google Scholar]
- Gemechu, E.; Kumar, A. A Review of How Life Cycle Assessment Has Been Used to Assess the Environmental Impacts of Hydropower Energy. Renew. Sustain. Energy Rev. 2022, 167, 112684. [Google Scholar] [CrossRef]
- The Ministry for the Ecological Transition and the Demographic Challenge (MITECO). Generación de Energía a Partir Del Agua. Tipos de Centrales Hidráulicas y Elementos Que Las Conforman, y Mini Centrales Hidroeléctricas; The Ministry for the Ecological Transition and the Demographic Challenge: Madrid, Spain, 2024.
- Soria, E. Energía Hidráulica; Haya Comunicación: Madrid, Spain, 2007. [Google Scholar]
- Gobierno de España Real Decreto Legislativo 1/2001, de 20 de Julio, Por El Que Se Aprueba El Texto Refundido de La Ley de Aguas. Available online: https://www.boe.es/buscar/act.php?id=BOE-A-2001-14276 (accessed on 27 June 2024).
- Magalhães Junior, A.P.; Curiel, P.B. Instruments of Administrative Concessions of Water Use Rights in Spain. Rev. Bras. De. Recur. Hidr. 2017, 22, e41. [Google Scholar] [CrossRef]
- Varun; Bhat, I.K.; Prakash, R. LCA of Renewable Energy for Electricity Generation Systems-A Review. Renew. Sustain. Energy Rev. 2009, 13, 1067–1073. [Google Scholar] [CrossRef]
- Hommes, L. The Ageing of Infrastructure and Ideologies: Contestations around Dam Removal in Spain. Water Altern. 2022, 15, 592–613. [Google Scholar]
- Belletti, B.; Garcia De Leaniz, C.; Jones, J.; Bizzi, S.; Börger, L.; Segura, G.; Castelletti, A.; Van De Bund, W.; Aarestrup, K.; Barry, J.; et al. More than One Million Barriers Fragment Europe’s Rivers. Nature 2020, 588, 436–441. [Google Scholar] [CrossRef]
- Roy, S.G.; Uchida, E.; De Souza, S.P.; Blachly, B.; Fox, E.; Gardner, K.; Gold, A.J.; Jansujwicz, J.; Klein, S.; McGreavy, B.; et al. A Multiscale Approach to Balance Trade-Offs among Dam Infrastructure, River Restoration, and Cost. Proc. Natl. Acad. Sci. USA 2018, 115, 12069–12074. [Google Scholar] [CrossRef] [PubMed]
- Parent, J.R.; Gold, A.J.; Vogler, E.; Lowder, K.A. Guiding Decisions on the Future of Dams: A GIS Database Characterizing Ecological and Social Considerations of Dam Decisions. J. Environ. Manag. 2024, 351, 119683. [Google Scholar] [CrossRef]
- Wan, W.; Zhao, J.; Popat, E.; Herbert, C.; Döll, P. Analyzing the Impact of Streamflow Drought on Hydroelectricity Production: A Global-Scale Study. Water Resour. Res. 2021, 57, e2020WR028087. [Google Scholar] [CrossRef]
- EN 15643:2021; CEN Sustainability of Construction Works—Framework for Assessment of Buildings and Civil Engineering Works. European Committee for Standardization: Brussels, Belgium, 2021; pp. 1–48.
- Wałach, D.; Sagan, J.; Jaskowska-Lemańska, J.; Dybeł, P. Comparative Analysis of Environmental Impacts of Municipal Road Structures. In Proceedings of the Infrastructure and Environment, Dobczyzce, Poland, 18–20 June 2018; Krakowiak-Bal, A., Vaverkova, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 9–14. [Google Scholar]
- Strömberg, L.; Khazanovich, L.; Hintze, S. Enhancement of Sustainable Road Design towards Compatibility between Pavement Materials. In Proceedings of the International Society for Concrete Pavements, Online, 12 January 2022; pp. 146–150. [Google Scholar]
- Presti, D.L.; Del Barco Carrion, A.J.; Parry, T.; Neves, L.; Keijzer, E.; Kalman, B.; Buttitta, G.; Mantalovas, K. A Framework for Life Cycle Management of Road Pavements in Europe. Transp. Res. Procedia 2023, 72, 1552–1559. [Google Scholar] [CrossRef]
- Vázquez-López, E.; Solís-Guzmán, J.; Marrero, M. A Work Breakdown Structure for Estimating Building Life Cycle Cost Aligned with Sustainable Assessment—Application to Functional Costs. Buildings 2024, 14, 1119. [Google Scholar] [CrossRef]
- EN-15978:2011; CEN Sustainability of Construction Works—Assessment of Environmental Performance of Buildings—Calculation Methods. European Committee for Standardization: Brussels, Belgium, 2011; pp. 1–60.
- EN-16627:2015; CEN Sustainability of Construction Works—Assessment of Economic Performance of Buildings—Calculation Methods. European Committee for Standardization: Brussels, Belgium, 2015; pp. 1–68.
- Rivero-Camacho, C.; Martín-del-Río, J.J.; Marrero-Meléndez, M. Evolution of the Life Cycle of Residential Buildings in Andalusia: Economic and Environmental Evaluation of Their Direct and Indirect Impacts. Sustain. Cities Soc. 2023, 93, 104507. [Google Scholar] [CrossRef]
- Vázquez-López, E.; Garzia, F.; Pernetti, R.; Solís-Guzmán, J.; Marrero, M. Assessment Model of End-of-Life Costs and Waste Quantification in Selective Demolitions: Case Studies of Nearly Zero-Energy Buildings. Sustainability 2020, 12, 6255. [Google Scholar] [CrossRef]
- Bahramian, M.; Yetilmezsoy, K. Life Cycle Assessment of the Building Industry: An Overview of Two Decades of Research (1995–2018). Energy Build. 2020, 219, 109917. [Google Scholar] [CrossRef]
- Geng, S.; Wang, Y.; Zuo, J.; Zhou, Z.; Du, H.; Mao, G. Building Life Cycle Assessment Research: A Review by Bibliometric Analysis. Renew. Sustain. Energy Rev. 2017, 76, 176–184. [Google Scholar] [CrossRef]
- Alvarez, S.; Carballo-Penela, A.; Mateo-Mantecón, I.; Rubio, A. Strengths-Weaknesses-Opportunities-Threats Analysis of Carbon Footprint Indicator and Derived Recommendations. J. Clean. Prod. 2016, 121, 238–247. [Google Scholar] [CrossRef]
- Matuštík, J.; Kočí, V. What Is a Footprint? A Conceptual Analysis of Environmental Footprint Indicators. J. Clean. Prod. 2021, 285, 124833. [Google Scholar] [CrossRef]
- Schwartz, Y.; Raslan, R.; Mumovic, D. The Life Cycle Carbon Footprint of Refurbished and New Buildings—A Systematic Review of Case Studies. Renew. Sustain. Energy Rev. 2018, 81, 231–241. [Google Scholar] [CrossRef]
- Chastas, P.; Theodosiou, T.; Kontoleon, K.J.; Bikas, D. Normalising and Assessing Carbon Emissions in the Building Sector: A Review on the Embodied CO2 Emissions of Residential Buildings. Build Environ. 2018, 130, 212–226. [Google Scholar] [CrossRef]
- De Wolf, C. Material Quantities in Building Structures and Their Environmental Impact. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, UK, 2014. [Google Scholar]
- Le Dem, X.; Steinmann, J.; Röck, M.; Birgisdottir, H.; Horup, L.H.; Tozan, B.; Sørensen, A. Towards Embodied Carbon Benchmarks for Buildings in Europe: Summary Report; Rambøll: Copenhagen, Denmark, 2022. [Google Scholar]
- Solís-Guzmán, J.; Rivero-Camacho, C.; Alba-Rodríguez, D.; Martínez-Rocamora, A. Carbon Footprint Estimation Tool for Residential Buildings for Non-Specialized Users: OERCO2 Project. Sustainability 2018, 10, 1359. [Google Scholar] [CrossRef]
- Instituto de Tecnología de la Construcción BEDEC. Available online: https://metabase.itec.es/vide/es/bedec/itec (accessed on 31 July 2024).
- Oregi Isasi, X.; Tenorio, J.A.; Gazulla, C.; Zabalza, I.; Cambra, D.; Leao, S.O.; Mabe, L.; Otero, S.; Raigosa, J. SOFIAS—Software for Life-Cycle Assessment and Environmental Rating of Buildings. Inf. De La Constr. 2016, 68, e151. [Google Scholar] [CrossRef]
- De la Isla Gómez, A.B.; Ruedas, M.; Plaza, F.; Campo, F.; Trabudua, I.; de la Puente, A.; Puerto, E. E2CO2cero: Embedded Energy and Carbon Footprint of Buildings. In Lean Architecture, Lean Urban Planning: 5th European Conference on Energy Efficiency and Sustainability in Architecture and Planning; Zerbitzua, A., Ed.; Argitalpen Zerbitzua: Donostia-San Sebastián, Spain, 2014; pp. 73–80. [Google Scholar]
- Marrero, M.; Rivero-Camacho, C.; Martínez-Rocamora, A.; Alba-Rodríguez, D.; Lucas-Ruiz, V. Holistic Assessment of the Economic, Environmental, and Social Impact of Building Construction. Application to Housing Construction in Andalusia. J. Clean. Prod. 2024, 434, 140170. [Google Scholar] [CrossRef]
- Raadal, H.L.; Gagnon, L.; Modahl, I.S.; Hanssen, O.J. Life Cycle Greenhouse Gas (GHG) Emissions from the Generation of Wind and Hydro Power. Renew. Sustain. Energy Rev. 2011, 15, 3417–3422. [Google Scholar] [CrossRef]
- Pang, M.; Zhang, L.; Wang, C.; Liu, G. Environmental Life Cycle Assessment of a Small Hydropower Plant in China. Int. J. Life Cycle Assess. 2015, 20, 796–806. [Google Scholar] [CrossRef]
- Geller, M.T.B.; Meneses, A.A.D.M. Life Cycle Assessment of a Small Hydropower Plant in the Brazilian Amazon. J. Sustain. Dev. Energy Water Environ. Syst. 2016, 4, 379–391. [Google Scholar] [CrossRef]
- Weidema, B.P.; Thrane, M.; Christensen, P.; Schmidt, J.; Løkke, S. Carbon Footprint: A Catalyst for Life Cycle Assessment? J. Ind. Ecol. 2008, 12, 3–6. [Google Scholar] [CrossRef]
- ISO-14067:2018; Greenhouse Gases—Carbon Footprint of Products—Requirements and Guidelines for Quantification. International Organization for Standardization: Geneva, Switzerland, 2018.
- ASTM E917-17; Stardard Practice for Measuring Life-Cycle Costs of Buildings and Building Systems. American Society for Testing and Materials: West Conshohocken, PA, USA, 2013.
- ISO 15686-5:2017; Buildings and Constructed Assets—Service Life Planning—Part 5: Life-Cycle Costing. International Organization for Standardization: Geneva, Switzerland, 2017; pp. 1–52.
- Gallagher, J.; Styles, D.; McNabola, A.; Williams, A.P. Current and Future Environmental Balance of Small-Scale Run-of-River Hydropower. Environ. Sci. Technol. 2015, 49, 6344–6351. [Google Scholar] [CrossRef]
- Ueda, T.; Roberts, E.S.; Norton, A.; Styles, D.; Williams, A.P.; Ramos, H.M.; Gallagher, J. A Life Cycle Assessment of the Construction Phase of Eleven Micro-Hydropower Installations in the UK. J. Clean. Prod. 2019, 218, 1–9. [Google Scholar] [CrossRef]
- Santoyo-Castelazo, E.; Gujba, H.; Azapagic, A. Life Cycle Assessment of Electricity Generation in Mexico. Energy 2011, 36, 1488–1499. [Google Scholar] [CrossRef]
- Suwanit, W.; Gheewala, S.H. Life Cycle Assessment of Mini-Hydropower Plants in Thailand. Int. J. Life Cycle Assess. 2011, 16, 849–858. [Google Scholar] [CrossRef]
- Varun, I.; Bhat, I.K.; Prakash, R. Life Cycle Analysis of Run-of River Small Hydro Power Plants in India. Open Renew. Energy J. 2008, 1, 11–16. [Google Scholar]
- Seme, S.; Sredenšek, K.; Praunseis, Z.; Štumberger, B.; Hadžiselimović, M. Optimal Price of Electricity of Solar Power Plants and Small Hydro Power Plants—Technical and Economical Part of Investments. Energy 2018, 157, 87–95. [Google Scholar] [CrossRef]
- Klein, S.J.W.; Fox, E.L.B. A Review of Small Hydropower Performance and Cost. Renew. Sustain. Energy Rev. 2022, 169, 112898. [Google Scholar] [CrossRef]
- Moreno Ruiz, E.; Valsasina, L.; FitzGerald, D.; Symeonidis, A.; Turner, D.; Müller, J.; Minas, N.; Bourgault, G.; Vadenbo, C.; Ioannidou, D.; et al. Documentation of Changes Implemented in the Ecoinvent Database v3.7 & v3.7.1; Ecoinvent: Zürich, Switzerland, 2020. [Google Scholar]
- Martínez Rocamora, A.; Solís-Guzmán, J.; Marrero, M. Ecological Footprint of the Use and Maintenance Phase of Buildings: Maintenance Tasks and Final Results. Energy Build. 2017, 155, 339–351. [Google Scholar] [CrossRef]
- Freire-Guerrero, A.; Alba-Rodríguez, M.D.; Marrero, M. A Budget for the Ecological Footprint of Buildings Is Possible: A Case Study Using the Dwelling Construction Cost Database of Andalusia. Sustain. Cities Soc. 2019, 51, 101737. [Google Scholar] [CrossRef]
- Junta de Andalucía Base de Costes de La Construcción de Andalucía (BCCA)—Junta de Andalucía. Available online: https://www.juntadeandalucia.es/organismos/fomentoarticulaciondelterritorioyvivienda/areas/vivienda-rehabilitacion/planes-instrumentos/paginas/vivienda-bcca.html (accessed on 3 October 2023).
- Sandt, C.J.; Doyle, M.W. The Hydrologic and Economic Feasibility of Micro Hydropower Upfitting and Integration of Existing Low-Head Dams in the United States. Energy Policy 2013, 63, 261–271. [Google Scholar] [CrossRef]
- Kosnik, L. The Potential for Small Scale Hydropower Development in the US. Energy Policy 2010, 38, 5512–5519. [Google Scholar] [CrossRef]
- Khan, Z.; Linares, P.; García-González, J. Adaptation to Climate-Induced Regional Water Constraints in the Spanish Energy Sector: An Integrated Assessment. Energy Policy 2016, 97, 123–135. [Google Scholar] [CrossRef]
- Cubet Iturbe, M. Proyecto de Central Eléctrica Del “Cerrajón”, Cordoba, Spain. 1954. [Google Scholar]
- CHG. Datos Históricos de Aforos. Available online: https://www.chguadalquivir.es/saih/DatosHistoricos.aspx (accessed on 31 July 2024).
- Manning, R. On the Flow of Water in Open Channels and Pipes. Trans. Inst. Civ. Eng. Irel. 1895, XXIV, 179–207. [Google Scholar]
- CHG. Régimen de Caudales Mínimos En Las Masas de Agua Tipo Rio En Condiciones Ordinarias; Confederación Hidrográfica del Guadalquivir: Sevilla, Spain, 2023. [Google Scholar]
- ESHA. On How to Develop a Small Hydro Site. In Layman’s Handbook, 2nd ed.; European Small Hydropower Association: Brussels, Belguim, 1998. [Google Scholar]
- OMIE. Precios Electricidad Anual Demanda España. Available online: https://www.omie.es/es/market-results/interannual/average-final-prices/spanish-demand?scope=interannual (accessed on 28 June 2024).
- Gobierno de España Ley 15/2012. Medidas Fiscales Para La Sostenibilidad Energética. Boletín Oficial del Estado, 28 December 2012; pp. 88081–88096.
- Instituto Nacional de Estadística (INE). Available online: https://www.ine.es/ (accessed on 5 June 2021).
- Eurostat Electricity Prices for Households in the European Union 2010–2017, Semmi-Annually. Available online: http://epp.eurostat.ec.europa.eu (accessed on 7 July 2020).
- Gobierno de España Real Decreto 264/2021. Normas Técnicas de Seguridad Para Las Presas y Sus Embalses. Boletín Oficial del Estado, 14 April 2021; p. 54.
- Gobierno de España Orden ARM/256/2008. Instrucciones de Planificación Hidrográfica. Boletín Oficial del Estado, 22 September 2008; p. 111.
- Junta de Andalucía, Documentación Técnica Del Conjunto de Norias, Aceñas y Molinos Fluviales de La Provincia de Córdoba Para Su Inclusión En El C.G.P.H. de Andalucía. Instituto Andaluz de patrimonio histótrico, Córdoba, Spain. 2008. Available online: https://guiadigital.iaph.es/bien/inmueble/197153/cordoba/luque/molino-y-central-electrica-del-cerrajon (accessed on 28 June 2024).
- IPCC Emissions Scenarios. Summary for Policymakers: A Special Report of IPCC Working Group III; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2000; ISBN 9291691135. [Google Scholar]
- Spanish National Public Works Research Centre (CEDEX). Impacto Del Cambio Climático En Los Recursos Hídricos En Régimen Natural; Spanish National Public Works Research Centre: Madrid, Spain, 2012. [Google Scholar]
- Anagnostopoulos, J.S.; Papantonis, D.E. Optimal Sizing of a Run-of-River Small Hydropower Plant. Energy Convers. Manag. 2007, 48, 2663–2670. [Google Scholar] [CrossRef]
MJ/kWh | kgCO2eq | |
---|---|---|
Period | EE | CF |
2020–2040 | 5.846 | 0.549 |
2041–2060 | 5.835 | 0.283 |
2061–2090 | 5.824 | 0.057 |
2090–2120 | 5.816 | 0.028 |
Categories | Economic Data | Environmental Data |
---|---|---|
A Construction | ACCD [54] | PREDICE [36] |
B Use | ESHA [62] | Varun, et al. [48] |
C End of life | ACCD [54] | PREDICE [36] |
D Benefits and loads beyond the system boundaries | NEMO [63] | Rivero-Camacho C. [21] |
Code | Type of Station | River | ETRS89-UTM H30 | Frame Features | |
---|---|---|---|---|---|
X | Y | ||||
M17-107 | Frame | Salado | 395,206 | 4,156,782 |
|
CGCM2-FIC | ECHAM4-FIC | |||||
---|---|---|---|---|---|---|
2011–2040 | 2041–2070 | 2071–2100 | 2011–2040 | 2041–2070 | 2071–2100 | |
Winter (January, February, March) | 0.91 | 0.8 | 0.489 | 0.73 | 0.5 | 0.68 |
Spring (April, May, June) | 0.93 | 0.79 | 0.571 | 0.86 | 0.71 | 0.57 |
Summer (July, August, September) | 0.8 | 0.8 | 0.6 | 0.6 | 0.6 | 0.6 |
Autumn (October, November, December) | 1.22 | 0.94 | 0.556 | 0.53 | 0.33 | 0.37 |
Chapter | Cost (EUR) | EE (MJ) | CF (kgCO2eq) |
---|---|---|---|
01. Demolition | 20,574.89 | 61,441.889 | 4043.908 |
03. Foundation | 16,732.02 | 410,979.969 | 74,309.54 |
06. Masonry | 16,494.12 | 55,859.983 | 5082.017 |
17. Waste management | 967.00 | 37,993.394 | 2313.564 |
19. Health and security | 1842.83 | 29,067.011 | 1885.411 |
20. Electric production equipment | 116,310.00 | 334,742.4 | 19,169.9 |
CD | 172,920.86 | ||
CI (7% CD) | 13,833.67 | ||
GG + BI (19% (CD + CI)) | 35,483.36 | ||
222,237.89 | 930,084.646 | 106,804.34 |
Chapter | Cost (EUR) | EE (MJ) | CF (kgCO2eq) |
---|---|---|---|
01. Demolition | 108,337.35 | 314,462.765 | 20,719.299 |
02. Land treatment | 1485.61 | 74,851.773 | 9739.260 |
15. Environmental restoration | 10,623.63 | 127,009.744 | 10,228.735 |
17. Waste management | 58,652.79 | 2,270,601.137 | 138,265.656 |
19. Health and security | 3285.90 | 51,538.927 | 3090.920 |
20. Electric production equipment | 10,300.00 | 8800.012 | 524.306 |
CD | 192,685.28 | ||
CI (7% CD) | 15,414.82 | ||
GG + BI (19% (CD + CI)) | 39,539.02 | ||
Total | 247,639.12 | 2,847,264.36 | 182,568.18 |
dr | Scenario | A. Construction | B. Use | C. End of Life | D. Income | LCC (D-A-B-C) | LCC/kW | PPB (EUR/kWh) |
---|---|---|---|---|---|---|---|---|
5% | H1 | 212,337.69 | 1,805,537.82 | 30,261.97 | 2,015,694.70 | −32,442.78 | −271.56 | 0.0630 |
H2 | 1,982,131.30 | −66,006.18 | −552.51 | 0.0641 | ||||
H3 | 1,860,082.81 | −188,054.67 | −1574.12 | 0.0719 | ||||
dr | Scenario | A. Construction | B. Use | C. End of life | D. Income | LCC (D-A-B-C) | LCC/kW | PPB (EUR/kWh) |
10% | H1 | 176,284.27 | 622,548.42 | 767.06 | 640,183.54 | −159,416.20 | −1334.40 | 0.0775 |
H2 | 638,014.23 | −161,585.52 | −1352.56 | 0.0777 | ||||
H3 | 594,193.74 | −205,406.01 | −1719.36 | 0.0861 |
EE | A. Construction | B. Use | C. End of Life | Total EE | “El Cerrajón” | Mix | Avoided Impact |
Scenario | GJ | GJ/MWh | GJ/MWh | GJ/MWh (%) | |||
H1 | 930.1 | 29,149.9 | 2847.3 | 32,927.2 | 0.448 | 5.829 | 5.382 (92%) |
H2 | 0.460 | 5.829 | 5.369 (92%) | ||||
H3 | 0.516 | 5.831 | 5.315 (91%) | ||||
CF | A. Construction | B. Use | C. End of life | Total CF | “El Cerrajón” | MIX | Avoided impact |
Scenario | tCO2eq | kgCO2eq/MWh | kgCO2eq/MWh | kgCO2eq/MWh | |||
H1 | 106.80 | 2365.15 | 182.57 | 2654.52 | 36.08 | 193.16 | 157.08 (81%) |
H2 | 37.12 | 197.40 | 160.28 (81%) | ||||
H3 | 41.58 | 203.11 | 161.53 (80%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-López, E.; Matitos-Montoya, V.; Marrero, M. Rehabilitation or Demolition of Small Hydropower Plants: Evaluation of the Environmental and Economic Sustainability of the Case Study “El Cerrajón”. Environments 2024, 11, 184. https://doi.org/10.3390/environments11080184
Vázquez-López E, Matitos-Montoya V, Marrero M. Rehabilitation or Demolition of Small Hydropower Plants: Evaluation of the Environmental and Economic Sustainability of the Case Study “El Cerrajón”. Environments. 2024; 11(8):184. https://doi.org/10.3390/environments11080184
Chicago/Turabian StyleVázquez-López, Eduardo, Victor Matitos-Montoya, and Madelyn Marrero. 2024. "Rehabilitation or Demolition of Small Hydropower Plants: Evaluation of the Environmental and Economic Sustainability of the Case Study “El Cerrajón”" Environments 11, no. 8: 184. https://doi.org/10.3390/environments11080184
APA StyleVázquez-López, E., Matitos-Montoya, V., & Marrero, M. (2024). Rehabilitation or Demolition of Small Hydropower Plants: Evaluation of the Environmental and Economic Sustainability of the Case Study “El Cerrajón”. Environments, 11(8), 184. https://doi.org/10.3390/environments11080184