Revolutionizing Ocean Cleanup: A Portuguese Case Study with Unmanned Vehicles Fighting Spills
Abstract
:1. Introduction
- An analysis of the potential oil spill occurrences between 2017 and 2021 in Portuguese waters;
- An analysis and evaluation of sea pollution monitoring and control using UVs;
- The development of a SWOT analysis to understand the current implementation context, being able to retrieve essential insights for strategy development;
- An initial analysis of a strategy for using UVs in pollution control that can be easily generalized to other case studies.
2. Related Work
2.1. Sea Pollution
2.2. Hydrocarbons
2.3. CleanSeaNet
2.4. Unmanned Vehicles
3. Problem Formulation
4. Analyzing Oil Spills in Portuguese Waters
5. Characterizing the Environment and Defining a Strategy
- Strengths: Internal characteristics or resources that provide an advantage, corresponding to the positive aspects of the identified internal factors;
- Weaknesses: Internal characteristics or resources that could lead to disadvantages, corresponding to the negative aspects of the identified internal factors;
- Opportunities: External factors that promote success, corresponding to the positive aspects of the identified external factors;
- Threats: External factors that could cause failure, corresponding to the negative aspects of the identified external factors.
- Technological innovation;
- The development of national industry;
- The ability to develop internal knowledge;
- The ability to develop knowledge to perform research and development of new systems and solutions;
- The development of an infrastructure that can be used for UVs performing different types of operations;
- The ability to perform completely unmanned operations;
- An NN of UVs provides a versatile approach that can be applied in various scenarios;
- The promotion of sustainable development and innovation.
- Low technical knowledge;
- Technological risk;
- Necessary initial investment;
- Difficult access to capital for investment;
- The need for partnership with private companies to raise financing;
- The country’s legislation regarding autonomous vehicle operation.
- The project and idea can be easily adapted to other countries;
- Funding source access;
- Partnership with private companies in the UVs sector;
- Contribution to political, economic, and social factors;
- Direct contribution to worldwide pollution monitoring and control;
- Boosting the economy;
- The enhancement of UVs global knowledge.
- Technological dependence on the CSN service’s oil spill detection;
- Investment risk;
- UVs legislation is not globally well-defined;
- Under-developed technology;
- A network of UVs creates potential cybersecurity risks.
6. Unmanned Vehicles National Network
7. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Glossary
AIS | Automatic Identification System |
AO | Atlantic Ocean |
CNN | Convolutional Neural Network |
COTS | Commercial-Off-The-Shelf |
CSN | CleanSeaNet |
CSP | Clean Sea Plan |
DNN | Deep Neural Network |
EEZ | Exclusive Economic Zone |
EMSA | European Maritime Safety Agency |
EO | Electro-Optical |
EPIRB | Emergency Position Indicator Radio Beacon |
EU | European Union |
GRN | Global Response Network |
IMO | International Maritime Organization |
IR | infrared Radiation |
ISR | Intelligence, Surveillance, and Reconnaissance |
MARPOL | International Convention for the Prevention of Pollution from Ships |
MR | Maritime Radar |
MW | Mine Warfare |
NN | National Network |
OPRC | International Convention on Oil Pollution Preparedness, Response, and Co-operation |
OSPAR | Convention for the Protection of the Marine Environment of the North-East Atlantic |
POLREP | Pollution Report System |
PoN | Portuguese Navy |
RGB | Red, Green, and Blue |
SAR | Synthetic Aperture Radar |
SOLAS | International Convention for the Safety of Life at Sea |
SWOT | Strengths, Weaknesses, Opportunities, and Threats |
UAV | Unmanned Aerial Vehicle |
UN | United Nations |
UNCLOS | United Nations Convention on the Law of the Sea |
USV | Unmanned Surface Vehicle |
UV | Unmanned Vehicle |
VMS | Vessel Monitoring System |
References
- Seckler, D.W. World Water Demand and Supply, 1990 to 2025: Scenarios and Issues; Iwmi: Colombo, Sri Lanka, 1998; Volume 19. [Google Scholar]
- Ekins, P.; Gupta, J. Perspective: A healthy planet for healthy people. Glob. Sustain. 2019, 2, e20. [Google Scholar] [CrossRef]
- Chapman, R.L. Algae: The world’s most important “plants”—An introduction. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 5–12. [Google Scholar] [CrossRef]
- O’Dor, R.; Berghe, E.V. Hidden Beneath the Seas. World Policy J. 2012, 29, 101–108. [Google Scholar] [CrossRef]
- Chisholm, S.W.; Falkowski, P.G.; Cullen, J.J. Dis-Crediting Ocean Fertilization. Science 2001, 294, 309–310. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, P.R.; Ehrlich, A.H.; Daily, G.C. Food security, population and environment. Popul. Dev. Rev. 1993, 19, 1–32. [Google Scholar] [CrossRef]
- Hollar, S. (Ed.) Poisoning Planet Earth: Pollution and Other Environmental Hazards; Britannica Educational Publishing: Chicago, IL, USA, 2011. [Google Scholar]
- Das, P.; Horton, R. Pollution, health, and the planet: Time for decisive action. Lancet 2018, 391, 407–408. [Google Scholar] [CrossRef]
- Levent, B.; Öztekin, A.; Şahin, F.; Arici, E.; Özsandikçi, U. An overview of the Black Sea pollution in Turkey. Mediterr. Fish. Aquac. Res. 2018, 1, 66–86. [Google Scholar]
- Korshenko, A.; Gul, A.G. Pollution of the Caspian Sea. In The Caspian Sea Environment. The Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2005; Volume 5P. [Google Scholar] [CrossRef]
- Rheinheimer, G. Pollution in the Baltic sea. Naturwissenschaften 1998, 85, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Coe, J.M.; Rogers, D. Marine Debris: Sources, Impacts, and Solutions; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Rhodes, C.J. Plastic pollution and potential solutions. Sci. Prog. 2018, 101, 207–260. [Google Scholar] [CrossRef]
- Mangan, D.J. Trends in the Transport of Goods by Sea. In Future of the Sea: Trends in the Transport of Goods by Sea; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–23. [Google Scholar]
- Santos, C.F.; Teixeira, Z.G.; Janeiro, J.; Gonçalves, R.S.; Bjorkl, R.; Orbach, M. The European Marine Strategy: Contribution and challenges from a Portuguese perspective. Mar. Policy 2012, 36, 963–968. [Google Scholar] [CrossRef]
- Carpenter, A. European maritime safety agency CleanSeaNet activities in the North Sea. In Oil Pollution in the North Sea. The Handbook of Environmental Chemistry; Springer: Cham, Germany, 2016; Volume 41. [Google Scholar] [CrossRef]
- Riera, J.A.; Morales-Nin, B.; Vilas, F. The Prestige oil spill: A scientific response. Mar. Pollut. Bull. 2006, 53, 205–207. [Google Scholar] [CrossRef]
- McNutt, M.K.; Camilli, R.; Crone, T.J.; Guthrie, G.D.; Hsieh, P.A.; Ryerson, T.B.; Savas, O.; Shaffer, F. Review of flow rate estimates of the Deepwater Horizon oil spill. Proc. Natl. Acad. Sci. USA 2012, 109, 20260–20267. [Google Scholar] [CrossRef] [PubMed]
- Bayirhan, İ.; Gazioğlu, C. Use of Unmanned Aerial Vehicles (UAV) and Marine Environment Simulator in Oil Pollution Investigations. Balt. J. Mod. Comput. 2020, 8, 327–336. [Google Scholar] [CrossRef]
- Jiao, Z.; Jia, G.; Cai, Y. A new approach to oil spill detection that combines deep learning with unmanned aerial vehicles. Comput. Ind. Eng. 2019, 135, 1300–1311. [Google Scholar] [CrossRef]
- Al Maawali, W.; Al Naabi, A.; Al Yaruubi, M.; Saleem, A.; Al Maashri, A. Design and implementation of an unmanned surface vehicle for oil spill handling. In Proceedings of the 2019 1st International Conference on Unmanned Vehicle Systems-Oman (UVS), Muscat, Oman, 5–7 February 2019; IEEE: Piscatway, NJ, USA, 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Antunes, T.L.; Pessanha Santos, N.; Moura, R.P.; Lobo, V. Sea Pollution: Analysis and Monitoring using Unmanned Vehicles. In Proceedings of the 2023 IEEE Underwater Technology (UT), Tokyo, Japan, 6–9 March 2023; IEEE: Piscatway, NJ, USA, 2023; pp. 1–8. [Google Scholar] [CrossRef]
- Pessanha Santos, N.; Moura, R.; Santos da Silva, C.; Lamas, L.; Lobo, V.; de Castro Neto, M. Long-term in situ Eulerian Sea surface temperature records along the Portuguese Coast. Data Brief 2024, 54, 110287. [Google Scholar] [CrossRef]
- Castanedo, F. A Review of Data Fusion Techniques. Sci. World J. 2013, 2013, 704504. [Google Scholar] [CrossRef]
- Sarsby, A. SWOT Analysis—A Guide to SWOT for Business Studies Students; Leadership Library: Suffolk, UK, 2016. [Google Scholar]
- Benzaghta, M.A.; Elwalda, A.; Mousa, M.M.; Erkan, I.; Rahman, M. SWOT analysis applications: An integrative literature review. J. Glob. Bus. Insights 2021, 6, 55–73. [Google Scholar] [CrossRef]
- Leigh, D. SWOT Analysis. In Handbook of Improving Performance in the Workplace: Volumes 1–3; Pfeiffer: San Francisco, CA, USA, 2009. [Google Scholar]
- Helms, M.M.; Nixon, J. Exploring SWOT analysis—Where are we now? A review of academic research from the last decade. J. Strategy Manag. 2010, 3, 215–251. [Google Scholar] [CrossRef]
- United Nations. United Nations Convention on the Law of the Sea. 1982. Available online: https://www.un.org/depts/los/convention_agreements/texts/unclos/unclos_e.pdf (accessed on 20 September 2024).
- Agardy, T. Ocean Zoning: Making Marine Management More Effective; Earthscan from Routledge: New York, NY, USA, 2010. [Google Scholar]
- Doney, S.C.; Fabry, V.J.; Feely, R.A.; Kleypas, J.A. Ocean acidification: The other CO2 problem. Annu. Rev. Mar. Sci. 2009, 1, 169–192. [Google Scholar] [CrossRef]
- Fleming, L.; Broad, K.; Clement, A.; Dewailly, E.; Elmir, S.; Knap, A.; Pomponi, S.; Smith, S.; Gabriele, H.S.; Walsh, P. Oceans and human health: Emerging public health risks in the marine environment. Mar. Pollut. Bull. 2006, 53, 545–560. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Stegeman, J.J.; Fleming, L.E.; Allemand, D.; Anderson, D.M.; Backer, L.C.; Brucker-Davis, F.; Chevalier, N.; Corra, L.; Czerucka, D.; et al. Human health and ocean pollution. Ann. Glob. Health 2020, 86, 151. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, F.N.; Malik, M. Factors affecting water pollution: A review. J. Ecosyst. Ecography 2017, 7, 225–231. [Google Scholar] [CrossRef]
- Julian, M. MARPOL 73/78: The International Convention for the Prevention of Pollution from Ships. Marit. Stud. 2000, 2000, 16–23. [Google Scholar] [CrossRef]
- Joseph, A.; Dalaklis, D. The international convention for the safety of life at sea: Highlighting interrelations of measures towards effective risk mitigation. J. Int. Marit. Saf. Environ. Aff. Shipp. 2021, 5, 1–11. [Google Scholar] [CrossRef]
- Czybulka, D. The Convention on the Protection of the Marine Environment of the North-East Atlantic. In Managing Risks to Biodiversity and the Environment on the High Sea, Including Tools Such as Marine Protected Areas-Scientific Requirements and Legal Aspects; Bundesamt für Naturschutz (BfN): Bonn, Germany, 1994; Volume 175. [Google Scholar]
- Simcock, A. Ospar Convention On The Protection Of The Marine Environment Of The North-East Atlantic. In Ensuring Compliance with Multilateral Environmental Agreements; Brill Nijhoff: Leiden, The Netherlands, 2006; pp. 97–114. [Google Scholar] [CrossRef]
- ÇİÇEK, K. International Convention on Oil Pollution Preparedness, Response and Co-Operation (Oprc) 1990 and Its Applications Related with Oil Spill In Turkey. Oil Spill along Turk. Straits 2018, 1972, 381. [Google Scholar]
- Christodoulou, A.; Echebarria Fernández, J. Maritime Governance and International Maritime Organization Instruments Focused on Sustainability in the Light of United Nations’ Sustainable Development Goals. In Sustainability in the Maritime Domain: Towards Ocean Governance and Beyond; Carpenter, A., Johansson, T.M., Skinner, J.A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 415–461. [Google Scholar] [CrossRef]
- Jørgensen, K.L. Moving the dial through collaboration—The Global Response Network. Int. Oil Spill Conf. Proc. 2021, 2021, 682648. [Google Scholar] [CrossRef]
- Limb, R.; Nicoll, A. Sharing Good Practice Throughout the Responder Community: Ten Years of the Global Response Network. Int. Oil Spill Conf. Proc. 2017, 2017, 1109–1127. [Google Scholar] [CrossRef]
- Resolução Conselho Ministros n.° 25/1993. Diário da República, Série I-B de 1993-04-15. 1993. Available online: https://diariodarepublica.pt/dr/detalhe/resolucao-conselho-ministros/25-1993-690248 (accessed on 20 September 2024).
- Poluição—Relato de Episódio de Poluição no Mar. Circular N.° 107/2005-P. 2005. Available online: https://www.amn.pt/dcpm/documents/circular%20107_alt%204.pdf (accessed on 20 September 2024).
- Uddin, S.; Fowler, S.W.; Saeed, T.; Jupp, B.; Faizuddin, M. Petroleum hydrocarbon pollution in sediments from the Gulf and Omani waters: Status and review. Mar. Pollut. Bull. 2021, 173, 112913. [Google Scholar] [CrossRef]
- Harayama, S.; Kishira, H.; Kasai, Y.; Shutsubo, K. Petroleum biodegradation in marine environments. J. Mol. Microbiol. Biotechnol. 1999, 1, 63–70. Available online: http://europepmc.org/abstract/MED/10941786 (accessed on 20 September 2024).
- Rodrigue, J.P. The Geography of Transport Systems; Routledge: London, UK, 2020. [Google Scholar] [CrossRef]
- Ng, A.K.; Song, S. The environmental impacts of pollutants generated by routine shipping operations on ports. Ocean. Coast. Manag. 2010, 53, 301–311. [Google Scholar] [CrossRef]
- Tsimplis, M. Marine pollution from shipping activities. In Maritime Law; Informa Law from Routledge: London, UK, 2020; pp. 403–464. [Google Scholar]
- Wang, Z.; Hollebone, B.; Fingas, M.; Fieldhouse, B.; Sigouin, L.; Landriault, M.; Smith, P.; Noonan, J.; Thouin, G.; Weaver, J.W. Characteristics of spilled oils, fuels, and petroleum products: 1. Composition and properties of selected oils. United States Environ. Prot. Agency 2003, 280. [Google Scholar]
- Fingas, M. Handbook of Oil Spill Science and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Lee, R.F.; Anderson, J.W. Significance of cytochrome P450 system responses and levels of bile fluorescent aromatic compounds in marine wildlife following oil spills. Mar. Pollut. Bull. 2005, 50, 705–723. [Google Scholar] [CrossRef] [PubMed]
- Krahn, M.M.; Ylitalo, G.M.; Buzitis, J.; Chan, S.L.; Varanasi, U.; Wade, T.L.; Jackson, T.J.; Brooks, J.M.; Wolfe, D.A.; Manen, C.A. Comparison of high-performance liquid chromatography/fluorescence screening and gas chromatography/mass spectrometry analysis for aromatic compounds in sediments sampled after the Exxon Valdez oil spill. Environ. Sci. Technol. 1993, 27, 699–708. [Google Scholar] [CrossRef]
- Wang, Z.; Fingas, M.; Page, D.S. Oil spill identification. J. Chromatogr. A 1999, 843, 369–411. [Google Scholar] [CrossRef]
- Gros, J.; Nabi, D.; Wurz, B.; Wick, L.Y.; Brussaard, C.P.; Huisman, J.; van der Meer, J.R.; Reddy, C.M.; Arey, J.S. First day of an oil spill on the open sea: Early mass transfers of hydrocarbons to air and water. Environ. Sci. Technol. 2014, 48, 9400–9411. [Google Scholar] [CrossRef]
- Kennicutt II, M.C.; Sweet, S.T. Hydrocarbon contamination on the Antarctic Peninsula: III. The Bahia Paraiso—Two years after the spill. Mar. Pollut. Bull. 1992, 25, 303–306. [Google Scholar] [CrossRef]
- Krestenitis, M.; Orfanidis, G.; Ioannidis, K.; Avgerinakis, K.; Vrochidis, S.; Kompatsiaris, I. Oil spill identification from satellite images using deep neural networks. Remote Sens. 2019, 11, 1762. [Google Scholar] [CrossRef]
- Tysiac, P.; Strelets, T.; Tuszyńska, W. The application of satellite image analysis in oil spill detection. Appl. Sci. 2022, 12, 4016. [Google Scholar] [CrossRef]
- Svejkovsky, J.; Hess, M.; Muskat, J.; Nedwed, T.J.; McCall, J.; Garcia, O. Characterization of surface oil thickness distribution patterns observed during the Deepwater Horizon (MC-252) oil spill with aerial and satellite remote sensing. Mar. Pollut. Bull. 2016, 110, 162–176. [Google Scholar] [CrossRef]
- Sun, S.; Hu, C. The challenges of interpreting oil–water spatial and spectral contrasts for the estimation of oil thickness: Examples from satellite and airborne measurements of the deepwater horizon oil spill. IEEE Trans. Geosci. Remote Sens. 2018, 57, 2643–2658. [Google Scholar] [CrossRef]
- Jha, M.N.; Levy, J.; Gao, Y. Advances in Remote Sensing for Oil Spill Disaster Management: State-of-the-Art Sensors Technology for Oil Spill Surveillance. Sensors 2008, 8, 236–255. [Google Scholar] [CrossRef] [PubMed]
- Fingas, M.; Brown, C. Review of oil spill remote sensing. Mar. Pollut. Bull. 2014, 83, 9–23. [Google Scholar] [CrossRef]
- Al-Ruzouq, R.; Gibril, M.B.A.; Shanableh, A.; Kais, A.; Hamed, O.; Al-Mansoori, S.; Khalil, M.A. Sensors, Features, and Machine Learning for Oil Spill Detection and Monitoring: A Review. Remote Sens. 2020, 12, 3338. [Google Scholar] [CrossRef]
- Seydi, S.T.; Hasanlou, M.; Amani, M.; Huang, W. Oil Spill Detection Based on Multiscale Multidimensional Residual CNN for Optical Remote Sensing Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10941–10952. [Google Scholar] [CrossRef]
- Baek, W.K.; Jung, H.S. Performance Comparison of Oil Spill and Ship Classification from X-Band Dual- and Single-Polarized SAR Image Using Support Vector Machine, Random Forest, and Deep Neural Network. Remote Sens. 2021, 13, 3203. [Google Scholar] [CrossRef]
- Trieschmann, O.; Bal, L.; Chintoan-Uta, M.; Djavidnia, S.; Hayes, A.M.; Journel, M.; Lourenco-Bento, P.; Pelizzari, S.; Price, M.; del Rio Vera, J. Identification of Oil Spills by Satellite. In Proceedings of the ESA Living Planet Symposium; Lacoste-Francis, H., Ed.; European Space Agency Special Publication: Paris, France, 2010; Volume 686, p. 257. Available online: https://www.academia.edu/download/47322772/Living_Planet_TrieschmannEtAl_final.pdf (accessed on 20 September 2024).
- Topouzelis, K.; Singha, S. Oil spill detection: Past and future trends. In Proceedings of the ESA Living Planet Symposium. European Space Agency (Special Publication), Paris, France, 9–13 May 2016; Volume 1, pp. 387–402. [Google Scholar]
- Moura, R.; Pessanha Santos, N.; Vala, A.; Mendes, L.; Simões, P.; de Castro Neto, M.; Lobo, V. Fisheries Inspection in Portuguese Waters from 2015 to 2023. Sci. Data 2024, 11, 362. [Google Scholar] [CrossRef] [PubMed]
- Djavidnia, S.; Del Rio Vera, J. European maritime safety agency cleanseanet activities in the baltic sea. Oil Pollut. Balt. Sea 2012, 41–51. [Google Scholar] [CrossRef]
- Ferraro, G.; Trieschmann, O.; Perkovic, M.; Tarchi, D. Confidence levels in the detection of oil spills from satellite imagery: From research to the operational use. In Proceedings of the SAR Image Analysis, Modeling, and Techniques XII, Edinburgh, UK, 26–27 September 2012; SPIE: Bellingham, WA, USA, 2012; Volume 8536, pp. 84–94. [Google Scholar] [CrossRef]
- Alexandrov, C.; Kolev, N.; Sivkov, Y.; Hristov, A.; Tsvetkov, M. Oil spills detection on sea surface by using Sentinel–1 SAR images. In Proceedings of the 2020 21st International Symposium on Electrical Apparatus & Technologies (SIELA), Bourgas, Bulgaria, 3–6 June 2020; IEEE: Piscatway, NJ, USA, 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Hajduch, G. VIGISAT ground receiving station and EMSA CleanSeaNet services. Remote Detect. Marit. Pollut. Chem. Spill Stud. 2021, 77–86. [Google Scholar] [CrossRef]
- Helmke, P.; Baschek, B.; Hunsänger, T.; Kranz, S. Influence of satellite alerts on the efficiency of aircraft monitoring of maritime oil pollution in German waters. In Proceedings of the Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2014, Amsterdam, The Netherlands, 24–25 September 2014; SPIE: Bellingham, WA, USA, 2014; Volume 9240, pp. 63–72. [Google Scholar] [CrossRef]
- Csernatoni, R. Constructing the EU’s high-tech borders: FRONTEX and dual-use drones for border management. Eur. Secur. 2018, 27, 175–200. [Google Scholar] [CrossRef]
- Pessanha Santos, N.; Lobo, V.; Bernardino, A. Fixed-Wing Unmanned Aerial Vehicle 3D-Model-Based Tracking for Autonomous Landing. Drones 2023, 7, 243. [Google Scholar] [CrossRef]
- Pessanha Santos, N.; Lobo, V.; Bernardino, A. Unscented particle filters with refinement steps for uav pose tracking. J. Intell. Robot. Syst. 2021, 102, 52. [Google Scholar] [CrossRef]
- Pessanha Santos, N.; Lobo, V.; Bernardino, A. Directional statistics for 3D model-based UAV tracking. IEEE Access 2020, 8, 33884–33897. [Google Scholar] [CrossRef]
- Pessanha Santos, N. Fixed-Wing UAV Pose Estimation Using a Self-Organizing Map and Deep Learning. Robotics 2024, 13, 114. [Google Scholar] [CrossRef]
- Lu, Y.; Xue, Z.; Xia, G.S.; Zhang, L. A survey on vision-based UAV navigation. Geo-Spat. Inf. Sci. 2018, 21, 21–32. [Google Scholar] [CrossRef]
- Pessanha Santos, N.; Lobo, V.; Bernardino, A. Autoland project: Fixed-wing UAV landing on a fast patrol boat using computer vision. In Proceedings of the OCEANS 2019 MTS/IEEE SEATTLE, Seattle, WA, USA, 27–31 October 2019; IEEE: Piscatway, NJ, USA, 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Morais, F.; Ramalho, T.; Sinogas, P.; Marques, M.M.; Pessanha Santos, N.; Lobo, V. Trajectory and guidance mode for autonomously landing an UAV on a naval platform using a vision approach. In Proceedings of the OCEANS 2015, Genova, Italy, 18–21 May 2015; pp. 1–7. [Google Scholar] [CrossRef]
- Rangel, R.K.; Kienitz, K.H.; Brandao, M.P. Development of a complete UAV system using COTS equipment. In Proceedings of the 2009 IEEE Aerospace conference, Big Sky, MT, USA, 7–14 March 2009; IEEE: Piscatway, NJ, USA, 2009; pp. 1–11. [Google Scholar] [CrossRef]
- Bernard, É.; Friedt, J.M.; Tolle, F.; Marlin, C.; Griselin, M. Using a small COTS UAV to quantify moraine dynamics induced by climate shift in Arctic environments. Int. J. Remote Sens. 2017, 38, 2480–2494. [Google Scholar] [CrossRef]
- Bogue, R. Beyond imaging: Drones for physical applications. Ind. Robot. Int. J. Robot. Res. Appl. 2023, 50, 557–561. [Google Scholar] [CrossRef]
- Tekever. AR5–TEKEVER. 2023. Available online: https://www.tekever.com/models/ar5/ (accessed on 20 September 2024).
- Bauk, S. Performances of Some Autonomous Assets in Maritime Missions. Transnav Int. J. Mar. Navig. Saf. Sea Transp. 2020, 14, 875–881. [Google Scholar] [CrossRef]
- Bauk, S.; Kapidani, N.; Sousa, L.; Lukšić, Ž.; Spuža, A. Advantages and disadvantages of some unmanned aerial vehicles deployed in maritime surveillance. In Maritime Transport VIII: Proceedings of the 8th International Conference on Maritime Transport: Technology, Innovation and Research: Maritime Transport’20; Universitat Politècnica de Catalunya, Departament de Ciència i Enginyeria Nàutiques: Barcelona, Spain, 2020; Volume 102, p. 91. Available online: http://hdl.handle.net/2117/329709 (accessed on 20 September 2024).
- Heo, J.; Kim, J.; Kwon, Y. Analysis of design directions for unmanned surface vehicles (USVs). J. Comput. Commun. 2017, 5, 92. [Google Scholar] [CrossRef]
- Bella, S.; Belalem, G.; Belbachir, A.; Benfriha, H. HMDCS-UV: A concept study of Hybrid Monitoring, Detection and Cleaning System for Unmanned Vehicles. J. Intell. Robot. Syst. 2021, 102, 44. [Google Scholar] [CrossRef]
- Weitz, R. Strategic Maritime Chokepoints: Perspectives from the Global Shipping and Port Sectors. In Eurasia’s Maritime Rise and Global Security; Springer: Berlin/Heidelberg, Germany, 2018; pp. 17–29. [Google Scholar] [CrossRef]
- Hai-Ying Zhang, Q.J.; Fan, Y. What drives the formation of global oil trade patterns? Energy Econ. 2015, 49, 639–648. [Google Scholar] [CrossRef]
- Gullo, B.S. Illegal discharge of oil on the high seas: The US coast Guard’s ongoing battle against vessel polluters and a new approach toward establishing environmental compliance. Mil. L. Rev. 2011, 209, 122. [Google Scholar]
- Kirby, M.F.; Law, R.J. Accidental spills at sea–Risk, impact, mitigation and the need for co-ordinated post-incident monitoring. Mar. Pollut. Bull. 2010, 60, 797–803. [Google Scholar] [CrossRef] [PubMed]
- MarineTraffic. MarineTraffic: Global Ship Tracking Intelligence|AIS Marine Traffic. 2023. Available online: https://www.marinetraffic.com/ (accessed on 20 September 2024).
- Balkin, R. The International Maritime Organization and Maritime Security. Tul. Mar. LJ 2006, 30, 1. [Google Scholar]
- Campuzano, F.; Juliano, M.; Fernandes, R.; Pinto, L.; Neves, R. Downscalling from the deep ocean to the estuarine intertidal areas: An operacional framework for the portuguese exclusive economic zone. In Proceedings of the 6th SCACR–International Short Course/Conference on Applied Coastal Research, Aachen, Germany, 4–7 June 2013; pp. 1–9. [Google Scholar]
- Spaulding, M.L. State of the art review and future directions in oil spill modeling. Mar. Pollut. Bull. 2017, 115, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Chen, Z.; Lee, K. Development and testing of a 2D offshore oil spill modeling tool (OSMT) supported by an effective calibration method. Res. Sq. 2022, 188, 114696. [Google Scholar] [CrossRef]
- Leifer, I.; Lehr, W.J.; Simecek-Beatty, D.; Bradley, E.; Clark, R.; Dennison, P.; Hu, Y.; Matheson, S.; Jones, C.E.; Holt, B.; et al. State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill. Remote Sens. Environ. 2012, 124, 185–209. [Google Scholar] [CrossRef]
- Barker, C.H.; Kourafalou, V.H.; Beegle-Krause, C.; Boufadel, M.; Bourassa, M.A.; Buschang, S.G.; Androulidakis, Y.; Chassignet, E.P.; Dagestad, K.F.; Danmeier, D.G.; et al. Progress in Operational Modeling in Support of Oil Spill Response. J. Mar. Sci. Eng. 2020, 8, 668. [Google Scholar] [CrossRef]
- Sebastiao, P.; Soares, C.G. Modeling the fate of oil spills at sea. Spill Sci. Technol. Bull. 1995, 2, 121–131. [Google Scholar] [CrossRef]
- Andrade, C.; Robertson, M.H. Turismo de Cruzeiros: Perspectivas para a Macaronesia. Rev. Tur. Desenvolv. 2010, 2, 485–498. [Google Scholar]
- Olson, E.M.; Slater, S.F.; Hult, G.T.M. The importance of structure and process to strategy implementation. Bus. Horizons 2005, 48, 47–54. [Google Scholar] [CrossRef]
- Okumus, F. Towards a strategy implementation framework. Int. J. Contemp. Hosp. Manag. 2001, 13, 327–338. [Google Scholar] [CrossRef]
- Norton, D.P. The balanced scorecard. Wiley Encycl. Manag. 2015, 3, 1253–1269. [Google Scholar]
- Neely, A. Business Performance Measurement: Theory and Practice; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Panagiotou, G. Bringing SWOT into focus. Bus. Strategy Rev. 2003, 14, 8–10. [Google Scholar] [CrossRef]
- Pessanha Santos, N. Hydrogen in the Portuguese Navy: A case study. Int. J. Hydrogen Energy 2022, 47, 28684–28698. [Google Scholar] [CrossRef]
- Augier, M.; Teece, D.J. SWOT Analysis. In The Palgrave Encyclopedia of Strategic Management; Palgrave Macmillan: London, UK, 2018. [Google Scholar] [CrossRef]
- Weihrich, H. The TOWS matrix—A tool for situational analysis. Long Range Plan. 1982, 15, 54–66. [Google Scholar] [CrossRef]
- Mintzberg, H.; Ahlstrand, B.; Lampel, J.B. Strategy Safari: A Guided Tour through the Wilds of Strategic Management; Simon & Schuster Inc.: New York, NY, USA, 1998. [Google Scholar]
- Dias, F.; Neves, J.; Conceição, V.D.; Lobo, V. Maritime situational awareness, the singular approach of a dual-use navy. Sci. Bull. Mircea Cel Batran Nav. Acad. 2018, 21, 1–14. [Google Scholar] [CrossRef]
- Pärt, S.; Björkqvist, J.V.; Alari, V.; Maljutenko, I.; Uiboupin, R. An ocean–wave–trajectory forecasting system for the eastern Baltic Sea: Validation against drifting buoys and implementation for oil spill modeling. Mar. Pollut. Bull. 2023, 195, 115497. [Google Scholar] [CrossRef]
- Keramea, P.; Kokkos, N.; Zodiatis, G.; Sylaios, G. Modes of Operation and Forcing in Oil Spill Modeling: State-of-Art, Deficiencies and Challenges. J. Mar. Sci. Eng. 2023, 11, 1165. [Google Scholar] [CrossRef]
- Daniel, P.; Josse, P.; Dandin, P.; Gouriou, V.; Marchand, M.; Tiercelin, C. Forecasting the Erika Oil Spills. Int. Oil Spill Conf. Proc. 2001, 2001, 649–655. [Google Scholar] [CrossRef]
Location | Coordinates | Type | |
---|---|---|---|
Air Base n.° 1—Sintra | 38°50′26″ N | 009°20′37″ W | UAV |
João Paulo II Airport | 37°44′32″ N | 025°41′5″ W | UAV |
Funchal Airport | 32°41′41″ N | 016°46′36″ W | UAV |
Port of Cascais | 38°41′37″ N | 009°24′53″ W | USV |
Port of Portimão | 37°07′04″ N | 008°31′35″ W | USV |
Port of Leixões | 41°10′42″ N | 008°42′18″ W | USV |
Port of Funchal | 32°38′43″ N | 016°54′29″ W | USV |
Port of Ponta Delgada | 37°44′33″ N | 025°40′13″ W | USV |
Port of Lajes | 39°25′40″ N | 031°10′37″ W | USV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pessanha Santos, N.; Moura, R.; Lourenço Antunes, T.; Lobo, V. Revolutionizing Ocean Cleanup: A Portuguese Case Study with Unmanned Vehicles Fighting Spills. Environments 2024, 11, 224. https://doi.org/10.3390/environments11100224
Pessanha Santos N, Moura R, Lourenço Antunes T, Lobo V. Revolutionizing Ocean Cleanup: A Portuguese Case Study with Unmanned Vehicles Fighting Spills. Environments. 2024; 11(10):224. https://doi.org/10.3390/environments11100224
Chicago/Turabian StylePessanha Santos, Nuno, Ricardo Moura, Teresa Lourenço Antunes, and Victor Lobo. 2024. "Revolutionizing Ocean Cleanup: A Portuguese Case Study with Unmanned Vehicles Fighting Spills" Environments 11, no. 10: 224. https://doi.org/10.3390/environments11100224
APA StylePessanha Santos, N., Moura, R., Lourenço Antunes, T., & Lobo, V. (2024). Revolutionizing Ocean Cleanup: A Portuguese Case Study with Unmanned Vehicles Fighting Spills. Environments, 11(10), 224. https://doi.org/10.3390/environments11100224