Insights into Seawater Biodegradation of Sustainable Mater-Bi/Poly(ε-caprolactone)-Based Biocomposites Filled with Diisocyanate-Modified Cellulose Particles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Modifications of UFC100 Filler
2.3. Preparation of Polymer Composites
2.4. Biodegradation of Prepared Composites
2.5. Characterization of Prepared Composites
3. Results
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Geyer, R. A Brief History of Plastics. In Mare Plasticum—The Plastic Sea; Springer International Publishing: Cham, Switzerland, 2020; pp. 31–47. [Google Scholar]
- George, A.; Shah, P.A.; Shrivastav, P.S. Natural Biodegradable Polymers Based Nano-Formulations for Drug Delivery: A Review. Int. J. Pharm. 2019, 561, 244–264. [Google Scholar] [CrossRef] [PubMed]
- Asghari, F.; Samiei, M.; Adibkia, K.; Akbarzadeh, A.; Davaran, S. Biodegradable and Biocompatible Polymers for Tissue Engineering Application: A Review. Artif. Cells Nanomed. Biotechnol. 2017, 45, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Zarrintaj, P.; Jouyandeh, M.; Ganjali, M.R.; Hadavand, B.S.; Mozafari, M.; Sheiko, S.S.; Vatankhah-Varnoosfaderani, M.; Gutiérrez, T.J.; Saeb, M.R. Thermo-Sensitive Polymers in Medicine: A Review. Eur. Polym. J. 2019, 117, 402–423. [Google Scholar] [CrossRef]
- Makvandi, P.; Iftekhar, S.; Pizzetti, F.; Zarepour, A.; Zare, E.N.; Ashrafizadeh, M.; Agarwal, T.; Padil, V.V.T.; Mohammadinejad, R.; Sillanpaa, M.; et al. Functionalization of Polymers and Nanomaterials for Water Treatment, Food Packaging, Textile and Biomedical Applications: A Review. Environ. Chem. Lett. 2021, 19, 583–611. [Google Scholar] [CrossRef]
- Nogueira, G.F.; de Oliveira, R.A.; Velasco, J.I.; Fakhouri, F.M. Methods of Incorporating Plant-Derived Bioactive Compounds into Films Made with Agro-Based Polymers for Application as Food Packaging: A Brief Review. Polymers 2020, 12, 2518. [Google Scholar] [CrossRef]
- Baschetti, M.G.; Minelli, M. Test Methods for the Characterization of Gas and Vapor Permeability in Polymers for Food Packaging Application: A Review. Polym. Test. 2020, 89, 106606. [Google Scholar] [CrossRef]
- Czarnecka-Komorowska, D.; Wiszumirska, K. Sustainability Design of Plastic Packaging for the Circular Economy. Polimery 2020, 65, 8–17. [Google Scholar] [CrossRef]
- Abdelhamid, M.E.; O’Mullane, A.P.; Snook, G.A. Storing Energy in Plastics: A Review on Conducting Polymers & Their Role in Electrochemical Energy Storage. RSC Adv. 2015, 5, 11611–11626. [Google Scholar] [CrossRef]
- Basnayaka, P.A.; Ram, M.K. A Review of Supercapacitor Energy Storage Using Nanohybrid Conducting Polymers and Carbon Electrode Materials. In Conducting Polymer Hybrids; Springer: Cham, Switzerland, 2017; pp. 165–192. [Google Scholar]
- Shi, Y.; Peng, L.; Ding, Y.; Zhao, Y.; Yu, G. Nanostructured Conductive Polymers for Advanced Energy Storage. Chem. Soc. Rev. 2015, 44, 6684–6696. [Google Scholar] [CrossRef]
- Bassyouni, M.; Abdel-Aziz, M.H.; Zoromba, M.S.; Abdel-Hamid, S.M.S.; Drioli, E. A Review of Polymeric Nanocomposite Membranes for Water Purification. J. Ind. Eng. Chem. 2019, 73, 19–46. [Google Scholar] [CrossRef]
- Dongre, R.S.; Sadasivuni, K.K.; Deshmukh, K.; Mehta, A.; Basu, S.; Meshram, J.S.; Al-Maadeed, M.A.A.; Karim, A. Natural Polymer Based Composite Membranes for Water Purification: A Review. Polym.-Plast. Technol. Mater. 2019, 58, 1295–1310. [Google Scholar] [CrossRef]
- Elrasheedy, A.; Nady, N.; Bassyouni, M.; El-Shazly, A. Metal Organic Framework Based Polymer Mixed Matrix Membranes: Review on Applications in Water Purification. Membranes 2019, 9, 88. [Google Scholar] [CrossRef] [PubMed]
- Wiese, M.; Thiede, S.; Herrmann, C. Rapid Manufacturing of Automotive Polymer Series Parts: A Systematic Review of Processes, Materials and Challenges. Addit. Manuf. 2020, 36, 101582. [Google Scholar] [CrossRef]
- Sarfraz, M.S.; Hong, H.; Kim, S.S. Recent Developments in the Manufacturing Technologies of Composite Components and Their Cost-Effectiveness in the Automotive Industry: A Review Study. Compos. Struct. 2021, 266, 113864. [Google Scholar] [CrossRef]
- Kosmela, P.; Hejna, A.; Suchorzewski, J.; Piszczyk, Ł.; Haponiuk, J.T. Study on the Structure-Property Dependences of Rigid PUR-PIR Foams Obtained from Marine Biomass-Based Biopolyol. Materials 2020, 13, 1257. [Google Scholar] [CrossRef] [PubMed]
- Antov, P.; Savov, V.; Trichkov, N.; Krišťák, Ľ.; Réh, R.; Papadopoulos, A.N.; Taghiyari, H.R.; Pizzi, A.; Kunecová, D.; Pachikova, M. Properties of High-Density Fiberboard Bonded with Urea–Formaldehyde Resin and Ammonium Lignosulfonate as a Bio-Based Additive. Polymers 2021, 13, 2775. [Google Scholar] [CrossRef]
- Bekhta, P.; Noshchenko, G.; Réh, R.; Kristak, L.; Sedliačik, J.; Antov, P.; Mirski, R.; Savov, V. Properties of Eco-Friendly Particleboards Bonded with Lignosulfonate-Urea-Formaldehyde Adhesives and PMDI as a Crosslinker. Materials 2021, 14, 4875. [Google Scholar] [CrossRef]
- Dhineshbabu, N.R.; Mahadevi, N.; Assein, D. Electronic Applications of Multi-Walled Carbon Nanotubes in Polymers: A Short Review. Mater. Today Proc. 2020, 33, 382–386. [Google Scholar] [CrossRef]
- Cao, Y.; Uhrich, K.E. Biodegradable and Biocompatible Polymers for Electronic Applications: A Review. J. Bioact. Compat. Polym. 2019, 34, 3–15. [Google Scholar] [CrossRef]
- Shakil, U.A.; Hassan, S.B.A.; Yahya, M.Y.; Nurhadiyanto, D. A Review of Properties and Fabrication Techniques of Fiber Reinforced Polymer Nanocomposites Subjected to Simulated Accidental Ballistic Impact. Thin-Walled Struct. 2021, 158, 107150. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Asyraf, M.R.M.; Khalina, A.; Abdullah, N.; Aisyah, H.A.; Rafiqah, S.A.; Sabaruddin, F.A.; Kamarudin, S.H.; Norrrahim, M.N.F.; Ilyas, R.A.; et al. A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic Applications. Polymers 2021, 13, 646. [Google Scholar] [CrossRef] [PubMed]
- Browning, S.; Beymer-Farris, B.; Seay, J.R. Addressing the Challenges Associated with Plastic Waste Disposal and Management in Developing Countries. Curr. Opin. Chem. Eng. 2021, 32, 100682. [Google Scholar] [CrossRef]
- Korol, J.; Hejna, A.; Burchart-Korol, D.; Wachowicz, J. Comparative Analysis of Carbon, Ecological, and Water Footprints of Polypropylene-Based Composites Filled with Cotton, Jute and Kenaf Fibers. Materials 2020, 13, 3541. [Google Scholar] [CrossRef] [PubMed]
- Korol, J.; Hejna, A.; Burchart-Korol, D.; Chmielnicki, B.; Wypiór, K. Water Footprint Assessment of Selected Polymers, Polymer Blends, Composites, and Biocomposites for Industrial Application. Polymers 2019, 11, 1791. [Google Scholar] [CrossRef]
- Rujnić-Sokele, M.; Pilipović, A. Challenges and Opportunities of Biodegradable Plastics: A Mini Review. Waste Manag. Res. J. Sustain. Circ. Econ. 2017, 35, 132–140. [Google Scholar] [CrossRef]
- Thakur, S.; Chaudhary, J.; Sharma, B.; Verma, A.; Tamulevicius, S.; Thakur, V.K. Sustainability of Bioplastics: Opportunities and Challenges. Curr. Opin. Green Sustain. Chem. 2018, 13, 68–75. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, H.; Fu, C.; Zhou, Y.; Dai, Z.; Li, Y.; Tu, C.; Luo, Y. The Distribution and Morphology of Microplastics in Coastal Soils Adjacent to the Bohai Sea and the Yellow Sea. Geoderma 2018, 322, 201–208. [Google Scholar] [CrossRef]
- Cressey, D. Bottles, Bags, Ropes and Toothbrushes: The Struggle to Track Ocean Plastics. Nature 2016, 536, 263–265. [Google Scholar] [CrossRef]
- Digka, N.; Tsangaris, C.; Torre, M.; Anastasopoulou, A.; Zeri, C. Microplastics in Mussels and Fish from the Northern Ionian Sea. Mar. Pollut. Bull. 2018, 135, 30–40. [Google Scholar] [CrossRef]
- Fossi, M.C.; Marsili, L.; Baini, M.; Giannetti, M.; Coppola, D.; Guerranti, C.; Caliani, I.; Minutoli, R.; Lauriano, G.; Finoia, M.G.; et al. Fin Whales and Microplastics: The Mediterranean Sea and the Sea of Cortez Scenarios. Environ. Pollut. 2016, 209, 68–78. [Google Scholar] [CrossRef]
- Cincinelli, A.; Scopetani, C.; Chelazzi, D.; Martellini, T.; Pogojeva, M.; Slobodnik, J. Microplastics in the Black Sea Sediments. Sci. Total Environ. 2021, 760, 143898. [Google Scholar] [CrossRef] [PubMed]
- Gewert, B.; Plassmann, M.M.; MacLeod, M. Pathways for Degradation of Plastic Polymers Floating in the Marine Environment. Environ. Sci. Process. Impacts 2015, 17, 1513–1521. [Google Scholar] [CrossRef] [PubMed]
- Ruggero, F.; Gori, R.; Lubello, C. Methodologies to Assess Biodegradation of Bioplastics during Aerobic Composting and Anaerobic Digestion: A Review. Waste Manag. Res. 2019, 37, 959–975. [Google Scholar] [CrossRef]
- la Mantia, F.; Ascione, L.; Mistretta, M.; Rapisarda, M.; Rizzarelli, P. Comparative Investigation on the Soil Burial Degradation Behaviour of Polymer Films for Agriculture before and after Photo-Oxidation. Polymers 2020, 12, 753. [Google Scholar] [CrossRef] [PubMed]
- Vasile, C.; Pamfil, D.; Râpă, M.; Darie-Niţă, R.N.; Mitelut, A.C.; Popa, E.E.; Popescu, P.A.; Draghici, M.C.; Popa, M.E. Study of the Soil Burial Degradation of Some PLA/CS Biocomposites. Compos. B Eng. 2018, 142, 251–262. [Google Scholar] [CrossRef]
- Scaffaro, R.; Morreale, M.; lo Re, G.; la Mantia, F.P. Degradation of Mater-Bi®/Wood Flour Biocomposites in Active Sewage Sludge. Polym. Degrad. Stab. 2009, 94, 1220–1229. [Google Scholar] [CrossRef]
- Puglia, D.; Tomassucci, A.; Kenny, J.M. Processing, Properties and Stability of Biodegradable Composites Based on Mater-Bi® and Cellulose Fibres. Polym. Adv. Technol. 2003, 14, 749–756. [Google Scholar] [CrossRef]
- Alvarez, V.A.; Ruseckaite, R.A.; Vázquez, A. Degradation of Sisal Fibre/Mater Bi-Y Biocomposites Buried in Soil. Polym. Degrad. Stab. 2006, 91, 3156–3162. [Google Scholar] [CrossRef]
- Kim, M.-N.; Lee, A.-R.; Yoon, J.-S.; Chin, I.-J. Biodegradation of Poly(3-Hydroxybutyrate), Sky-Green® and Mater-Bi® by Fungi Isolated from Soils. Eur. Polym. J. 2000, 36, 1677–1685. [Google Scholar] [CrossRef]
- Re, G.L.; Morreale, M.; Scaffaro, R.; La Mantia, F.P. Biodegradation Paths of Mater-Bi®/Kenaf Biodegradable Composites. J. Appl. Polym. Sci. 2013, 129, 3198–3208. [Google Scholar] [CrossRef]
- Bastioli, C.; Bellotti, V.; Giudice, L.; Gilli, G. Mater-Bi: Properties and Biodegradability. J. Environ. Polym. Degrad. 1993, 1, 181–191. [Google Scholar] [CrossRef]
- Knitter, M.; Czarnecka-Komorowska, D.; Czaja-Jagielska, N.; Szymanowska-Powałowska, D. Manufacturing and Properties of Biodegradable Composites Based on Thermoplastic Starch/Polyethylene-Vinyl Alcohol and Silver Particles. In Advances in Manufacturing II: Volume 4—Mechanical Engineering; Springer International Publishing: Cham, Switzerland, 2019; pp. 610–624. [Google Scholar]
- Hejna, A.; Barczewski, M.; Kosmela, P.; Mysiukiewicz, O.; Aniśko, J.; Sulima, P.; Andrzej Przyborowski, J.; Reza Saeb, M. The Impact of Thermomechanical and Chemical Treatment of Waste Brewers’ Spent Grain and Soil Biodegradation of Sustainable Mater-Bi-Based Biocomposites. Waste Manag. 2022, 154, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Hejna, A.; Przybysz-Romatowska, M.; Kosmela, P.; Zedler, Ł.; Korol, J.; Formela, K. Recent Advances in Compatibilization Strategies of Wood-Polymer Composites by Isocyanates. Wood Sci. Technol. 2020, 54, 1091–1119. [Google Scholar] [CrossRef]
- Yatigala, N.S.; Bajwa, D.S.; Bajwa, S.G. Compatibilization Improves Physico-Mechanical Properties of Biodegradable Biobased Polymer Composites. Compos. Part A Appl. Sci. Manuf. 2018, 107, 315–325. [Google Scholar] [CrossRef]
- Shamsuri, A.A.; Jamil, S.N.A.M. Application of Quaternary Ammonium Compounds as Compatibilizers for Polymer Blends and Polymer Composites—A Concise Review. Appl. Sci. 2021, 11, 3167. [Google Scholar] [CrossRef]
- Hejna, A.; Marć, M.; Korol, J. Modification of Cellulosic Filler with Diisocyanates—Volatile Organic Compounds Emission Assessment and Stability of Chemical Structure over Time. Nord. Pulp Pap. Res. J. 2021, 36, 353–372. [Google Scholar] [CrossRef]
- Hejna, A.; Marć, M.; Skórczewska, K.; Szulc, J.; Korol, J.; Formela, K. Insights into Modification of Lignocellulosic Fillers with Isophorone Diisocyanate: Structure, Thermal Stability and Volatile Organic Compounds Emission Assessment. Eur. J. Wood Wood Prod. 2021, 79, 75–90. [Google Scholar] [CrossRef]
- Vilar, W.D. Química e Tecnologia dos Poliuretanos, 2nd ed.; Vilar Consultoria Técnica Ltd.: Rio de Janeiro, Brazil, 1998. [Google Scholar]
- Instytut Oceanologii PAN w Sopocie System Satbałtyk. Available online: http://www.satbaltyk.pl (accessed on 1 March 2023).
- Instytut Oceanografii, U.G. Prognoza Ekohydrodynamiczna. Available online: http://model.ocean.univ.gda.pl/php/frame.php?area=ZatokaGdanska (accessed on 1 March 2023).
- França, D.C.; Morais, D.D.; Bezerra, E.B.; Araújo, E.M.; Wellen, R.M.R. Photodegradation Mechanisms on Poly(ε-Caprolactone) (PCL). Mater. Res. 2018, 21, e20170837. [Google Scholar] [CrossRef]
- Martins-Franchetti, S.M.; Campos, A.; Egerton, T.A.; White, J.R. Structural and Morphological Changes in Poly(Caprolactone)/Poly(Vinyl Chloride) Blends Caused by UV Irradiation. J. Mater. Sci. 2008, 43, 1063–1069. [Google Scholar] [CrossRef]
- Davies, P.; Evrard, G. Accelerated Ageing of Polyurethanes for Marine Applications. Polym. Degrad. Stab. 2007, 92, 1455–1464. [Google Scholar] [CrossRef]
- Rosu, D.; Rosu, L.; Cascaval, C.N. IR-Change and Yellowing of Polyurethane as a Result of UV Irradiation. Polym. Degrad. Stab. 2009, 94, 591–596. [Google Scholar] [CrossRef]
- Ren, L.; Tang, Z.; Geng, J.; Xing, Z.; Qiang, T. Improvement for Yellowing Resistance of Aromatic PU Film by Fluoro Alcohol Termination and Branching Modification. Prog. Org. Coat. 2021, 155, 106227. [Google Scholar] [CrossRef]
- Lu, B.; Wang, G.-X.; Huang, D.; Ren, Z.-L.; Wang, X.-W.; Wang, P.-L.; Zhen, Z.-C.; Zhang, W.; Ji, J.-H. Comparison of PCL Degradation in Different Aquatic Environments: Effects of Bacteria and Inorganic Salts. Polym. Degrad. Stab. 2018, 150, 133–139. [Google Scholar] [CrossRef]
- Ruggero, F.; Carretti, E.; Gori, R.; Lotti, T.; Lubello, C. Monitoring of Degradation of Starch-Based Biopolymer Film under Different Composting Conditions, Using TGA, FTIR and SEM Analysis. Chemosphere 2020, 246, 125770. [Google Scholar] [CrossRef]
- Borchani, K.E.; Carrot, C.; Jaziri, M. Biocomposites of Alfa Fibers Dispersed in the Mater-Bi® Type Bioplastic: Morphology, Mechanical and Thermal Properties. Compos. Part A Appl. Sci. Manuf. 2015, 78, 371–379. [Google Scholar] [CrossRef]
- Wang, H.; Wei, D.; Zheng, A.; Xiao, H. Soil Burial Biodegradation of Antimicrobial Biodegradable PBAT Films. Polym. Degrad. Stab. 2015, 116, 14–22. [Google Scholar] [CrossRef]
- França, D.C.; Bezerra, E.B.; de Souza Morais, D.D.; Araújo, E.M.; Wellen, R.M.R. Hydrolytic and Thermal Degradation of PCL and PCL/Bentonite Compounds. Mater. Res. 2016, 19, 618–627. [Google Scholar] [CrossRef]
- França, D.C.; Almeida, T.G.; Abels, G.; Canedo, E.L.; Carvalho, L.H.; Wellen, R.M.R.; Haag, K.; Koschek, K. Tailoring PBAT/PLA/Babassu Films for Suitability of Agriculture Mulch Application. J. Nat. Fibers 2019, 16, 933–943. [Google Scholar] [CrossRef]
- Ji, Y.; Yang, X.; Ji, Z.; Zhu, L.; Ma, N.; Chen, D.; Jia, X.; Tang, J.; Cao, Y. DFT-Calculated IR Spectrum Amide I, II, and III Band Contributions of N-Methylacetamide Fine Components. ACS Omega 2020, 5, 8572–8578. [Google Scholar] [CrossRef]
- Seo, J.; Jang, E.-S.; Song, J.-H.; Choi, S.; Khan, S.B.; Han, H. Preparation and Properties of Poly(Urethane Acrylate) Films for Ultraviolet-Curable Coatings. J. Appl. Polym. Sci. 2010, 118, 2454–2460. [Google Scholar] [CrossRef]
- Nashchekina, Y.; Chabina, A.; Moskalyuk, O.; Voronkina, I.; Evstigneeva, P.; Vaganov, G.; Nashchekin, A.; Yudin, V.; Mikhailova, N. Effect of Functionalization of the Polycaprolactone Film Surface on the Mechanical and Biological Properties of the Film Itself. Polymers 2022, 14, 4654. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, R.N. Surface Roughness and Contact Angle. J. Phys. Colloid Chem. 1949, 53, 1466–1467. [Google Scholar] [CrossRef]
- Li, C.; Zhang, J.; Han, J.; Yao, B. A Numerical Solution to the Effects of Surface Roughness on Water–Coal Contact Angle. Sci. Rep. 2021, 11, 459. [Google Scholar] [CrossRef] [PubMed]
- Muthuraj, R.; Misra, M.; Mohanty, A.K. Hydrolytic Degradation of Biodegradable Polyesters under Simulated Environmental Conditions. J. Appl. Polym. Sci. 2015, 132, 42189. [Google Scholar] [CrossRef]
- Ivanova, A.A.; Syromotina, D.S.; Shkarina, S.N.; Shkarin, R.; Cecilia, A.; Weinhardt, V.; Baumbach, T.; Saveleva, M.S.; Gorin, D.A.; Douglas, T.E.L.; et al. Effect of Low-Temperature Plasma Treatment of Electrospun Polycaprolactone Fibrous Scaffolds on Calcium Carbonate Mineralisation. RSC Adv. 2018, 8, 39106–39114. [Google Scholar] [CrossRef] [PubMed]
- Srikanth, M.; Asmatulu, R.; Cluff, K.; Yao, L. Material Characterization and Bioanalysis of Hybrid Scaffolds of Carbon Nanomaterial and Polymer Nanofibers. ACS Omega 2019, 4, 5044–5051. [Google Scholar] [CrossRef]
- Janvikul, W.; Uppanan, P.; Thavornyutikarn, B.; Kosorn, W.; Kaewkong, P. Effects of Surface Topography, Hydrophilicity and Chemistry of Surface-Treated PCL Scaffolds on Chondrocyte Infiltration and ECM Production. Procedia Eng. 2013, 59, 158–165. [Google Scholar] [CrossRef]
- Moustafa, H.; Guizani, C.; Dupont, C.; Martin, V.; Jeguirim, M.; Dufresne, A. Utilization of Torrefied Coffee Grounds as Reinforcing Agent To Produce High-Quality Biodegradable PBAT Composites for Food Packaging Applications. ACS Sustain. Chem. Eng. 2017, 5, 1906–1916. [Google Scholar] [CrossRef]
- Rasyida, A.; Fukushima, K.; Yang, M.-C. Structure and Properties of Organically Modified Poly(Butylene Adipate-Co-Terephthalate) Based Nanocomposites. IOP Conf. Ser. Mater. Sci. Eng. 2017, 223, 012023. [Google Scholar] [CrossRef]
- Can, B.N.; Ozkoc, G. PBAT/Thermoplastic Starch Blends: “Effects of Oxidized Starch and Compatibilizer Content”. In AIP Conference Proceedings, Proceedings of the 32nd International Conference of the Polymer Processing Society, Lyon, France, 25–29 July 2016; AIP Publishing LLC: Melville, NY, USA, 2017; p. 070004. [Google Scholar]
- Bartnikowski, M.; Dargaville, T.R.; Ivanovski, S.; Hutmacher, D.W. Degradation Mechanisms of Polycaprolactone in the Context of Chemistry, Geometry and Environment. Prog. Polym. Sci. 2019, 96, 1–20. [Google Scholar] [CrossRef]
- Kijchavengkul, T.; Auras, R.; Rubino, M.; Selke, S.; Ngouajio, M.; Fernandez, R.T. Biodegradation and Hydrolysis Rate of Aliphatic Aromatic Polyester. Polym. Degrad. Stab. 2010, 95, 2641–2647. [Google Scholar] [CrossRef]
Water Quality Parameter | Unit | Value | Water Quality Parameter | Unit | Value |
---|---|---|---|---|---|
Temperature | °C | 11.9 | Blue-green algae | mg/m3 | 0.0 |
Salinity | PSU | 5.59 | Chlorophyll a | mg/m3 | 7.2 |
N-NH4 | mg/m3 | 6.4 | Chlorophyll b | mg/m3 | 0.49 |
N-NO3 | mg/m3 | 18.1 | Chlorophyll c | mg/m3 | 0.51 |
P-PO4 | mg/m3 | 20.1 | Photoprotective carotenoids | mg/m3 | 1.56 |
Si-SiO4 | mg/m3 | 531 | Photosynthetic carotenoids | mg/m3 | 1.17 |
Dissolved oxygen | g/m3 | 12.5 | Phytoplankton | mg/m3 | 97.2 |
Sample | Degradation Time, Weeks | |||||
---|---|---|---|---|---|---|
0 | 1 | 2 | 4 | 8 | 12 | |
UFC | ||||||
MDI | ||||||
TDI |
Sample | Biodegradation Time, Weeks | TcPCL, °C | TcPBAT, °C | TmPCL, °C | ΔHm, J/g | TmPBAT, °C |
---|---|---|---|---|---|---|
UFC | 0 | 28.5 | 106.0 | 59.2 | 16.31 | 135.2 |
1 | 28.4 | 104.9 | 58.3 | 13.86 | 137.6 | |
2 | 27.4 | 104.1 | 59.2 | 13.99 | 138.0 | |
4 | 28.6 | 105.2 | 58.1 | 13.87 | 137.2 | |
8 | 28.8 | 106.4 | 58.3 | 14.56 | 138.0 | |
12 | 28.6 | 106.6 | 58.4 | 15.13 | 137.9 | |
MDI | 0 | 25.5 | 104.9 | 56.5 | 14.92 | 133.9 |
1 | 21.0 | 101.9 | 58.5 | 13.91 | 136.5 | |
2 | 20.9 | 102.6 | 57.1 | 13.16 | 134.6 | |
4 | 21.3 | 102.0 | 57.9 | 12.96 | 135.9 | |
8 | 21.4 | 103.3 | 57.2 | 14.05 | 136.0 | |
12 | 21.9 | 103.2 | 57.6 | 14.74 | 136.1 | |
TDI | 0 | 18.7 | 91.2 | 56.1 | 13.73 | 127.2 |
1 | 19.0 | 85.2 | 58.3 | 12.30 | 133.1 | |
2 | 20.2 | 85.5 | 57.8 | 13.58 | 131.3 | |
4 | 18.2 | 85.8 | 57.1 | 12.32 | 131.2 | |
8 | 20.8 | 86.8 | 58.5 | 13.38 | 132.1 | |
12 | 23.4 | 87.0 | 57.9 | 13.46 | 131.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hejna, A.; Kosmela, P.; Mysiukiewicz, O.; Barczewski, M. Insights into Seawater Biodegradation of Sustainable Mater-Bi/Poly(ε-caprolactone)-Based Biocomposites Filled with Diisocyanate-Modified Cellulose Particles. Environments 2023, 10, 90. https://doi.org/10.3390/environments10050090
Hejna A, Kosmela P, Mysiukiewicz O, Barczewski M. Insights into Seawater Biodegradation of Sustainable Mater-Bi/Poly(ε-caprolactone)-Based Biocomposites Filled with Diisocyanate-Modified Cellulose Particles. Environments. 2023; 10(5):90. https://doi.org/10.3390/environments10050090
Chicago/Turabian StyleHejna, Aleksander, Paulina Kosmela, Olga Mysiukiewicz, and Mateusz Barczewski. 2023. "Insights into Seawater Biodegradation of Sustainable Mater-Bi/Poly(ε-caprolactone)-Based Biocomposites Filled with Diisocyanate-Modified Cellulose Particles" Environments 10, no. 5: 90. https://doi.org/10.3390/environments10050090
APA StyleHejna, A., Kosmela, P., Mysiukiewicz, O., & Barczewski, M. (2023). Insights into Seawater Biodegradation of Sustainable Mater-Bi/Poly(ε-caprolactone)-Based Biocomposites Filled with Diisocyanate-Modified Cellulose Particles. Environments, 10(5), 90. https://doi.org/10.3390/environments10050090