The Cultural Ecohydrogeology of Mediterranean-Climate Springs: A Global Review with Case Studies
Abstract
:1. Introduction
2. Overall Methods and Materials
2.1. MCZ Geography
2.2. MCZ Springs
2.3. Analyses
3. Results
3.1. Background—Mediterranean Basin Ecology and Cultural Overview
3.1.1. MCZ Vegetation
3.1.2. MCZ Aquatic Freshwater Habitats
3.2. Cultural Anthropology
3.2.1. Palaeontology and History
3.2.2. Practical Uses and Threats
3.2.3. Religion
3.3. MCZ Case Studies
3.3.1. Mediterranean Basin: Iberian Peninsula
Archaeology
Thermal Springs and Spas
Residential, Livestock, Agricultural, and Leisure Uses
Biodiversity Hotspots
Legends and Myths
3.3.2. Mediterranean Basin: Spain—Montsant Massif
Introduction
Methods
Results
Discussion and Conclusions
3.3.3. Mediterranean Basin: Spain—Mallorca Island
Introduction
Methods
Results
- Dripping springs (Degotís): Inside some caves and at the base of cliffs, in the places furthest from other water sources, there are some dripping springs that usually consist of ceramic cups or jugs, or small excavated basins in which the water that falls from the ceiling or overhang is collected. Some of these were located on cliffs near the sea, where men could leave jugs to fill while they fish (Figure 18G).
- Raw springs (Fonts or brolls): These are usually the simplest springs that flow from the ground (Figure 18D), with little modification beyond perhaps the excavation of a pool. Fonts (described below) have a greater degree of development in the dry-stone structures surrounding them (Figure 18A). The degree of development in the structures is not related to the extent or quality of water management structures. Also, the exact point at which a spring becomes a mine cannot easily be determined, since they are sometimes covered with shallow dry-stone structures (Figure 18B).
- Qanats: The qanats exist with the same variations seen in the spring-flow tunnels category, but always have at least one vertical shaft (Figure 18E,F,J). Also, there may be a noria on top of the first vertical shaft, leading to the irrigation of a bigger area situated at another level.
- Spring-flow tunnels (Fonts de mina): These are tunnels without any vertical shaft leading to the surface. Mines may not have internal structure (Figure 18C), but may have small ponds at their entrance (Figure 18B) or wells in their depths. Some mines lying slightly below the water table also have been used as cisterns (Figure 18H). Also, mines dug only at the spring outlet can transform into wells, which may be accessible by underground staircases (Figure 18I).
Historical Evolution of Spring Structures
Present Status and Future of Mallorcan Springs
Discussion
3.3.4. Mediterranean Basin: North Africa
Introduction
Cultural and Religious Relationships
History
Socioeconomic Aspects
3.3.5. Mediterranean Basin: Italy
Introduction
Archaeology
- The Catania aqueduct was 24 km long, extending from Santa Maria di Licodia to Catania at the Benedictine monastery of San Nicola. The aqueduct was one of the most demanding hydraulic engineering works made by the Romans in Sicily. The springs emerged at the base of a rock cliff of effusive basalts, and water was channelled towards the city with enough flow to satisfy the needs of the population and supply numerous baths and naumachia at that time. Today, some of the springs that supplied the city of Catania in Roman times now feed the Cherubino Fountain, which was reconstructed by Benedictine fathers in 1757 (https://www.romanoimpero.com/2019/10/acquedotto-cornelio-di-termini-imerese.html, accessed on 10 May 2024) [129].
- The Roman aqueduct of Olbia was built between the 1st and 2nd century AD. It was about 7 km long, reaching from the springs of Cabu Abbas to the baths of the ancient city via an underground pipeline. The source for these springs is a late Palaeozoic granitic aquifer.
- The Church of Santa Fiora in Tuscany was built in the 15th century during the Renaissance period. Archaeological excavations were conducted to reconstruct the original church floor, which can now be admired through a layer of glass tiles (Figure 23C), revealing the appearance of the site before the church was built and the presence of a clear, perennial spring.
Literature
Contemporary Uses
Socio-Economics
3.3.6. Mediterranean Basin: Greece
Springs in Mythology and Tradition
3.3.7. Mediterranean Basin: Türkiye
Introduction
Structural Geology
History
Cultural Aspects
Economics
3.3.8. Africa: Western Cape, South Africa
Introduction
Hydrogeology
Cultural Significance
3.3.9. North-western India and Eastern Himalaya
Introduction
History and Culture
Springs Distribution
3.3.10. Economic Importance
3.3.11. Management and Protection
3.3.12. Australia—Southwestern Australia
3.3.13. Australia: Southeastern South Australia Limestone Coast
3.3.14. United States: California
Introduction
Indigenous Use
History
Bottled Water
Energy from Hot Springs
Biology
3.3.15. United States: Nevada-Moapa Warm Springs
Introduction
Archaeology and History
Springs Distribution
Conservation
3.3.16. Chile: Mainland MCZ
Geography
Geology
History
Vegetation and Ethnobotany
Chilean Springs and Recreation
Conclusions
3.3.17. Chile: The Galapagos Island of Floreana
Introduction
Geography and History
Satan Came to Eden
4. Overall Results and Discussion
4.1. Integrating the Literature Review with Case Studies
Overview
4.2. Cultural Valuation
4.2.1. Cultural Anthropology
4.2.2. History
4.2.3. Religious Values
4.2.4. Recreation
4.2.5. Balneotherapy
4.2.6. Law
4.2.7. Energy
4.2.8. Pollution/Contamination
4.2.9. Socio-Economics
4.2.10. Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Angelakis, A.N.; Dercas, J.; Tzanakakis, V.A. Water Quality Focusing on the Hellenic World: From Ancient to Modern Times and the Future. Water 2022, 14, 1887. [Google Scholar] [CrossRef]
- Solomon, S. Water; The Epic Struggle for Wealth, Power, and Civilization; Harper: New York, NY, USA, 2011. [Google Scholar]
- Lionello, P. (Ed.) The Climate of the Mediterranean Region: From the Past to the Future; Elsevier: Philadelphia, PA, USA, 2012. [Google Scholar]
- Köppen, M. Ueber Gehirnkrankheiten der ersten Lebensperioden, als Beitrag zur Lehre vom Idiotismus. Arch. Fur Psychiatr. Und Nervenkrankh. 1898, 30, 896–906. [Google Scholar] [CrossRef]
- Köppen, W. Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren Beziehungen zur Pflanzenwelt. Geogr. Z. 1900, 6, 593–611. [Google Scholar]
- Rundel, P.W.; Arroyo, M.T.; Cowling, R.M.; Keeley, J.E.; Lamont, B.B.; Vargas, P. Mediterranean Biomes: Evolution of Their Vegetation, Floras, and Climate. Annu. Rev. Ecol. Evol. Syst. 2016, 47, 383–407. [Google Scholar] [CrossRef]
- Köppen, W.P. Klassifikation der Klimate nach Temperatur, Niederschlag, und Jahreslauf. Petermanns Geogr. Mitteilungen 1918, 64, 193–203, 243–248. [Google Scholar]
- Li, L.; Casado, A.; Congedi, L.; Dell’Aquila, A.; Dubois, C.; Elizalde, A.; L’Hévéder, B.; Lionello, P.; Sevault, F.; Somot, S.; et al. Modeling of the Mediterranean Climate System; Lionello, P., Ed.; Elsevier: London, UK, 2012; pp. 419–448. [Google Scholar]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.P.; Iglesias, A.; Xoplaki, E. Climate Change and Interconnected Risks to Sustainable Development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Four Billion People Facing Severe Water Scarcity. Sci. Adv. 2016, 2, 1500323. [Google Scholar] [CrossRef] [PubMed]
- Cantonati, M.; Fensham, R.J.; Stevens, L.E.; Gerecke, R.; Glazier, D.S.; Goldscheider, N.; Knight, R.L.; Richardson, J.S.; Springer, A.E.; Tockner, K. Urgent Plea for Global Protection of Springs. Conserv. Biol. 2020, 35, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Martínez, M.; Barquín, J.; Bonada, N.; Cantonati, M.; Churro, C.; Corbera, J.; Delgado, C.; Dulsat-Masvidal, M.; Garcia, G.; Margalef, O.; et al. Mediterranean Springs: Keystone Ecosystems and Biodiversity Refugia Threatened by Global Change. Glob. Chang. Biol. 2024, 30, e16997. [Google Scholar] [CrossRef]
- Aschmann, H. A Restrictive Definition of Mediterranean Climates. Bull. Société Bot. Fr. 1985, 131, 21–30. [Google Scholar] [CrossRef]
- Suc, J.P. Origin and Evolution of the Mediterranean Vegetation and Climate in Europe. Nature 1984, 307, 429–432. [Google Scholar] [CrossRef]
- Geiger, R. Klassifikation der Klimate nach W. Köppen. Landolt-Börnstein—Zahlenwerte und Funktionen aus Physik. Chem. Astron. Geophys. Und Tech. Alte Ser. 1954, 3, 603–607. [Google Scholar]
- Geiger, R. Überarbeitete Neuausgabe von Geiger, R.: Köppen-Geiger/Klima der Erde. Wandkarte 1961, 1, 535. [Google Scholar]
- Trewartha, G. The Earth’s Problem Climates; University of Wisconsin: Madison, WI, USA, 1961. [Google Scholar]
- Walter, H.; Harnickell, E.; Mueller-Dombois, D. Climate-Diagram Maps of the Individual Continents and the Ecological Climatic Regions of the Earth; Springer: Berlin/Heidelberg, Germany, 1975. [Google Scholar]
- Nabhan, G.P.; Eiler, L.M.; Johnson, R.R.; Rea, A.; Mellink, E.; Stevens, L.E. The Making and Unmaking of an Indiginous Desert Oasis and Its Avifanua: Historic Declines in Quitobaquito Birds as a Result of Shifts from O’odham Stewardship to Federal Agency Management. In Wildlife Stewardship on Tribal Lands; Hoagland, S.J., Albert, S., Eds.; Johns Hopkins University Press: Baltimore, MD, USA, 2023; pp. 332–351. [Google Scholar]
- Stevens, L.E.; Aly, A.A.; Arpin, S.M.; Apostolova, I.; Ashley, G.M.; Barba, P.Q.; Barquín, J.; Beauger, A.; Benaabidate, L.; Bhat, S.U. Springs of the World: Distribution, Ecology, and Conservation Status; Springs Stewardship Institute: Flagstaff, AZ, USA, 2023; Volume 1, p. 198. [Google Scholar]
- Barquin, J.; Scarsbrook, M. Management and Conservation Strategies for Coldwater Springs. Aquat. Conserv. Mar. Freshw. Ecosyst. 2008, 18, 580–591. [Google Scholar] [CrossRef]
- Zribi, M.; Brocca, L.; Tramblay, Y.; Molle, F. Water Resources in the Mediterranean Region; Elsevier: Philadelphia, PA, USA, 2020. [Google Scholar]
- Fernández-Martínez, M.; Corbera, J.; Domene, X.; Sayol, F.; Sabater, F.; Preece, C. Nitrate Pollution Reduces Bryophyte Diversity in Mediterranean Springs. Sci. Total Environ. 2020, 705, 135823. [Google Scholar] [CrossRef] [PubMed]
- Martín, A.; Corbera, J.; Cano, O.; Preece, C.; Peñuelas, J.; Sabater, F.; Fernández-Martínez, M. The Influence of Nitrate Pollution on Elemental and Isotopic Composition of Aquatic and Semi-Aquatic Bryophytes. Aquat. Bot. 2024, 190, 103710. [Google Scholar] [CrossRef]
- Gallart, F.; Llorens, P. Catchment Management under Environmental Change: Impact of Land Cover Change on Water Ressources. Water Int. 2003, 28, 334–340. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Lana-Renault, N. Hydrological and Erosive Consequences of Farmland Abandonment in Europe, with Special Reference to the Mediterranean Region–A Review. Agric. Ecosyst. Environ. 2011, 140, 317–338. [Google Scholar] [CrossRef]
- Mueller, J.M.; Lima, R.E.; Springer, A.E. Can Environmental Attributes Influence Protected Area Designation? A Case Study Valuing Preferences for Springs in Grand Canyon National Park. Land Use Policy 2017, 63, 196–205. [Google Scholar] [CrossRef]
- Lewis, A.J. Human Perceptions of Competing Interests in Springs Ecosystem Management on Public Land in Southwestern United States. Groundw. Sustain. Dev. 2023, 22, 100966. [Google Scholar] [CrossRef]
- Cantonati, M.; Stevens, L.E.; Segadelli, S.; Springer, A.E.; Goldscheider, N.; Celico, F.; Filippini, M.; Ogata, K.; Gargini, A. Ecohydrogeology: The Interdisciplinary Convergence Needed to Improve the Study and Stewardship of Springs and Other Groundwater-Dependent Habitats, Biota, and Ecosystems. Ecol. Indic. 2020, 110, 105803. [Google Scholar] [CrossRef]
- Blondel, J.; Aronson, J. Biology and Wildlife of the Mediterranean Region; Oxford University Press: Oxford, MS, USA, 1999. [Google Scholar]
- Grove, A.T.; Rackham, O. The Nature of Mediterranean Europe. An Ecological History; Yale University Press: New Haven, CT, USA, 2001. [Google Scholar]
- P.R.I.S.M. PRISMPRISM Climate Group; Oregon State University: Corvallis, OR, USA, 2014.
- Kruger, F.J. Patterns of Vegetation and Climate in the Mediterranean Zone of South Africa. Bull. Société Bot. Fr. 1985, 131, 213–224. [Google Scholar] [CrossRef]
- Freitag, H. Studies in the Natural Vegetation of Afghanistan. In Plant Life of Southw West Asia; Davis, P.H., Harper, P.C., Hedge, I.C., Eds.; Royal Botanical Garden: Edinburgh, UK, 1971; pp. 89–106. [Google Scholar]
- Freitag, H. Mediterranean Characters of the Vegetation in the Hindukush Mts., and the Relationship between Sclerophyllous and Laurophyllous Forests. Ecol. Mediterr. 1982, 8, 381–388. [Google Scholar] [CrossRef]
- Meusel, H. Mediterranean Elements in the Flora and Vegetation of the West Himalayas. In Plant Life of South West Asia; Davis, P.H., Harper, P.C., Hedge, I.C., Eds.; Royal Botanical Society: Edinburgh, UK, 1971; pp. 53–72. [Google Scholar]
- Weiner, J. The Beak of the Finch; Vintage Books: New York, NY, USA, 1995. [Google Scholar]
- Trueman, M.; d’Ozouville, N. Characterizing the Galapagos Terrestrial Climate in the Face of Global Climate Change. Galapagos Res. 2010, 67, 25–37. [Google Scholar]
- Johnson, B.L.; Richardson, W.; Naimo, T.J. Past, Present, and Future Concepts in Large River Ecology. BioScience 1995, 45, 134–141. [Google Scholar] [CrossRef]
- Cantonati, M.; Poikane, S.; Pringle, C.M.; Stevens, L.E.; Turak, E.; Heino, J.; Richardson, J.S.; Bolpagni, R.; Borrini, A.; Cid, N.; et al. Characteristics, Main Impacts, and Stewardship of Natural and Artificial Freshwater Environments: Consequences for Biodiversity Conservation. Water 2020, 12, 260. [Google Scholar] [CrossRef]
- Perla, B.S.; Stevens, L.E. Biodiversity and Productivity at an Undisturbed Spring in Comparison with Adjacent Grazed Riparian and Upland Habitats. In Aridland Springs in North America: Ecology and Conservation; University of Arizona Press: Tucson, AZ, USA, 2008; pp. 230–243. [Google Scholar]
- Fernández-Martínez, M.; Berloso, F.; Corbera, J.; Garcia-Porta, J.; Sayol, F.; Preece, C.; Sabater, F. Towards a Moss Sclerophylly Continuum: Evolutionary History, Water Chemistry and Climate Control Traits of Hygrophytic Mosses. Funct. Ecol. 2019, 33, 2273–2289. [Google Scholar] [CrossRef]
- Zamora-Marín, J.M.; Ilg, C.; Demierre, E.; Bonnet, N.; Wezel, A.; Robin, J.; Oertli, B. Contribution of Artificial Waterbodies to Biodiversity: A Glass Half Empty or Half Full? Sci. Total Environ. 2021, 753, 141987. [Google Scholar] [CrossRef] [PubMed]
- Faranda, F.M.; Letterio, G.; Spezie, G. Mediterranean Ecosystems: Structures and Processes; Springer: New York, NY, USA, 2001. [Google Scholar]
- Luebert, F.; Pliscoff, P. Sinopsis Bioclimática y Vegetacional de Chile, 2nd ed.; Editorial Universitaria: Santiago, Chile, 2017; ISBN 978-956-11-2575-9. [Google Scholar]
- Stevens, L.E. The Biogeographic Significance of a Large, Deep Canyon: GrandCanyon of the Colorado River, Southwestern USA. In Global Advances in Biogeography; Stevens, L.E., Ed.; Tech Publications: Rijeka, Croatia, 2012; pp. 169–208. [Google Scholar]
- Fox, M.D. Australian Mediterranean Vegetation: Intra- and Intercontinental Comparisons. Ecol. Stud. 1995, 108, 137–159. [Google Scholar]
- Ball, J.E.; Bêche, L.A.; Mendez, P.K.; Resh, V.H. Biodiversity in mediterranean-climate streams of California. Hydrobiologia 2012, 719, 187–213. [Google Scholar] [CrossRef]
- Bêche, L.A.; McElravy, E.P.; Resh, V.H. Long-Term Seasonal Variation of Benthic-Macroinvertebrate Biological Traits in Two Mediterranean-Climate Streams in California, USA. Freshw. Biol. 2006, 51, 56–75. [Google Scholar] [CrossRef]
- Bonada, N.; Rieradevall, M.; Prat, N. Interaction of Spatial and Temporal Heterogeneity: Constraints on Macroinvertebrate Community Structure and Species Traits in a Mediterranean River Network. Hydrobiologia 2007, 589, 91–106. [Google Scholar] [CrossRef]
- Magalhães, M.F.; Beja, P.; Schlosser, I.J.; Collares-Pereira, M.G. Effects of Multi-Year Droughts on Fish Assemblages of Seasonally Drying Mediterranean Streams. Freshw. Biol. 2007, 52, 1494–1510. [Google Scholar] [CrossRef]
- Pascual, R.; Gomá, G.; Nebra, S.; Rius, C.P. First Data on the Biological Richness of Mediterranean Springs. Limnetica 2020, 39, 121–139. [Google Scholar] [CrossRef]
- Gasith, A.; Resh, V.H. Streams in Mediterranean Climate Regions: Abiotic Influences and Biotic Responses to Predictable Seasonal Events. Annu. Rev. Ecol. Syst. 1999, 31, 51–81. [Google Scholar] [CrossRef]
- Power, M.E.; Holomuzki, J.; Lowe, R.L. Food webs in mediterranean rivers. Hydrobiologia 2012, 19, 119–136. [Google Scholar] [CrossRef]
- Pires, A.M.; Cowx, I.G.; Coelho, M.M. Benthic Macroinvertebrate Communities of Intermittent Streams in the Middle Reaches of the Guadiana Basin (Portugal). Hydrobiologia 2000, 435, 167–175. [Google Scholar] [CrossRef]
- Fensham, R.J.; Ponder, W.F.; Souza, V.; Stevens, L.E. Extraordinary Concentrations of Local Endemism Associated with Arid-Land Springs. Front. Environ. Sci. 2023, 11, 1143378. [Google Scholar] [CrossRef]
- Johnson, R.H.; DeWitt, E.; Arnold, L.R. Using Hydrogeology to Identify the Source of Groundwater to Montezuma Well, a Natural Spring in Central Arizona, USA: Part 1. Environ. Earth Sci. 2012, 67, 1821–1835. [Google Scholar] [CrossRef]
- Nabhan, G.P.; Grenade, R. Agrobiodiversity in an Oasis Archipelago. J. Ethnobiol. 2013, 33, 203–236. [Google Scholar]
- Cuthbert, M.O.; Ashley, G.M. A Spring Forward for Hominin Evolution in East Africa. PLoS ONE 2014, 9, e107358. [Google Scholar] [CrossRef]
- James, P.E. A Geography of Man, 3rd ed.; Blaisdell: Waltham, MA, USA, 1966. [Google Scholar]
- Crouch, P.D. Environmental geology of ancient Greek cities. Environ. Geol. 1996, 27, 233–245. [Google Scholar] [CrossRef]
- Parise, M.; Liso, I.S. The Link Between Man and Water in Karst, Through Examples From Apulia (S Italy). In EuroKarst 2022, Málaga: Advances in the Hydrogeology of Karst and Carbonate Reservoirs; Springer International Publishing: Cham, Switzerland, 2023; pp. 235–240. [Google Scholar]
- Frisone, F. Rivers, Land Organization, and Identity in Greek Western Apoikíai. Mediterr. Hist. Rev. 2012, 27, 87–115. [Google Scholar] [CrossRef]
- De Feo, G.; Angelakis, A.N.; Antoniou, G.P.; El-Gohary, F.; Haut, B.; Passchier, C.W.; Zheng, X.Y. Historical and Technical Notes on Aqueducts from Prehistoric to Medieval Times. Water 2013, 5, 1996–2025. [Google Scholar] [CrossRef]
- Özer, S.; Demircan, N. Place of Fountains in Urban Space: A Case Study in Erzurum City. J. Food Agric. Environ. 2010, 8, 1188–1192. [Google Scholar]
- Voudouris, K.S.; Christodoulakos, Y.; Steiakakis, E.; Angelakis, A.N. Hydrogeological characteristics of Hellenic aqueducts-like Qanats. Water 2013, 5, 1326–1345. [Google Scholar] [CrossRef]
- Ertürk, A.E.B.; Dursun, Z.Ş.; Öztürk, İ. Ottoman Period Water Structures and Water-Related Architecture: Examples in Safranbolu, Turkey. Water Sci. Technol. 2013, 13, 743. [Google Scholar]
- Powell, O.; Fensham, R.J. The History and Fate of the Nubian Sandstone Aquifer Springs in the Oasis Depressions of the Western Desert, EgyptL’histoire et Le Sort Des Sources de l’Aquifère Gréseux Nubien Dans Les Dépressions Des Oasis Du Désert Occidental, EgypteLa Historia y El De. Hydrogeol. J. 2016, 24, 395–406. [Google Scholar] [CrossRef]
- Stevens, L.E.; Jenness, J.; Ledbetter, J.D. Springs and Springs-Dependent Taxa of the Colorado River Basin, Southwestern North America: Geography, Ecology and Human Impacts. Water 2020, 12, 1501. [Google Scholar] [CrossRef]
- Geva, A. (Ed.) Water and Sacred Architecture; Routledge: London, UK, 2023. [Google Scholar]
- Stewart, I.S.; Piccardi, L. Seismic Faults and Sacred Sanctuaries in Aegean Antiquity. Proc. Geol. Assoc. 2017, 128, 711–721. [Google Scholar] [CrossRef]
- Walsh, K.; Brown, A.G.; Gourley, B.; Scaife, R. Archaeology, Hydrogeology and Geomythology in the Stymphalos Valley. J. Archaeol. Sci. Rep. 2017, 15, 446–458. [Google Scholar] [CrossRef]
- Leach, C.; Lambright, E.; Becker, J.; Landvatter, T.; Elliott, T. Clepsydra of the Oropos Amphiareion: A Pleiades Place Resource. In Pleiades: A Gazetteer of Past Places; 2023; Available online: https://pleiades.stoa.org/news/blog/changelog-november-2023 (accessed on 10 January 2024).
- Theodossiou, E.; Katsiotis, M.; Manimanis, V.N.; Mantarakis, P. The Large Built Water Clock of Amphiaraeion. Mediterr. Archaeol. Archaeom. 2010, 10, 159–167. [Google Scholar]
- Broad, W.J. The Oracle: Ancient Delphi and the Science behind Its Lost Secrets; Penguin Books: New York, NY, USA, 2006. [Google Scholar]
- Etiope, G.; Papatheodorou, G.; Christodoulou, D.; Geraga, M.; Favali, P. The Geological Links of the Ancient Delphic Oracle (Greece): A Reappraisal of Natural Gas Occurrence and Origin. Geology 2006, 34, 821–824. [Google Scholar] [CrossRef]
- Sánchez, M.C.; Espejo, F.J.J.; Vallejo, M.D.S.; Bao, J.F.G.; Carvalho, A.F.; Martinez-Ruiz, F.; Bicho, N.F. The Mesolithic–Neolithic Transition in Southern Iberia. Quat. Res. 2012, 77, 221–234. [Google Scholar] [CrossRef]
- González Soutelo, S. Aproximación al estudio de las aguas mineromedicinales de Galicia. El caso concreto de Caldas de Reis (Pontevedra). Gallaecia 2005, 24, 99–125. [Google Scholar]
- González Soutelo, S. Los establecimientos de aguas mineromedicinales en el mundo romano: Un modelo de estudio aplicado al NW de la Península Ibérica. Aquitania 2012, 21, 321–332. [Google Scholar]
- Jerónimo, A.M. O Contributo da Associação Terras do Sicó Para o Desenvolvimento Local Sustentável. Doctoral Dissertation, University of Coimbra, Coimbra, Portugal, 2015. [Google Scholar]
- Silva, C. Sicó—A Dimensão Cultural das Paisagens. Um Estudo de Turismo nas Suas Vertentes Cultural e Natureza. Doctoral Dissertation, University of Coimbra, Portugal, 2012. [Google Scholar]
- Barbé, M.R. Dos nous jaciments neolítics a Caldes de Montbui. Arraona Rev. D’història 1982, 13, 5–8. [Google Scholar]
- Farrerons, V.O.; Font, G. Un patrimoni natural i cultural a preservar. Les fonts del Montseny. Sitja del Llop-Rev. Montseny 2017, 43, 13–16. [Google Scholar]
- Tristante, F.R. Fuente de la Loma: Un destacado asentamiento ibero-romano de larga perduración en Cañada de la Cruz (Moratalla, Murcia). Antigüedad Crist. 2023, 40, 1–21. [Google Scholar]
- Moret, P.; Muñoz, A.; García, I.; Callegarin, L.; Prados, F. El oppidum de la Silla del Papa (Tarifa, Cádiz) y los orígenes de Baelo Claudia. Aljaranda 2008, 68, 2–8. [Google Scholar]
- Rodrigo, V.; Haba-Quirós, S. Aguas medicinales y culto a las aguas en Extremadura. Espac. Tiempo Forma. Ser. II Hist. Antig. 1992, 5, 351–382. [Google Scholar] [CrossRef]
- Costa Solé, A. El agua en Tarraco. In Aquae Sacrae: Agua y Sacralidad en la Antigüedad; Costa Solé, A., Palahí Grimal, L., Vivó Codina, D., Eds.; Institut de Recerca Històrica de la Universitat de Girona: Girona, Spain, 2011; pp. 141–166. [Google Scholar]
- Amaré, P.O.; Naranjo, J.M.; Rodríguez, J.M.R. Las minas de agua de los alcores sevillanos: Unas monumentales obras hidráulicas subterráneas de época romana que empiezan a salir a la luz. In II Congreso Internacional de Patrimonio Industrial y de la Obra Pública: Patrimonio Industrial: Pasado, Presente y Futuro; Fundación Patrimonio Industrial de Andalucía: Seville, Spain, 2018; pp. 378–394. [Google Scholar]
- Naranjo, J.M. La mina de agua de la Huerta de Martín Pérez (Carmona, Sevilla). Gota Gota 2013, 3, 52–57. [Google Scholar]
- Ruíz de Arbulo, J. Aguas míticas, aguas sagradas, aguas curativas y aguas canalizadas en la Antigüedad grecolatina. In Aquae Sacrae: Agua y Sacralidad en la Antigüedad; Costa Solé, A., Palahí Grimal, L., Vivó Codina, D., Eds.; Institut de Recerca Històrica de la Universitat de Girona: Girona, Spain, 2011; pp. 11–28. [Google Scholar]
- Mora, G. Las termas romanas en Hispania. Arch. Español Arqueol. 1981, 54, 37–90. [Google Scholar]
- Moltó, L. Tipos de aguas minero-medicinales en yacimientos arqueológicos de la Península Ibérica. Hist. Antig. 1992, 5, 211–228. [Google Scholar] [CrossRef]
- González Soutelo, S. De qué hablamos cuando hablamos de balnearios romanos? La arquitectura romana en los edificios de baños con aguas mineromedicinales en Hispania. CuPAUAM 2013, 39, 123–150. [Google Scholar] [CrossRef]
- Séiquer, G.M.; Soutelo, S.G. El balneario romano: Concepto, definición y criterios de jerarquización a partir de los ejemplos hispanos. In Termalismo Antiguo en Hispania: Un Análisis del Tejido Balneario en Época Romana y Tardorromana en la Península Ibérica; Universidad de Murcia: Murcia, Spain, 2017; pp. 17–61. [Google Scholar]
- Miranda, M.J. Los balnearios valencianos: El declinar de una forma de ocio. Cuad. Geogr. 1984, 34, 249–266. [Google Scholar]
- Farrerons-Vidal, O. Recuperando a cultura das fontes e a água no Montseny. In Proceedings of the X Congresso Ibérico de Gestão e Planeamento da Água, Coimbra, Portugal, 6–8 September 2018. [Google Scholar]
- Perez-Bodega, A. Guía y notas para una historia de Trillo; Ayuntamiento de Trillo: Guadalajara, Spain, 1986. [Google Scholar]
- López Morales, M. El potencial turístico de los balnearios: De la formulación de expectativas a la gestión de una realidad. Estud. Turísticos 2003, 157, 126–145. [Google Scholar] [CrossRef]
- López Morales, M. Los balnearios como centros de salud. Index Enferm. 2004, 13, 26–30. [Google Scholar] [CrossRef]
- Ledo, E. Mineral Water and Spas in Spain. Clin. Dermatol. 1996, 14, 641–646. [Google Scholar] [CrossRef]
- Graça, M.A.; Serra, S.R.; Ferreira, V. A Stable Temperature May Favour Continuous Reproduction by Theodoxus Fluviatilis and Explain Its High Densities in Some Karstic Springs. Limnetica 2012, 31, 129–140. [Google Scholar]
- Kirkegaard, J. Life History, Growth and Production of Theodoxus Fluviatilis in Lake Esrom, Denmark. Limnologica 2006, 36, 26–41. [Google Scholar] [CrossRef]
- Martos-García, A.; Martos-Núñez, E.; Pino-Tortonda, A. Cultura del agua, multinaturalismo y prosopografía. Agua Territ. 2019, 13, 93–102. [Google Scholar] [CrossRef]
- Díaz Tena, M.E. Seres fantásticos femeninos en leyendas románticas peninsulares: Alexandre Herculano y Gustavo Adolfo Bécquer. Rev. Fac. Let. -Línguas Lit. 2005, 22, 119–132. [Google Scholar]
- Martos-Núñez, E.; Martos-García, A. Memorias e imaginarios del agua: Nuevas corrientes y perspectivas. Agua Territ. 2015, 5, 121–132. [Google Scholar] [CrossRef]
- Robinson, B.A. Histories of Pierene: A Corinthian Fountain in Three Millenia; American School of Classical Studies: Athens, Greece, 2011. [Google Scholar]
- Bécquer, G.A. Los ojos verdes. In Obras; Fortanet: Madrid, Spain, 1871. [Google Scholar]
- Martos García, A.; Martos García, A. Poética del agua en las narraciones tradicionales textos y contextos. Lit. Lingüística 2015, 32, 41–61. [Google Scholar] [CrossRef]
- Palomar, S. Etnografia de l’aigua (en terres de secà). Carxana 2008, 13, 3–27. [Google Scholar]
- Perea, E. La Morera de Montsant i el seu Terme Municipal; Fundació d’Història i Art “Roger de Belfort”: Santes Creus, Spain, 1984. [Google Scholar]
- Pere, R.; Amigó, R. Onomàstica del Terme Municipal d’Ulldemolins; Generalitat de Catalunya: Barcelona, Spain, 1997. [Google Scholar]
- Guijarro, J. Contribución a la Bioclimatología de Baleares. Ph.D. Thesis, Universitat de les Illes Balears, Palma, Spain, 1986. [Google Scholar]
- Gelabert, B.; Sabat, F. Relaciones entre la hidrología subterránea y la estructura geológica de la sierra de Tramontana de Mallorca (Islas Baleares). Geogaceta 2002, 31, 107–110. [Google Scholar]
- Castro, P.F. Inventari, Caracterització i Classificació de les Fonts Situades a la Conca Hidrogràfica de la Badia de Son Servera. Master’s Thesis, Universitat de les Illes Balears, Palma, Spain, 2013. [Google Scholar]
- Castro, P.F. Un inventari de les fonts de Mallorca, aspectes toponímics. In Proceedings of the XXIII Jornada d’antroponímia i Toponímia, Porreres, Spain, 27 March 2010; Bassa, L.M., Latorre, F., Eds.; Universitat de les Illes Balears: Palma, Spain, 2011. [Google Scholar]
- Ron, Z.Y.D. Development and Management of Irrigation Systems in Mountain Regions of the Holy Land. Trans. Inst. Br. Geogr. 1985, 10, 149–169. [Google Scholar] [CrossRef]
- Morell, A.; Fontán, M. Agua y piedra, las mil fuentes de mina en Mallorca. In Proceedings of the 1er Simposio Ibérico Sobre Conservación de Ecosistemas Fontinales, Barcelona, Spain, 10–12 June 2019. [Google Scholar]
- Aguiló, C. Dos Topònims (Semi)inèdits del pla de Ciutat i la Motivació del que els Alberga; Bassa, L.M., Latorre, F., Planisi, H., Eds.; Servei Lingüístic: Tarragona, Spain, 2009. [Google Scholar]
- Barceló, M.; Kirchner, H.; Navarro, C. El Agua que no Duerme. Fundamentos de Arqueología Hidráulica Andalusí; Fundación El legado andalusì: Granada, Spain, 2003. [Google Scholar]
- Pino, M.C. Notes històriques sobre la festa i la font de Santa Margalida, patrona de Felanitx. In V Jornades d’Estudis Locals de Felanitx. Edicions Talaiots; Vicens, M.A., Ed.; Edicions Talaiots: Palma, Spain, 2020; pp. 23–34. [Google Scholar]
- Jaume, D.; García, L.; Isopoda, A. Revisión de la especie politípica Jaera nordmanni (Rathke, 1837). Miscel·Lània Zoològica 1998, 12, 79–88. [Google Scholar]
- AbuZeid, K.; Abdel-Meguid, A. Water Conflicts and Conflict Management Mechanisms in the Middle East and North Africa Region; Center for Environment and Development for the Arab Region and Europe (CEDARE): Cairo, Egypt, 2006. [Google Scholar]
- Angelakis, A.N.; Valipour, M.; Ahmed, A.T.; Tzanakaris, V.A.; Paranychianakis, N.V.; Krasilnikoff, J.A. Water Conflicts: From Ancient to Modern Times and in the Future. Sustainability 2021, 13, 4237. [Google Scholar] [CrossRef]
- Monteleone, M.C.; Yeung, H.; Smith, R. A Review of Ancient Roman Water Supply Exploring Techniques of Pressure Reduction. Water Sci. Technol. Water Supply 2007, 7, 113–120. [Google Scholar] [CrossRef]
- Mays, L.W. Use of Cisterns during Antiquity in the Mediterranean Region for Water Resources Sustainability. Water Sci. Technol. Water Supply 2014, 14, 38–47. [Google Scholar] [CrossRef]
- Aranguren, B.; Revedin, A.; Amico, A.; Cavulli, F.; Giachi, G.; Grimaldi, S.; Macchioni, N.; Santaniello, F. Wooden Tools and Fire Technology in the Early Neanderthal Site of Poggetti Vecchi (Italy). Proc. Natl. Acad. Sci. USA 2018, 115, 2054–2059. [Google Scholar] [CrossRef] [PubMed]
- Benvenuti, M.; Bahain, J.J.; Capalbo, C.; Capretti, C.; Ciani, F.; D’Amico, C.; Esu, D.; Giachi, G.; Giuliani, C.; Gliozzi, E.; et al. Paleoenvironmental Context of the Early Neanderthals of Poggetti Vecchi for the Late Middle Pleistocene of Central Italy. Quat. Res. 2017, 88, 327–344. [Google Scholar] [CrossRef]
- Tuccimei, P.; Castelluccio, M.; Simone, G.; Giglioni, F.; Lucchetti, C.; Placidi, M.; Prisco, F.; Ursino, V. Indagini geochimiche nell’acquedotto Vergine antico. Archeol. Sotter. 2014, 15–22. [Google Scholar]
- Branca, S.; Coltelli, M.; Groppelli, G.; Lentini, F. Geological Map of Etna Volcano, 1:50,000 Scale. Ital. J. Geosci. 2011, 130, 265–291. [Google Scholar]
- Martarelli, L.; Petitta, M.; Scalise, A.R.; Silvi, A. Experimental hydrogeological cartography of the Rieti Plain (Latium). Mem. Descr. Della Carta Geol. D’italia 2008, LXXXI, 137–156. [Google Scholar]
- D’Argenio, B.; Pescatore, T.; Scandone, P. Schema geologico dell’Appenino meridionale (Campania e Lucania). Atti del convegno: Moderne vedute sulla geologia dell’Appennino. Accad. Naz. Dei Lincei 1973, 183, 49–72. [Google Scholar]
- Leone, G.; Catani, V.; Pagnozzi, M.; Ginolfi, M.; Testa, G.; Esposito, L.; Fiorillo, F. Hydrological features of Matese Karst Massif, focused on endorheic areas, dolines and hydroelectric exploitation. J. Maps 2023, 19, 2144497. [Google Scholar] [CrossRef]
- Caracciolo, G.G. L’Oro Blu del Matese, Gli Acquedotti Campano e Molisano Destro; ASMV: Piedimonte Matese, Italy, 2018. [Google Scholar]
- Lacopini, L.S. La Cassa per il Mezzogiorno e la Politica (1950–1986); Laterza & Figli Spa Editors: Rome, Italy, 2019; 339p, ISBN 10:885813446X. [Google Scholar]
- Smith, W. Dictionary of Greek and Roman Biography and Mythology; Little, Brown and Co.: Boston, UK, 1867. [Google Scholar]
- Polto, C. La Fontana Aretusa tra mito e realtà. In Chiare, Fresche e Dolci Acque. Le Sorgenti Nell’esperienza Odeporica e Nella Storia del Territorio; Masetti, C., Ed.; CISGE: Rome, Italy, 2001; pp. 11–25. [Google Scholar]
- Luzzini, F. Il mistero e la bellezza. La Fonte Aretusa tra mito, storia e scienza. Acque Sotter.-Ital. J. Groundw. 2015, 4, 79–80. [Google Scholar] [CrossRef]
- Bouffier, S. Arethusa and Kyane, Nymphs and Springs in Syracuse: Between Greece and Sicily. In Ancient Waterlands; OpenEdition: Aix-en-Provence, France, 2019; pp. 159–181. [Google Scholar]
- Akman, Y.; Ketenoğlu, O. The Climate and Vegetation of Turkey. Proc. R. Soc. Edinb. 1986, 89, 123–134. [Google Scholar] [CrossRef]
- Atalay, İ.; Efe, R.; Öztürk, M. Effects of Topography and Climate on the Ecology of Taurus Mountains in the Mediterranean Region of Turkey. Procedia Soc. Behav. Sci. 2014, 120, 142–156. [Google Scholar] [CrossRef]
- Duman, T.Y.; Çan, T.; Emre, Ö.; Kadirioğlu, F.T.; Başarır Baştürk, N.; Kılıç, T.; Arslan, S.; Özalp, S.; Kartal, R.F.; Kalafat, D.; et al. Seismotectonic Database of Turkey. Bull. Earthq. Eng. 2018, 16, 3277–3316. [Google Scholar] [CrossRef]
- Xanke, J.; Goldscheider, N.; Bakalowicz, M.; Barbará, J.A.; Broda, S.; Chen, Z.; Ghanmi, M.; Günther, A.; Hartmann, A.; Jourde, H.; et al. Mediterranean Karst Aquifer Map (MEDKAM); UNESCO: London, UK, 2022. [Google Scholar]
- Demirsoy, N.; Başaran, C.H.; Sandalcı, S. Historical Kestanbol Hot Springs: The water that resurrects. Lokman Hekim Derg. 2018, 8, 23–32. [Google Scholar]
- Hancock, P.L.; Chalmers, R.M.; Altunel, E.R.; Çakir, Z.; Becher-Hancock, A. Creation and Destruction of Travertine Monumental Stone by Earthquake Faulting at Hierapolis, Turkey. Geol. Soc. Lond. Spec. Publ. 2000, 171, 1–14. [Google Scholar] [CrossRef]
- Willmore, S. Table Mountain Springs Are New Tourism Draw; Medium: San Francisco, CA, USA, 2015. [Google Scholar]
- Hahn, K.; Tellak, K. Cultural Framings of Body Treatments in the ‘Turkish Bath’. Eur. Rev. 2016, 24, 462–469. [Google Scholar] [CrossRef]
- Western Cape Government Economic Water Resilience; Western Cape Government: Cape Town, South Africa, 2023.
- Balat, M. Current Geothermal Energy Potential in Turkey and Use of Geothermal Energy. Energy Sources Part B 2006, 1, 55–65. [Google Scholar] [CrossRef]
- Avşar, Ö.; Avşar, U.; Arslan, Ş.; Kurtuluş, B.; Niedermann, S.; Güleç, N. Subaqueous Hot Springs in Köyceğiz Lake, Dalyan Channel and Fethiye-Göcek Bay (SW Turkey): Locations, Chemistry and Origins. J. Volcanol. Geotherm. Res. 2017, 345, 81–97. [Google Scholar] [CrossRef]
- Tuluk, B.; Cengiz, Ö. Evaluation on Bottled Natural Mineral Water. Turk. J. Occup./Environ. Med. Saf. 2017, 2, 30–38. [Google Scholar]
- Kotzé, P. Cape Town-Water for a thirsty city (Part 1): Urban Water Supply. Water Wheel 2010, 9, 27–29. [Google Scholar]
- Kotzé, P. Cape Town-Water for a Thirsty City, (Part 2): Urban Water Supply. Water Wheel 2011, 10, 25–27. [Google Scholar]
- Boekstein, M.S.; Spencer, J.P. International Trends in Health Tourism: Implications for Thermal Spring Tourism in the Western Cape Province of South Africa. Afr. J. Phys. Health Educ. Recreat. Danc. 2013, 19, 287–298. [Google Scholar]
- City of Cape Town. Day Zero and Water-Related FAQs; Western Cape Government: Cape Town, South Africa, 2018.
- Harris, C.; Burgers, C.; Miller, J.; Rawoot, F. O-and H-isotope record of Cape Town rainfall from 1996 to 2008, and its application to recharge studies of Table Mountain groundwater, South Africa. S. Afr. J. Geol. 2010, 113, 33–56. [Google Scholar] [CrossRef]
- Olivier, J.; Jonker, N. Optimal Utilisation of Thermal Springs in South Africa. Water Research Commission; Water Research Commission: Pretoria, South Africa, 2013. [Google Scholar]
- Mazor, E.; Verhagen, B.T. Dissolved Ions, Stable and Radioactive Isotopes and Noble Gases in Thermal Waters of South Africa. J. Hydrol. 1983, 63, 315–329. [Google Scholar] [CrossRef]
- Van Wyk, D. The Social History of Three Western Cape Thermal Mineral Springs Resorts and Their Influence on the Development of the Health and Wellness Tourism Industry in South Africa. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2013. [Google Scholar]
- Cape Town Magazine. Newlands Spring: Cape Town’s Favourite Water Source; Cape Town Magazine: Cape Town, South Africa, 2020. [Google Scholar]
- Baker, A. What It’s like to Live through Cape Town’s Massive Water Crisis; Time Magazine: New York, NY, USA, 2018. [Google Scholar]
- LaVanchy, G.T.; Kerwin, M.W.; Adamson, J.K. Beyond ‘Day Zero’: Insights and Lessons from Cape Town (South Africa). Hydrogeol. J. 2019, 27, 1537–1540. [Google Scholar] [CrossRef]
- Aayog, N.I.T.I. Inventory and Revival of Springs in the Himalayas for Water Security; Department of Science and Technology, Government of India: New Delhi, India, 2017. [Google Scholar]
- Scott, C.A.; Zhang, F.; Mukherji, A.; Immerzeel, W.; Mustafa; Bharati, L. Water in the Hindu Kush Himalaya. In The Hindu Kush Himalaya Assessment; Wester, P., Mishra, A., Mukherji, A., Shrestha, M.A., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Sharma, B.; Nepal, S.; Gyawali, D.; Pokharel, G.S.; Wahid, S.; Mukherji, A.; Shrestha, A.B. Springs, Storage Towers, and Water Conservation in the Midhills of Nepal; International Centre for Integrated Mountain Development: Patan, Nepal, 2016. [Google Scholar]
- Lone, S.A.; Bhat, S.U.; Hamid, A.; Bhat, F.A.; Kumar, A. Quality Assessment of Springs for Drinking Water in the Himalaya of South Kashmir, India. Environ. Sci. Pollut. Res. 2020, 28, 2279–2300. [Google Scholar] [CrossRef] [PubMed]
- Chapagain, P.S.; Ghimire, M.; Shrestha, S. Status of Natural Springs in the Melamchi Region of the Nepal Himalayas in the Context of Climate Change. Environ. Dev. Sustain. 2019, 21, 263–280. [Google Scholar] [CrossRef]
- Nowreen, S.; Misra, A.K.; Zzaman, R.U.; Sharma, L.P.; Abdullah, M.S. Sustainability Challenges to Springshed Water Management in India and Bangladesh: A Bird’s Eye View. Sustainability 2023, 15, 5065. [Google Scholar] [CrossRef]
- Ghimire, M.; Chapagain, P.S.; Shrestha, S. Mapping of Groundwater Spring Potential Zone Using Geospatial Techniques in the Central Nepal Himalayas: A Case Example of Melamchi–Larke Area. J. Earth Syst. Sci. 2019, 128, 26. [Google Scholar] [CrossRef]
- Erschbamer, M. Better than any Doctor. Buddhist Perspectives on Hot Springs in Sikkim, Himalayas. Etnološka Trib. Godišnjak Hrvat. Etnološkog Društva 2021, 51, 54–70. [Google Scholar]
- Verma, R.; Jamwal, P. Sustenance of Himalayan Springs in an Emerging Water Crisis. Environ. Monit. Assess. 2022, 194, 87. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.U.; Dar, S.A.; Hamid, A. A Critical Appraisal of the Status and Hydrogeochemical Characteristics of Freshwater Springs in Kashmir Valley. Sci. Rep. 2022, 12, 5817. [Google Scholar] [CrossRef]
- Bhat, S.U.; Nisa, A.U.; Sabha, I.; Mondal, N.C. Spring Water Quality Assessment of Anantnag District of Kashmir Himalaya: Towards Understanding the Looming Threats to Spring Ecosystem Services. Appl. Water Sci. 2022, 12, 180. [Google Scholar] [CrossRef]
- Bhat. Status, Threats and Challenges: Urgent Plea for Protection and Management of Freshwater Springs of Kashmir Himalaya; University of Kashmir Srinagar: Srinagar, India, 2023. [Google Scholar]
- Bhat, S.U.; Mushtaq, S.; Qayoom, U.; Sabha, I. Water Quality Scenario of Kashmir Himalayan Springs—A Case Study of Baramulla District, Kashmir Valley. Water Air Soil Pollut. 2020, 231, 454. [Google Scholar] [CrossRef]
- Jeelani, G.; Lone, S.A.; Lone, A.; Deshpande, R.D. Groundwater Resource Protection and Spring Restoration in Upper Jhelum Basin (UJB), Western Himalayas. Groundw. Sustain. Dev. 2021, 15, 100685. [Google Scholar] [CrossRef]
- Bhat, S.U.; Dar, S.A.; Sabha, I. Assessment of Threats to Freshwater Spring Ecosystems, Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Silveira, F.A.; Fiedler, P.L.; Hopper, S.D. OCBIL Theory: A New Science for Old Ecosystems. Biol. J. Linn. Soc. 2021, 133, 251–265. [Google Scholar] [CrossRef]
- Tindale, N.B. Desert Aborigines and the Southern Coastal Peoples: Some Comparisons; Springer: Dordrecht, The Netherlands, 1981. [Google Scholar]
- Tindale, N.B. Aboriginal Tribes of Australia: Their Terrain, Environmental Controls, Distribution, Limits, and Proper Names; Australian National University Press: Canberra, Australia, 1974. [Google Scholar]
- Thieberger, N. Handbook of Western Australian Aboriginal Languages South of the Kimberley Region; Pacific Linguistics, Series C–124. Online Ed. Licens. 2015 CC -SA 40 Permis. PL SealangnetCRCL Initiat; Department of Linguistics, Research School of Pacific Studies, The Australian National University: Canberra, Australia, 1993. [Google Scholar]
- Idnurm, M.; Cook, P. Palaeomagnetism of Beach Ridges in South Australia and the Milankovitch Theory of Ice Ages. Nature 1980, 286, 699–702. [Google Scholar] [CrossRef]
- Webb, C.T.; Hoeting, J.A.; Ames, G.M.; Pyne, M.I.; Poff, N.L. A Structured and Dynamic Framework to Advance Traits-Based Theory and Prediction in Ecology. Ecol. Lett. 2010, 13, 267–283. [Google Scholar] [CrossRef]
- Wood, C. Measurement and Evaluation of Key Groundwater Discharge Sites in the Lower South East of South Australia; Government of south Australia: Adelaide, Australia, 2011. [Google Scholar]
- Leubbers, R. Ancient Boomerangs Discovered in South Australia. Nature 1975, 253, 39. [Google Scholar] [CrossRef]
- Bednarik, R.G. Malangine and Koongine Caves, South Australia. Artefact J. Archaeol. Anthropol. Soc. Vic. 1994, 17, 46–60. [Google Scholar]
- Williams, M. Draining the Swamps. In The Making of the South Australian Landscape. A Study in the Historical Geography of Australia; Academic Press: London, UK; New York, NY, USA, 1974. [Google Scholar]
- Water Allocation Plan for the Lower Limestone Coast Prescribed Wells Area; South East Natural Resources Management Board; South Australian Government: Adelaide, Australia, 2019.
- Bachmann, M.R. Restoration Journey of the Piccaninnie Ponds Karst Wetlands, South Australia; Ecological Management and Restoration. Ecol. Manag. Restor. 2016, 17, 102–111. [Google Scholar] [CrossRef]
- Waring, G.A. Springs of California; U.S. Geological Survey Water-Supply Paper; US Government Printing Office: Washington, DC, USA, 1916; Volume 338. [Google Scholar]
- White, D.E.; Barnes, I.; O’Neill, J.R. Thermal and Mineral Waters of Nonmetric Origin, California Coast Ranges. Geol. Soc. Am. Bull. 1973, 84, 547–560. [Google Scholar] [CrossRef]
- Altschul, J.; Fairley, H.C. Man, Models and Management: An Overview of the Archaeology of the Arizona Strip and the Management of Its Cultural Resources; SRI Press: Tucson, AZ, USA, 1989. [Google Scholar] [CrossRef]
- Altman, N. Healing Springs. The Ultimate Guide to Taking the Waters; Healing Arts Press: Rochester, VT, USA, 2000. [Google Scholar]
- Young, S. Beautiful Spas and Hot Springs of California; Ramcoast Books: Vancouver, BC, Cananda, 1998. [Google Scholar]
- Jaco, M. Time to Slow down. The History of Wilbur Hot Springs; Chrysophlae Press: San Francisco, CA, USA, 1990. [Google Scholar]
- Kroeber, A.L. Handbook of the Indians of California. Bulletin 78 of the Bureau of American Ethnology; Smithsonian Institution: Washington, DC, USA, 1925. [Google Scholar]
- Callahan, C.A. Lake Miwok Dictionary; University of California Press: Berkeley, CA, USA, 1965. [Google Scholar]
- Klages, E. Harbin Hot Springs. Healing Waters, Sacred Land; Harbin Springs Publishing: Middletown, CA, USA, 1991. [Google Scholar]
- Benke, A.C.; Resh, V.H.; Mendez, P.; Moyle, P.B.; Gregory, S.V. Pacific Coast Rivers of The Coterminous United States. In Rivers of North America; Delong, M.D., Jardine, T.D., Benke, A.C., Cushing, C.E., Eds.; Elsevier/Academic: New York, NY, USA, 2022; pp. 559–617. [Google Scholar]
- Hoberg, D. Resorts of Lake County; Arcadia Press: San Francisco, CA, USA, 2007. [Google Scholar]
- Kaysing, B.; Kaysing, R. Great Hot Springs of the West; Capra Press: Santa Barbara, CA, USA, 1993. [Google Scholar]
- Royte, E. Bottlemania. How Water Went on Sale and Why We Bought It; Bloomsbury: London, UK, 2008. [Google Scholar]
- Gleick, P.H. Bottled and Sold: The Story Behind Our Obsession with Bottled Water; Island Press: New York, NY, USA, 2011. [Google Scholar]
- Hurwitz, S. One Benefit of California’s Volcanoes? Geothermal Energy; California Geological Survey California Volcanoes Observatory: Moffett Field, CA, USA, 2022. [Google Scholar]
- Resh, V.H.; Lamberti, G.A.; McElravy, E.P.; Wood, J.R.; Feminella, J.W. Quantitative Methods for Evaluating the Effects of Geothermal Energy Development on Stream Benthic Communities at The Geysers, California; California Water Resources Center, University of California: Berkeley, CA, USA, 1984. [Google Scholar]
- Resh, V.H.; Barnby, M.A. Distribution of the Wilbur Springs Shore Bug (Hemiptera: Saldidae): A Product of Abiotic Tolerances and Biotic Constraints. Environ. Entomol. 1987, 16, 1087–1091. [Google Scholar] [CrossRef]
- Winograd, I.; Thordarson, W. Hydrogeologic and Hydrochemical Framework, South-Central Great Basin, Nevada-California, with Special Reference to the Nevada Test Site; Professional Paper 712-C; USUG: Reston, VA, USA, 1975; Volume 712. [Google Scholar]
- Harry, K.; Watson, J. The Archaeology of Pueblo Grande de Nevada: Past and Current Research within Nevada’s “Lost City”. Kiva 2010, 75, 403–424. [Google Scholar] [CrossRef]
- SEINet (Regional Network of North American Herbaria). Available online: https://symbiota.org/seinet/ (accessed on 10 January 2024).
- Cornett, J. The Desert Fan Palm Oasis. In Aridland Springs of North America: Ecology and Conservation; Stevens, L.E., Meretsky, V.J., Eds.; University of Arizona Press: Tucson, AZ, USA, 2008; pp. 158–184. [Google Scholar]
- Central Intelligence (last). División Político Administrativa y Censal 2007. The World Factbook; National Statistics Office: Washington, DC, USA, 2023. [Google Scholar]
- Evenstar, L.A.; Mather, A.E.; Hartley, A.J.; Stuart, F.M.; Sparks, R.S.J.; Cooper, F.J. Geomorphology on Geologic Timescales: Evolution of the Late Cenozoic Pacific Paleosurface in Northern Chile and Southern Peru. Earth-Sci. Rev. 2017, 171, 1–27. [Google Scholar] [CrossRef]
- German, C.R.; Baumberger, T.; Lilley, M.D.; Lupton, J.E.; Noble, A.E. Hydrothermal Exploration of the Southern Chile Rise: Sediment-Hosted Venting at the Chile Triple Junction. Geochem. Geophys. Geosyst. 2022, 23, e2021GC010317. [Google Scholar] [CrossRef]
- Arroyo, M.T.K.; Zedler, P.H.; Fox, D. (Eds.) Ecology and Biogeography of Mediterranean Ecosystems in Chile, California, and Australia; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Reiche, K. VIII. Grundzϋge der Pflanzenverbreitung in Chile; Engler, A., Drude, O., Eds.; Wilhelm Englemann: Leipzig, Germany, 1907. [Google Scholar]
- Mooney, H.A.; Dunn, E.L.; Shropshire, F.; Song, L. Vegetation Comparisons between the Mediterranean Climatic Areas of California and Chile. Flora 1970, 159, 480–496. [Google Scholar] [CrossRef]
- León-Lobos, P.; Díaz-Forestier, J.; Díaz, R.; Celis-Díaz, J.L.; Diasgranados, M.; Ulian, T. Patterns of Traditional and Modern Uses of Wild Edible Native Plants of Chile: Challenges and Future Perspectives. Plants 2022, 11, 744. [Google Scholar] [CrossRef] [PubMed]
- Arroyo; Marquet, P.; Marticorena, C.; Simonetti, J.; Cavieres, L.; Squeo, F.A.; Rozzi, R. Chilean Winter Rainfall—Valdivian Forest. In Hotspots: Earth’s Biological Richest and most Endangered Terrestrial Ecoregions; Mittermeier, R.A., Robles, P., Hoffmann, M., Pilgrim, J., Brooks, T., Mittermeier, C., Lamoreux, J., Fonseca, G.A.B., Eds.; CEMEX: Hidalgo, Mexico, 2004; pp. 99–103. [Google Scholar]
- Marquet, P.A.; Tognelli, M.; Barria, I.; Escobar, M.; Garin, C.; Soublette, P. How Well Are Mediterranean Ecosystems Protected in Chile? In Proceedings of the 19th MEDECOS Conference, Rhodes, Greece, 25 April–1 May 2004; Papanastasis, V.P., Arianoutsou, M., Lyrintzis, G., Eds.; Millpress: Rotterdam, the Netherlands, 2004; pp. 1–4. [Google Scholar]
- Wittmer, M. Floreana: A Woman’s Pilgrimage to the Galapagos; Moyer Bell: New York, NY, USA, 1989. [Google Scholar]
- Strauch, D. Satan came to Eden: A survivor’s account of the “Galapagos Affair”; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 1936. [Google Scholar]
- Ekmekçi, M.; Günay, G. Role of Public Awareness in Groundwater Protection. Environ. Geol. 1997, 30, 81–87. [Google Scholar] [CrossRef]
- Bostock, J.; Riley, H.T. (Eds.) Pliny the Elder. ca. AD 77. In Pliny the Elder, The Natural History; Taylor and Francis: London, UK, 1855. [Google Scholar]
- Sistiaga, A.; Husain, F.; Uribelarrea, D.; Summons, R.E. Microbial Biomarkers Reveal a Hydrothermally Active Landscape at Olduvai Gorge at the Dawn of the Acheulean, 1.7 Ma. Proc. Natl. Acad. Sci. USA 2020, 117, 24720–24728. [Google Scholar] [CrossRef]
- Graff, J.V.; Pluhar, C.J.; Gallegos, A.J.; Takenaka, K.; Platt, B. Monitoring Thermal Springs To Improve Land Management Decision-Making, Sierra Nevada, California. Environ. Eng. Geosci. 2018, 24, 165–185. [Google Scholar] [CrossRef]
- Del Sol, G. Puritama Thermal Spring in the Atacama Desert, Chile (German Del Sol architect. ARQ 2004, 57, 26–33. [Google Scholar]
- Angelakis, A.N.; Voudouris, K.S.; Mariolakos, I. Groundwater Utilization through the Centuries Focusing [Omicron] n the Hellenic Civilizations. Hydrogeol. J. 2016, 24, 1311. [Google Scholar] [CrossRef]
- Williamson, D. Tower and Temple: Re-Sacralizing Water Infrastructure at Balkrisha Doshi’s GSFC Township. In Water and Sacred Architecture; Geva, A., Ed.; Routledge: London, UK, 2023; pp. 199–214. [Google Scholar]
- Rybus, G. Hot Springs: Photos and Stories of How the World Soaks, Swims, and Slows Down; Ten Speed Press: Berkeley, CA, USA, 2024. [Google Scholar]
- Olivier, J.; Niekerk, H.J.; Walt, I.J. Physical and Chemical Characteristics of Thermal Springs in the Waterberg Area in Limpopo Province, South Africa. Water SA 2008, 34, 163–174. [Google Scholar] [CrossRef]
- Dilsiz, C. Environmental Issues Concerning Natural Resources at Pamukkale Protected Site, Southwest Turkey. Environ. Geol. 2002, 41, 776–784. [Google Scholar] [CrossRef]
- Gargini, A.; Stefani, A.; Vannini, S. The Groundwater Flow System of Terme Alte (Alto Reno Terme, Bologna, Italy). Acque Sotter. -Ital. J. Groundw. 2020, 9. [Google Scholar] [CrossRef]
- Di Gioia, M.L.; Leggio, A.; Pera, A.L.; Liguori, A.; Perri, F. Occurrence of Organic Compounds in the Thermal Sulfurous Waters of Calabria, Italy. Chromatographia 2006, 63, 585–590. [Google Scholar] [CrossRef]
- Katsanou, K.; Siavalas, G.; Lambrakis, N. The Thermal and Mineral Springs of Aitoloakarnania Prefecture: Function Mechanism and Origin of Groundwater. Environ. Earth Sci. 2012, 65, 2351–2364. [Google Scholar] [CrossRef]
- Sayili, M.; Akca, H.; Duman, T.; Esengun, K. Psoriasis Treatment via Doctor Fishes as Part of Health Tourism: A Case Study of Kangal Fish Spring, Turkey. Tour. Manag. 2007, 28, 625–629. [Google Scholar] [CrossRef]
- Ncube, S.; Mlunguza, N.Y.; Dube, S.; Ramganesh, S.; Ogola, H.J.O.; Nindi, M.M.; Madikizela, L.M. Physicochemical Characterization of the Pelotherapeutic and Balneotherapeutic Clayey Soils and Natural Spring Water at Isinuka Traditional Healing Spa in the Eastern Cape Province of South Africa. Sci. Total Environ. 2020, 717, 137284. [Google Scholar] [CrossRef]
- Fioravanti, A.; Karagülle, M.; Bender, T.; Karagülle, M.Z. Balneotherapy in Osteoarthritis: Facts, Fiction and Gaps in Knowledge. Eur. J. Integr. Med. 2017, 9, 148–150. [Google Scholar] [CrossRef]
- Petersen, P.; Mavroudis, A.; Chang, C.C. Implementation of Regulatory Directives for a Water Supply Reservoir-a Case History of Crystal Springs Dam in San Francisco Peninsula, California, USA; WIT Press: Southampton, UK, 2003. [Google Scholar]
- Giacopetti, M.; Materazzi, M.; Pambianchi, G.; Posavec, K. A Combined Approach for a Modern Hydrogeological Mapping: The Case Study of Tennacola Stream Catchment (Central Apennine, Italy). J. Maps 2019, 15, 203–214. [Google Scholar] [CrossRef]
- Masciale, R.; Amalfitano, S.; Frollini, E.; Ghergo, S.; Melita, M.; Parrone, D.; Passarella, G. Assessing Natural Background Levels in the Groundwater Bodies of the Apulia Region (Southern Italy). Water 2021, 13, 958. [Google Scholar] [CrossRef]
- Martarelli, L.; Iacuitto, M.; Gregori, V.; Menotti, R.M.; Petitta, M.; Scalise, A.R. The Rieti Land Reclamation Authority Relevance in the Management of Surface Waters for the Irrigation Purposes of the Rieti Plain (Central Italy). Acque Sotter. -Ital. J. Groundw. 2016, 5. [Google Scholar] [CrossRef]
- Fridleifsson, I.B.; Freeston, D.H. Geothermal Energy Research and Development. Geothermics 1994, 23, 175–214. [Google Scholar] [CrossRef]
- Akar, A.T.; Gemici, Ü.; Altaş, A.M.S.; Tarcan, G. Numerical modeling of fluid flow and heat transfer in kurşunlu geothermal field-kgf (Salihli, Manisa/Turkey). Turk. J. Earth Sci. 2021, 30, 1096–1111. [Google Scholar] [CrossRef]
- Winde, F.; Kaiser, F.; Erasmus, E. Exploring the Use of Deep Level Gold Mines in South Africa for Underground Pumped Hydroelectric Energy Storage Schemes. Renew. Sustain. Energy Rev. 2017, 78, 668–682. [Google Scholar] [CrossRef]
- Benmarce, K.; Hadji, R.; Zahri, F.; Khanchoul, K.; Chouabi, A.; Zighmi, K.; Hamed, Y. Hydrochemical and Geothermometry Characterization for a Geothermal System in Semiarid Dry Climate: The Case Study of Hamma Spring (Northeast Algeria). J. Afr. Earth Sci. 2021, 182, 104285. [Google Scholar] [CrossRef]
- Carlino, S.; Somma, R.; Troiano, A.; Giuseppe, M.G.; Troise, C.; Natale, G.; Carlino, S.; Somma, R.; Troiano, A.; Giuseppe, M.G.; et al. The Geothermal System of Ischia Island (Southern Italy): Critical Review and Sustainability Analysis of Geothermal Resource for Electricity Generation. Renew Energy 2014, 62, 177–196. [Google Scholar] [CrossRef]
- Cuchí-Oterino, J.A.; Rodríguez-Caro, J.B.; Noceda-Márquez, C. Overview of Hydrogeothermics in Spain. Environ. Geol. 2000, 39, 482–487. [Google Scholar] [CrossRef]
- Zanini, A.; Petrella, E.; Sanangelantoni, A.M.; Angelo, L.; Ventosi, B.; Viani, L.; Celico, F. Groundwater Characterization from an Ecological and Human Perspective: An Interdisciplinary Approach in the Functional Urban Area of Parma, Italy. Rend. Lincei Sci. Fis. Nat. 2019, 30, 93–108. [Google Scholar] [CrossRef]
- Naclerio, G.; Celico, F. Spring Protection against Microbial Contamination in Compartmentalized Carbonate Aquifers, Central-Southern Italy. In Environmental Regulation: Evaluating, Compliance and Economic Impact; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2009. [Google Scholar]
- Romano, D.; Magaz, S.; Sabatino, G.; Bella, M.; Tripodo, A.; Nania, G.; Italiano, F. Radon Concentration in Groundwater of North-Eastern Sicily (Italy). J. Instrum. 2022, 17, 09003. [Google Scholar] [CrossRef]
- Di Carlo, C.; Lepore, L.; Venoso, G.; Ampollini, M.; Carpentieri, C.; Tannino, A.; Bochicchio, F. Radon Concentration in Self-Bottled Mineral Spring Waters as a Possible Public Health Issue. Sci. Rep. 2019, 9, 14252. [Google Scholar] [CrossRef] [PubMed]
- Güler, C. Evaluation of Maximum Contaminant Levels in Turkish Bottled Drinking Waters Utilizing Parameters Reported on Manufacturer’s Labeling and Government-Issued Production Licenses. J. Food Compos. Anal. 2007, 20, 262–272. [Google Scholar] [CrossRef]
- Baba, A.; Ayyildiz, O. Urban Groundwater Pollution in Turkey: A National Review of Urban Groundwater Quality Issues. In Urban Groundwater Management and Sustainability; Springer: Dordrecht, The Netherlands, 2006; pp. 93–110. [Google Scholar]
- Growth, R.L.A. Hot Springs Emerge as Hot Market for Investments; RLA Global: Budapest, Hungary, 2019. [Google Scholar]
- Erfurt-Cooper, P. Active Hydrothermal Features as Tourist Attractions; Springer International Publishing: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Martín-Arias, J.; Argamasilla-Ruiz, M.; Andreo, B.; Martínez-Santos, P. Análisis preliminar de diferentes índices de sequía en el marco de la planificación hidrológica. El caso del sistema de explotación de la Costa del Sol Occidental. In Las Aguas Subterráneas y la Planificación Hidrológica; AIH-GE: Madrid, Spain, 2016; pp. 399–405. [Google Scholar]
- Gutrich, J.J.; Gigliello, K.; Gardner, K.V.; Elmore, A.J. Economic Returns of Groundwater Management Sustaining an Ecosystem Service of Dust Suppression by Alkali Meadow in Owens Valley, California. Ecol. Econ. 2016, 121, 1–11. [Google Scholar] [CrossRef]
- Zafeirakou, A.; Karavi, A.; Katsoulea, A.; Zorpas, A.; Papamichael, I. Water Resources Management in the Framework of the Circular Economy for Touristic Areas in the Mediterranean: Case Study of Sifnos Island in Greece. Euro-Mediterr. J. Environ. Integr. 2022, 7, 347–360. [Google Scholar] [CrossRef]
- Günay, G.; Güner, N.; Törk, K. Turkish karst aquifers. Environ. Earth Sci. 2015, 74, 217–226. [Google Scholar] [CrossRef]
- Stevens, L.E.; Schenk, E.R.; Springer, A.E. Springs Ecosystem Classification. Ecol. Appl. 2021, 31, e2218. [Google Scholar] [CrossRef]
- Swart, C.J.U.; James, A.R.; Kleywegt, R.J.; Stoch, E.J. The Future of the Dolomitic Springs after Mine Closure on the Far West Rand, Gauteng, RSA. Environ. Geol. 2003, 44, 751–770. [Google Scholar] [CrossRef]
- Mokadem, N.; Redhaounia, B.; Besser, H.; Ayadi, Y.; Khelifi, F.; Hamad, A.; Bouri, S. Impact of Climate Change on Groundwater and the Extinction of Ancient “Foggara” and Springs Systems in Arid Lands in North Africa: A Case Study in Gafsa Basin (Central of Tunisia). Euro-Mediterr. J. Environ. Integr. 2018, 3, 28. [Google Scholar] [CrossRef]
- Ozcelik, M. Potential Effects of Excessive Water Withdrawal from Boreholes Drilled in the Antalya (Turkey) Travertine Plateau and Well Interactions. Euro-Mediterr. J. Environ. Integr. 2022, 7, 241–249. [Google Scholar] [CrossRef]
- Petalas, C.; Pisinaras, V.; Koltsida, K.; Tsihrintzis, V.A. The Hydrological Regime of the East Basin of Thessaly, Greece. In Proceedings of the 9th International Conference on Environmental Science and Technology, Rhodes, Greece, 1–3 September 2005. [Google Scholar]
- Angelakis, A.N.; Voudouris, K.S.; Tchobanoglous, G. Evolution of Water Supplies in the Hellenic World Focusing on Water Treatment and Modern Parallels. Water Supply 2020, 20, 773–786. [Google Scholar] [CrossRef]
- Crespo Bernabe, M.B.; Gomez Espin, J.M. The Cartagena water supply. Cuad. Geogr. 2015, 54, 270–297. [Google Scholar]
- Menichini, M.; Prato, S.; Doveri, M.; Ellero, A.; Lelli, M.; Masetti, G.; Raco, B. An Integrated Methodology to Define Protection Zones for Groundwaterbased Drinking Water Sources: An Example from the Tuscany Region, Italy. Acque Sotter. -Ital. J. Groundw. 2015, 4. [Google Scholar] [CrossRef]
- Kallioras, A.; Marinos, P. Water Resources Assessment and Management of Karst Aquifer Systems in Greece. Environ. Earth Sci. 2015, 74, 83–100. [Google Scholar] [CrossRef]
- Yenigün, K.; Kürkçüoğlu, A.C.; Yazgan, M.S.; Gerger, R.; Ülgen, U. From Ancient Times to the Present: Development of the Drinking Water Supply System of Şanliurfa in South-Eastern Turkey. Water Sci. Technol. Water Supply 2013, 13, 646–655. [Google Scholar] [CrossRef]
- Spanoudi, S.; Golfinopoulos, A.; Kalavrouziotis, I. Water Management in Ancient Alexandria, Egypt. Comparison with Constantinople hydraulic system. Water Supply 2021, 21, 3427–3436. [Google Scholar] [CrossRef]
- Stevenazzi, S.; Zuffetti, C.; Camera, C.A.; Lucchelli, A.; Beretta, G.P.; Bersezio, R.; Masetti, M. Hydrogeological Characteristics and Water Availability in the Mountainous Aquifer Systems of Italian Central Alps: A Regional Scale Approach. J. Environ. Manag. 2023, 340, 117958. [Google Scholar] [CrossRef]
- Guitián, M.A.R.; Real, C.; Ramil-Rego, P.; Franco, R.R.; Castro, H.L. Characteristics, Vulnerability and Conservation Value of Active Tufa-Forming Springs on Coastal Cliffs in the NW Iberian Peninsula. Ocean. Coast. Manag. 2020, 189, 105122. [Google Scholar] [CrossRef]
- Cantonati, M.; Segadelli, S.; Ogata, K.; Tran, H.; Sanders, D.; Gerecke, R.; Rott, E.; Filippini, M.; Gargini, A.; Celico, F. A Global Review on Ambient Limestone-Precipitating Springs (LPS): Hydrogeological Setting, Ecology, and Conservation. Sci. Total Environ. 2016, 568, 624–637. [Google Scholar] [CrossRef]
- Kurzweil, J.R.; Abdi, R.; Stevens, L.; Hogue, T.S. Utilization of Ecological Indicators to Quantify Distribution and Conservation Status of Mt. Tamalpais Springs, Marin County, California. Ecol. Indic. 2021, 125, 107544. [Google Scholar] [CrossRef]
- Parsons, R.; Wentzel, J. Using Sustainability Indicators as a Basis for Classifying Groundwater in South Africa; IAHS Publication: Wallingford, UK, 2006; Volume 302, p. 10. [Google Scholar]
- Cantonati, M.; Ortler, K. Using Spring Biota of Pristine Mountain Areas for Long Term Monitoring—Hydrology, Water Resources and Ecology in Headwaters. In Proceedings of the Headwater’98 Conference, Merano/Meran, Italy, 20–23 April 1998; Volume 248, pp. 379–385. [Google Scholar]
- Sada, D.W.; Cooper, D.J. Furnace Creek Springs Restoration and Adaptive Management Plan; Death Valley National Park: Death Valley, CA, USA, 2012. [Google Scholar]
- Fensham, R.J.; Adinehvand, R.; Babidge, S.; Cantonati, M.; Currell, M.; Daniele, L.; Elci, A.; Galassi, D.M.P.; de la Hera Portillo1, A.; Hamad, S.; et al. Fellowship of the Spring: An Initiative to Document and Protect the World’s Oases. Sci. Total Environ. 2023, 887, 163936. [Google Scholar] [CrossRef]
- Burke, K.J.; Harcksen, K.A.; Stevens, L.E.; Andress, R.J.; Johnson, R.J. Collaborative Rehabilitation of Pakoon Springs in Grand Canyon–Parashant National Monument, Arizona. In Science and Management at the Landscape Scale: The Colorado Plateau VI; Huenneke, L.F., Van Riper, C., Hays-Gilpin, K.A., Eds.; University of Arizona Press: Tucson, AZ, USA, 2015. [Google Scholar]
- Stevens, L.E.; Ledbetter, J.D.; Campbell, A.E.S.C.; Misztal, L.; Joyce, M.; Hardwick, G. Arizona Springs Restoration Handbook; Spring Stewardship Institute, Museum of Northern Arizona: Flagstaff, AZ, USA, 2016. [Google Scholar]
- Illies, J.; Botosaneanu, L. Problèmes et méthodes de la classification et de la zonation écologique des eaux courantes, considerées surtout du point de vue faunistique: Avec 18 figures dans le texte et en supplément. Int. Ver. Für Theor. Und Angew. Limnol. Mitteilungen 1963, 12, 1–57. [Google Scholar] [CrossRef]
- Lencioni, V.; Cranston, P.; Makarchenko, E.A. Recent Advances in the Study of Chironomidae: An Overview. J. Limnol. 2018, 77, 1–66. [Google Scholar] [CrossRef]
- Mezquita, F.; Sanz-Brau, A.; Wansard, G. Habitat Preferences and Population Dynamics of Ostracoda in a Helocrene Spring System. Can. J. Zool. 2000, 78, 840–847. [Google Scholar] [CrossRef]
- Haynes Jr, C.V. Younger Dryas “Black Mats” and the Rancholabrean Termination in North America. Proc. Natl. Acad. Sci. USA 2008, 105, 6520–6525. [Google Scholar] [CrossRef]
- Phillips, D.A., Jr.; VanPool., T.L.; VanPool, C.S. The Horned Serpent Tradition in the North American Southwest. In Religion in the Prehispanic Southwest; VanPool, C., VanPool, T.L., Phillips, D.A., Eds.; Altamira Press: Lanham, MD, USA, 2009; pp. 17–30. [Google Scholar]
- Canaan, T. Studies in Palestinian Customs and Folklore II. Haunted Springs and Water Demons in Palestine. J. Palest. Orient. Soc. 1919, 1, 153–170. [Google Scholar]
- Rea, A.M. Historic and Prehistoric Ethnobiology of Desert Springs in Aridland Springs in North America: Ecology and Conservation; Stevens, L.E., Meretsky, V.J., Eds.; University of Arizona Press: Tucson, AZ, USA, 2008. [Google Scholar]
Village/Hamlet * | Informant | Age | Main Profession | Number of Springs Cited ** |
---|---|---|---|---|
Albarca | Several (11) reported in Palomar [109] | --- | --- | 20 |
Cabassers | Ramon Masip | 69 | farmer | 23 |
Cornudella de Montsant | Ildefons Gomis | 90 | farmer | 72 |
Escaladei | Benito Porqueres | 84 | farmer | 13 |
la Bisbal de Falset | Miquel Franquet | 83 | farmer | 22 |
la Figuera | Jaume Roca | 78 | farmer | 17 |
la Morera de Montsant | Joaquim Figueres | 65 | farmer | 48 |
Ramon Sabaté | 79 | farmer | ||
la Vilella Alta | Josep Maria Masip | 65 | farmer | 37 |
la Vilella Baixa | Eduard Juncosa | 66 | farmer | 28 |
Margalef | Miquel Amill | 69 | farmer | 28 |
Poboleda | Salvador Burgos | 52 | farmer | 14 |
Torroja del Priorat | Joan Pàmies | 70 | farmer and shepherd | 59 |
Ulldemolins | Ramon Pere | 59 | farmer | 41 |
Spring | Date | Calendar of Saints | Village that Organizes the Event |
---|---|---|---|
Santa Llúcia | 2nd Sunday in August * | --- | la Bisbal de Falset |
La Foia | 25 April | Sant Marc | Cabassers |
5 August | Mare de Déu de les Neus | Cabassers | |
Sant Salvador | 25 April | Sant Marc | Margalef |
6 August | Sant Salvador | Margalef | |
16 August | Sant Roc | la Bisbal de Falset |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pascual, R.; Piana, L.; Bhat, S.U.; Castro, P.F.; Corbera, J.; Cummings, D.; Delgado, C.; Eades, E.; Fensham, R.J.; Fernández-Martínez, M.; et al. The Cultural Ecohydrogeology of Mediterranean-Climate Springs: A Global Review with Case Studies. Environments 2024, 11, 110. https://doi.org/10.3390/environments11060110
Pascual R, Piana L, Bhat SU, Castro PF, Corbera J, Cummings D, Delgado C, Eades E, Fensham RJ, Fernández-Martínez M, et al. The Cultural Ecohydrogeology of Mediterranean-Climate Springs: A Global Review with Case Studies. Environments. 2024; 11(6):110. https://doi.org/10.3390/environments11060110
Chicago/Turabian StylePascual, Roger, Lucia Piana, Sami Ullah Bhat, Pedro Fidel Castro, Jordi Corbera, Dion Cummings, Cristina Delgado, Eugene Eades, Roderick J. Fensham, Marcos Fernández-Martínez, and et al. 2024. "The Cultural Ecohydrogeology of Mediterranean-Climate Springs: A Global Review with Case Studies" Environments 11, no. 6: 110. https://doi.org/10.3390/environments11060110
APA StylePascual, R., Piana, L., Bhat, S. U., Castro, P. F., Corbera, J., Cummings, D., Delgado, C., Eades, E., Fensham, R. J., Fernández-Martínez, M., Ferreira, V., Filippini, M., García, G., Gargini, A., Hopper, S. D., Knapp, L., Lewis, I. D., Peñuelas, J., Preece, C., ... Stevens, L. E. (2024). The Cultural Ecohydrogeology of Mediterranean-Climate Springs: A Global Review with Case Studies. Environments, 11(6), 110. https://doi.org/10.3390/environments11060110