Non-Conventional Data for Farming-Related Air Pollution: Contributions to Modelling and Risk Assessment in the Lombardy Region, Italy
Abstract
:1. Introduction
2. Materials and Methods
3. Non-Conventional Data for Farming-Related Air Pollution
Data Preparation
4. Contribution of Non-Conventional Air Pollution Data to Concentrations Modelling
Modelling Examples
5. Reliability of Non-Conventional Air Pollution Data for Health Risk Assessment
AC Model Estimates for Risk Assesment
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Atmospheric Composition |
AI | Artificial Intelligence |
ARPA | Environmental Protection Agency |
CAMS | Copernicus Atmosphere Monitoring Service |
CV | Coefficient of Variation |
D-DUST | Data-driven moDelling of particUlate with Satellite Technology aid |
DUSAF | Lombardy Region - Land Use and Land Cover Database |
ECMWF | European Centre for Medium-Range Weather Forecasts |
ESA | European Space Agency |
EU | European Union |
GEMS | Geostationary Environment Monitoring Spectrometer |
GEOAI | Geographically Enhanced Artificial Intelligence |
INEMAR | INventario EMissioni ARia |
KARI | Korea Aerospace Research Institute |
MGWR | Multiscale Geographically Weighted Regression |
MNB | Mean Normalized Bias |
NO | Nitric Oxide |
NO2 | Nitrogen Dioxide |
NOX | Nitrogen Oxides |
NH3 | Ammonia |
O3 | Ozone |
PM | Particulate Matter |
PM10 | Particulate Matter with diameter 10 µm or smaller |
PM2.5 | Particulate Matter with diameter 2.5 µm or smaller |
RF | Random Forest |
SDGs | Sustainable Development Goals |
SHAP | SHapley Additive exPlanation |
SIARL | Lombardy Region - Agricultural Information System |
TEMPO | Tropospheric Emissions: Monitoring of Pollution |
UN | United Nations |
USA | United States of America |
WorldPop | World Population Data |
References
- World Health Organization. WHO Global Air Quality Guidelines; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Rafaj, P.; Kiesewetter, G.; Gül, T.; Schöpp, W.; Cofala, J.; Klimont, Z.; Purohit, P.; Heyes, C.; Amann, M.; Borken-Kleefeld, J.; et al. Outlook for clean air in the context of sustainable development goals. Glob. Environ. Chang. 2018, 53, 1–11. [Google Scholar] [CrossRef]
- Vandyck, T.; Keramidas, K.; Kitous, A.; Spadaro, J.V.; Van Dingenen, R.; Holland, M.; Saveyn, B. Air quality co-benefits for human health and agriculture counterbalance costs to meet Paris Agreement pledges. Nat. Commun. 2018, 9, 4939. [Google Scholar] [CrossRef] [PubMed]
- Amann, M.; Kiesewetter, G.; Schöpp, W.; Klimont, Z.; Winiwarter, W.; Cofala, J.; Rafaj, P.; Höglund-Isaksson, L.; Gomez-Sabriana, A.; Heyes, C.; et al. Reducing global air pollution: The scope for further policy interventions. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190331. [Google Scholar] [CrossRef]
- Chen, B.; Kan, H. Air pollution and population health: A global challenge. Environ. Health Prev. Med. 2008, 13, 94–101. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Ambient air pollution: A global assessment of exposure and burden of disease. Clean Air J. 2016, 26, 6. [Google Scholar] [CrossRef]
- Shindell, D.; Kuylenstierna, J.C.I.; Vignati, E.; van Dingenen, R.; Amann, M.; Klimont, Z.; Anenberg, S.C.; Muller, N.; Janssens-Maenhout, G.; Raes, F.; et al. Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security. Science 2012, 335, 183–189. [Google Scholar] [CrossRef]
- McDuffie, E.E.; Smith, S.J.; O’Rourke, P.; Tibrewal, K.; Venkataraman, C.; Marais, E.A.; Zheng, B.; Crippa, M.; Brauer, M.; Martin, R.V. A global anthropogenic emission inventory of atmospheric pollutants from sector- and fuel-specific sources (1970–2017): An application of the Community Emissions Data System (CEDS). Earth Syst. Sci. Data 2020, 12, 3413–3442. [Google Scholar] [CrossRef]
- Paulot, F.; Jacob, D.J. Hidden Cost of U.S. Agricultural Exports: Particulate Matter from Ammonia Emissions. Environ. Sci. Technol. 2014, 48, 903–908. [Google Scholar] [CrossRef]
- Aneja, V.P.; Schlesinger, W.H.; Erisman, J.W. Farming pollution. Nat. Geosci. 2008, 1, 409–411. [Google Scholar] [CrossRef]
- Wyer, K.E.; Kelleghan, D.B.; Blanes-Vidal, V.; Schauberger, G.; Curran, T.P. Ammonia emissions from agriculture and their contribution to fine particulate matter: A review of implications for human health. J. Environ. Manag. 2022, 323, 116285. [Google Scholar] [CrossRef]
- World Health Organization. Ammonia; Number 54 in Environmental Health Criteria; WHO: Geneva, Switzerland, 1986. [Google Scholar]
- Zhu, L.; Henze, D.K.; Bash, J.O.; Cady-Pereira, K.E.; Shephard, M.W.; Luo, M.; Capps, S.L. Sources and Impacts of Atmospheric NH3: Current Understanding and Frontiers for Modeling, Measurements, and Remote Sensing in North America. Curr. Pollut. Rep. 2015, 1, 95–116. [Google Scholar] [CrossRef]
- Baek, B.H.; Aneja, V.P.; Tong, Q. Chemical coupling between ammonia, acid gases, and fine particles. Environ. Pollut. 2004, 129, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Duan, F.; He, K.; Du, J.; Zhu, L. Sulfate–nitrate–ammonium as double salts in PM2.5: Direct observations and implications for haze events. Sci. Total Environ. 2019, 647, 204–209. [Google Scholar] [CrossRef]
- Putaud, J.P.; Van Dingenen, R.; Alastuey, A.; Bauer, H.; Birmili, W.; Cyrys, J.; Flentje, H.; Fuzzi, S.; Gehrig, R.; Hansson, H.; et al. A European aerosol phenomenology—3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos. Environ. 2010, 44, 1308–1320. [Google Scholar] [CrossRef]
- Park, J.; Kim, E.; Oh, S.; Kim, H.; Kim, S.; Kim, Y.P.; Song, M. Contributions of Ammonia to High Concentrations of PM2.5 in an Urban Area. Atmosphere 2021, 12, 1676. [Google Scholar] [CrossRef]
- Shikhovtsev, M.Y.; Obolkin, V.; Khodzher, T.; Molozhnikova, Y.V. Variability of the Ground Concentration of Particulate Matter PM1–PM10 in the Air Basin of the Southern Baikal Region. Atmos. Ocean. Opt. 2023, 36, 655–662. [Google Scholar] [CrossRef]
- Xing, Y.F.; Xu, Y.H.; Shi, M.H.; Lian, Y.X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar] [CrossRef]
- Papastefanou, C. Residence time of tropospheric aerosols in association with radioactive nuclides. Appl. Radiat. Isot. 2006, 64, 93–100. [Google Scholar] [CrossRef]
- World Bank. The Global Health Cost of Ambient PM2.5 Air Pollution; The World Bank Group: Washington, DC, USA, 2020. [Google Scholar] [CrossRef]
- Pohl, V.; Gilmer, A.; Hellebust, S.; McGovern, E.; Cassidy, J.; Byers, V.; McGillicuddy, E.J.; Neeson, F.; O’Connor, D.J. Ammonia Cycling and Emerging Secondary Aerosols from Arable Agriculture: A European and Irish Perspective. Air 2022, 1, 37–54. [Google Scholar] [CrossRef]
- Fanti, G.; Borghi, F.; Spinazzè, A.; Rovelli, S.; Campagnolo, D.; Keller, M.; Cattaneo, A.; Cauda, E.; Cavallo, D.M. Features and practicability of the next-generation sensors and monitors for exposure assessment to airborne pollutants: A systematic review. Sensors 2021, 21, 4513. [Google Scholar] [CrossRef]
- Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 2017, 99, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Fowler, D.; Brimblecombe, P.; Burrows, J.; Heal, M.R.; Grennfelt, P.; Stevenson, D.S.; Jowett, A.; Nemitz, E.; Coyle, M.; Liu, X.; et al. A chronology of global air quality. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190314. [Google Scholar] [CrossRef] [PubMed]
- D-DUST. Data-Driven moDelling of particUlate with Satellite Technology Aid. 2023. Available online: https://www.ddust.it (accessed on 12 May 2024).
- Maranzano, P. Air Quality in Lombardy, Italy: An Overview of the Environmental Monitoring System of ARPA Lombardia. Earth 2022, 3, 172–203. [Google Scholar] [CrossRef]
- ARPA Lombardia. INEMAR, Atmospheric Emissions Inventory: Emissions in the Lombardy Region for the Year 2021. 2024. Available online: https://www.inemar.eu (accessed on 15 October 2024).
- CAMS. Copernicus Atmosphere Monitoring Service. 2024. Available online: https://atmosphere.copernicus.eu (accessed on 18 June 2024).
- ARPA Lombardia. ARPA Lombardia—Air Quality Data and Indicators. 2024. Available online: https://www.arpalombardia.it/dati-e-indicatori/aria (accessed on 18 June 2024).
- Erisman, J.; Schaap, M. The need for ammonia abatement with respect to secondary PM reductions in Europe. Environ. Pollut. 2004, 129, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhao, Y.; Wen, Z.; Chang, Y.; Pan, Y.; Sun, Y.; Ma, X.; Sha, Z.; Li, Z.; Kang, J.; et al. Increasing importance of ammonia emission abatement in PM2.5 pollution control. Sci. Bull. 2022, 67, 1745–1749. [Google Scholar] [CrossRef]
- European Commission. Proposal for a Directive of the European Parliament and of the Council on National Emissions Ceilings for Certain Atmospheric Pollutant; European Commission: Luxembourg, 1999.
- Yao, X.; Zhang, L. Trends in atmospheric ammonia at urban, rural, and remote sites across NorthAmerica. Atmos. Chem. Phys. 2016, 16, 11465–11475. [Google Scholar] [CrossRef]
- Ma, R.; Li, K.; Guo, Y.; Zhang, B.; Zhao, X.; Linder, S.; Guan, C.; Chen, G.; Gan, Y.; Meng, J. Mitigation potential of global ammonia emissions and related health impacts in the trade network. Nat. Commun. 2021, 12, 6308. [Google Scholar] [CrossRef]
- Dammers, E.; Shephard, M.; Griffin, D.; Chow, E.; White, E.; Hickman, J.; Tokaya, J.; Lutsch, E.; Kharol, S.; van der Graaf, S. County-level ammonia emissions monitored worldwide. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Sokhi, R.S.; Moussiopoulos, N.; Baklanov, A.; Bartzis, J.; Coll, I.; Finardi, S.; Friedrich, R.; Geels, C.; Grönholm, T.; Halenka, T.; et al. Advances in air quality research – current and emerging challenges. Atmos. Chem. Phys. 2022, 22, 4615–4703. [Google Scholar] [CrossRef]
- Pinder, R.W.; Adams, P.J.; Pandis, S.N.; Gilliland, A.B. Temporally resolved ammonia emission inventories: Current estimates, evaluation tools, and measurement needs. J. Geophys. Res. 2006, 111, D16310. [Google Scholar] [CrossRef]
- Narayana, M.V.; Jalihal, D.; Nagendra, S.M.S. Establishing A Sustainable Low-Cost Air Quality Monitoring Setup: A Survey of the State-of-the-Art. Sensors 2022, 22, 394. [Google Scholar] [CrossRef] [PubMed]
- Snider, G.; Weagle, C.L.; Murdymootoo, K.K.; Ring, A.; Ritchie, Y.; Stone, E.; Walsh, A.; Akoshile, C.; Anh, N.X.; Balasubramanian, R.; et al. Variation in global chemical composition of PM2.5: Emerging results from SPARTAN. Atmos. Chem. Phys. 2016, 16, 9629–9653. [Google Scholar] [CrossRef]
- Kang, Y.; Aye, L.; Ngo, T.D.; Zhou, J. Performance evaluation of low-cost air quality sensors: A review. Sci. Total Environ. 2022, 818, 151769. [Google Scholar] [CrossRef] [PubMed]
- Giordano, M.R.; Malings, C.; Pandis, S.N.; Presto, A.A.; McNeill, V.; Westervelt, D.M.; Beekmann, M.; Subramanian, R. From low-cost sensors to high-quality data: A summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors. J. Aerosol Sci. 2021, 158, 105833. [Google Scholar] [CrossRef]
- Kuklinska, K.; Wolska, L.; Namiesnik, J. Air quality policy in the U.S. and the EU—A review. Atmos. Pollut. Res. 2015, 6, 129–137. [Google Scholar] [CrossRef]
- European Environment Agency. The Application of Models Under the European Union’s Air Quality Directive: A Technical Reference Guide; European Environment Agency: Copenhagen, Denmark, 2011; OCLC: 904337141.
- Thunis, P.; Miranda, A.; Baldasano, J.; Blond, N.; Douros, J.; Graff, A.; Janssen, S.; Juda-Rezler, K.; Karvosenoja, N.; Maffeis, G.; et al. Overview of current regional and local scale air quality modelling practices: Assessment and planning tools in the EU. Environ. Sci. Policy 2016, 65, 13–21. [Google Scholar] [CrossRef]
- European Commission. A Europe That Protects: Clean Air for All; European Commission: Luxembourg, 2018.
- Heal, M.R.; Kumar, P.; Harrison, R.M. Particles, air quality, policy and health. Chem. Soc. Rev. 2012, 41, 6606. [Google Scholar] [CrossRef]
- Heath, D.F.; Krueger, A.J.; Roeder, H.A.; Henderson, B.D. The Solar Backscatter Ultraviolet and Total Ozone Mapping Spectrometer (SBUV/TOMS) for NIMBUS G. Opt. Eng. 1975, 14, 144323. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, U.; Ahn, M.H.; Kim, J.H.; Park, R.J.; Lee, H.; Song, C.H.; Choi, Y.S.; Lee, K.H.; Yoo, J.M.; et al. New era of air quality monitoring from space: Geostationary Environment Monitoring Spectrometer (GEMS). Bull. Am. Meteorol. Soc. 2020, 101, E1–E22. [Google Scholar] [CrossRef]
- Benedetti, A.; Reid, J.S.; Knippertz, P.; Marsham, J.H.; Di Giuseppe, F.; Rémy, S.; Basart, S.; Boucher, O.; Brooks, I.M.; Menut, L.; et al. Status and future of numerical atmospheric aerosol prediction with a focus on data requirements. Atmos. Chem. Phys. 2018, 18, 10615–10643. [Google Scholar] [CrossRef]
- Fowlie, M.; Rubin, E.; Walker, R. Bringing satellite-based air quality estimates down to Earth. Aea Pap. Proc. 2019, 109, 283–288. [Google Scholar] [CrossRef]
- Stortini, M.; Arvani, B.; Deserti, M. Operational Forecast and Daily Assessment of the Air Quality in Italy: A Copernicus-CAMS Downstream Service. Atmosphere 2020, 11, 447. [Google Scholar] [CrossRef]
- Lee, H.J.; Coull, B.A.; Bell, M.L.; Koutrakis, P. Use of satellite-based aerosol optical depth and spatial clustering to predict ambient PM2.5 concentrations. Environ. Res. 2012, 118, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.; Baumann, I. Open data policies and satellite Earth observation. Space Policy 2015, 32, 44–53. [Google Scholar] [CrossRef]
- Peuch, V.H.; Engelen, R.; Rixen, M.; Dee, D.; Flemming, J.; Suttie, M.; Ades, M.; Agustí-Panareda, A.; Ananasso, C.; Andersson, E.; et al. The Copernicus Atmosphere Monitoring Service: From Research to Operations. Bull. Am. Meteorol. Soc. 2022, 103, E2650–E2668. [Google Scholar] [CrossRef]
- Koch, A.C.; Bydekerke, L. Sentinel 5p in the framework of the EU Copernicus programme. In Proceedings of the EGU General Assembly 2018, Vienna, Austria, 8–13 April 2018; EGU General Assembly Conference Abstracts. p. 6557. [Google Scholar]
- Zoogman, P.; Liu, X.; Suleiman, R.; Pennington, W.; Flittner, D.; Al-Saadi, J.; Hilton, B.; Nicks, D.; Newchurch, M.; Carr, J.; et al. Tropospheric Emissions: Monitoring of Pollution (TEMPO). J. Quant. Spectrosc. Radiat. Transf. 2017, 186, 17–39. [Google Scholar] [CrossRef]
- Courrèges-Lacoste, G.B.; Sallusti, M.; Bulsa, G.; Bagnasco, G.; Veihelmann, B.; Riedl, S.; Smith, D.J.; Maurer, R. The Copernicus Sentinel 4 mission: A geostationary imaging UVN spectrometer for air quality monitoring. In Proceedings of the Sensors, Systems, and Next-Generation Satellites XXI, Warsaw, Poland, 11–14 September 2017; Neeck, S.P., Bézy, J.L., Kimura, T., Eds.; International Society for Optics and Photonics. SPIE: Bellingham, DC, USA, 2017; Volume 10423, p. 1042307. [Google Scholar] [CrossRef]
- ECMWF. European Centre for Medium-Range Weather Forecasts—ERA5-Land. 2024. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land (accessed on 18 June 2024).
- ARPA Lombardia. ARPA Lombardia—Meteo e Clima. 2024. Available online: https://www.arpalombardia.it/temi-ambientali/meteo-e-clima (accessed on 18 June 2024).
- Lombardy Region. Land Use and Land Cover Database (DUSAF). 2024. Available online: https://www.ersaf.lombardia.it/territorio/dusaf-destinazione-uso-suoli-agricoli-e-forestali (accessed on 18 June 2024).
- Lombardy Region. Geo-Topographic Database. 2024. Available online: https://www.geoportale.regione.lombardia.it (accessed on 18 June 2024).
- Lombardy Region. Agricultural Information System (SIARL). 2024. Available online: https://www.siarl.regione.lombardia.it (accessed on 18 June 2024).
- WorldPop. WorldPop: Open Spatial Demographic Data and Research. 2024. Available online: https://www.worldpop.org (accessed on 18 June 2024).
- European Space Agency. Sentinel-5P. 2024. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-5p (accessed on 18 June 2024).
- Oxoli, D.; Capizzi, E. D-DUST Code Respository. 2023. Available online: https://github.com/gisgeolab/D-DUST (accessed on 12 May 2024).
- Oxoli, D.; Capizzi, E. D-DUST Analysis Ready Data Repository; Zenodo: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Gianquintieri, L.; Oxoli, D.; Caiani, E.G.; Brovelli, M.A. State-of-art in modelling particulate matter (PM) concentration: A scoping review of aims and methods. Environ. Dev. Sustain. 2024, 26, 1–23. [Google Scholar] [CrossRef]
- Mahakalkar, A.U.; Gianquintieri, L.; Amici, L.; Brovelli, M.A.; Caiani, E.G. Geospatial analysis of short-term exposure to air pollution and risk of cardiovascular diseases and mortality—A systematic review. Chemosphere 2024, 353, 141495. [Google Scholar] [CrossRef]
- Gianquintieri, L.; Oxoli, D.; Caiani, E.G.; Brovelli, M.A. Land use influence on ambient PM2. 5 and ammonia concentrations: Correlation analyses in the Lombardy region, Italy. AGILE GIScience Ser. 2023, 4, 26. [Google Scholar] [CrossRef]
- Gianquintieri, L.; Oxoli, D.; Caiani, E.G.; Brovelli, M.A. Implementation of a GEOAI model to assess the impact of agricultural land on the spatial distribution of PM2. 5 concentration. Chemosphere 2024, 352, 141438. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30. [Google Scholar]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale geographically weighted regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.C.; Moosmüller, H.; Green, M.; Frank, N. Guidance for Using Continuous Monitors in PM2.5 Monitoring Networks; Technical Report; Nevada Univ. System, Desert Research Inst.: Reno, NV, USA, 1998. [Google Scholar]
- Williams, R.; Kaufman, A.; Hanley, T.; Rice, J.; Garvey, S. Evaluation of Field-Deployed Low-Cost PM Sensors; Technical Report EPA/600/R-14/464; U.S. Environmental Protection Agency: Washington, DC, USA, 2014.
Data Type | Variable Domain | Variables | Datasource |
---|---|---|---|
Models | Weather | Temperature, Wind, Precipitation, Air humidity, Air pressure, Solar radiation | ECMWF ERA5-Land [59] |
Air pollutants | PM10, PM2.5, SO2, NO2, NO, CO, O3, NH3 | CAMS [29] | |
Ground sensors | Weather | Temperature, Wind, Precipitation, Air humidity, Air pressure, Solar radiation | ARPA Lombardia—Weather and climate [60] |
Air pollutants | PM10, PM2.5, SO2, NO2, NO, CO, O3, NH3 | ARPA Lombardia—Air quality [30] | |
Map layers | Land use | Major land use classes (natural areas, agriculture, residential, industrial) | Lombardy Region—Land Use and Land Cover Database (DUSAF) [61] |
Transport networks | Road density | Lombardy Region—Geo-Topographic Database [62] | |
Crop types | Major crop types (corn, cereals, rice) | Lombardy Region—Agricultural Information System (SIARL) [63] | |
Terrain | Elevation, aspect, slope | Lombardy Region—Digital Terrain Model [62] | |
Population | Population density | WorldPop [64] | |
Satellites | Air pollutants | Aerosol Optical Depth, column densities: SO2, NO2, CO, O3 | ESA Sentinel 5P [65] |
Land-Use Classes | Spearman’s [−1–1] | MGWR Bandwidth [Grid Cells] | SHAP Relevance [0–1] |
---|---|---|---|
Agricultural | 0.767 | 7 | 0.38 |
Cereals | 0.731 | 7 | 0.73 |
Corn | 0.899 | 7 | 0.65 |
Rice | 0.228 | / | / |
Built-up | 0.800 | 9 | 0.40 |
Urbanised | 0.717 | / | / |
Industrial | 0.862 | 9 | 0.63 |
Roads | 0.775 | 9 | 0.24 |
Natural | −0.861 | 7 | 0.97 |
Test | Evaluation Criteria | Results |
---|---|---|
Linear Regression | Data are comparable if the correlation coefficient (R) ≥ 0.9 [74] | PM2.5: R = 0.792; NH3: R = 0.115; NO2: R = 0.665 |
Accuracy—Coefficient of Variation (CV) and Mean Normalised Bias (MNB) | See footnote for details 1 | PM2.5: MNB = 0.100, CV = 0.646; NH3: MNB = 0.240, CV = 0.583; NO2: MNB = 0.366, CV = 0.789 |
Bland–Altman Plot—Absolute Error (AE; mean ± standard deviation) | Assessment of absolute deviations between each pair of pollutants’ concentrations | PM2.5: AE = 2.0 ± 9.5; NH3: AE = −6.5 ± 11.3; NO2: AE = 4.1 ± 13.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oxoli, D.; Gianquintieri, L.; Borghi, F.; Fanti, G.; Spinazzè, A. Non-Conventional Data for Farming-Related Air Pollution: Contributions to Modelling and Risk Assessment in the Lombardy Region, Italy. Environments 2024, 11, 229. https://doi.org/10.3390/environments11110229
Oxoli D, Gianquintieri L, Borghi F, Fanti G, Spinazzè A. Non-Conventional Data for Farming-Related Air Pollution: Contributions to Modelling and Risk Assessment in the Lombardy Region, Italy. Environments. 2024; 11(11):229. https://doi.org/10.3390/environments11110229
Chicago/Turabian StyleOxoli, Daniele, Lorenzo Gianquintieri, Francesca Borghi, Giacomo Fanti, and Andrea Spinazzè. 2024. "Non-Conventional Data for Farming-Related Air Pollution: Contributions to Modelling and Risk Assessment in the Lombardy Region, Italy" Environments 11, no. 11: 229. https://doi.org/10.3390/environments11110229
APA StyleOxoli, D., Gianquintieri, L., Borghi, F., Fanti, G., & Spinazzè, A. (2024). Non-Conventional Data for Farming-Related Air Pollution: Contributions to Modelling and Risk Assessment in the Lombardy Region, Italy. Environments, 11(11), 229. https://doi.org/10.3390/environments11110229