Studies on Air Pollution and Air Quality in Rural and Agricultural Environments: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Description of the Investigated Studies
3.2. Monitoring, Sampling, and Analytical Techniques
3.2.1. Instrumentation
3.2.2. Analytical Methods
3.2.3. Supporting Information
3.2.4. Additional Information to Consider
- i.
- Soil tillage: activity associated with a significant amount of primary PM emissions, which can vary according to environmental conditions (e.g., soil moisture) and to the specific tilling implement used. Tillage can also lead to the emission of pesticide particles previously deposited onto the soil through pesticide spraying or sowing of coated seeds.
- ii.
- Harvesting: one of the major sources of PM in agriculture, together with post-harvest activities (e.g., yield transport, storage, and drying).
- iii.
- Burning of crop residues: recognized to generate high emissions of greenhouse gasses and PM.
- iv.
- Sowing: this activity, due to using seed drilling machines, produces PM emissions. The emitted particles are generated mainly from the soil, but a small portion may also come from the seeds, which are abraded during sowing activity.
- v.
- Manure and fertilizer distribution: one of the contributors to primary PM emissions in the agricultural sector. In this case, the importance of PM emission from this activity is strongly linked to the composition of the generated particles, which includes bioaerosol emissions.
- vi.
- Spraying operations: both through the primary drift of droplets and secondary drift of evaporating compounds.
- i.
- Spray drift: After the application of pesticides, they may not fully reach the target point, and up to 30% of the applied pesticides can spread through the surrounding environment.
- ii.
- Secondary drift: Several weeks after the application of pesticides, these can evaporate from the soil and plants into the air.
- iii.
- Take-home exposure pathway: Farm workers may introduce pesticides indoors (e.g., via (i) shoes, (ii) clothing, (iii) skin, and (iv) hair).
- iv.
- Insects: Pesticides can enter the indoor environment through insects.
- v.
- Volatilization from indoor products: Pesticides can volatilize from indoor products, such as wooden furniture, fabrics, and carpets containing pesticides.
4. Conclusions
- i.
- Season: Considering the season during which S/M is performed could be of fundamental importance in the agricultural context, because the contribution of the various sources and activities can be different.
- ii.
- Region: The typical kind of cultivation of a region will have effects on atmospheric pollution concentrations because of edaphic and soil conditions as well as the type of activity required (e.g., mechanical or manual).
- iii.
- Cultivation type present at the S/M point: This aspect can be of particular importance, as different crops can behave differently, requiring different cropping techniques, which involve the presence of different pollutants. In addition, the environmental conditions necessary for a particular crop can affect the environmental concentrations of pollutants.
- iv.
- Activities performed before/during the S/M: Specifying the type of activity carried out and the manner in which the task is performed (e.g., mechanical or manual) may be an important determinant of exposure, even if the contribution of open field activities is particularly difficult to estimate because of the wide variety of field operations and crops as well as other parameters (e.g., climatic factors and pollutant emission sources).
- v.
- Presence and type of animal farms near the S/M point: PM concentrations are not only important within livestock housing but also in the surrounding space as, through the exhaust ventilation, air pollution generated indoors is released into the external environment. In addition, the particles emitted by livestock can be a carrier of (i) gas and odors, (ii) microorganisms and their components, and (iii) other bioactive components that may have effects on the health of the subjects living in the immediate vicinity.
- vi.
- Application and use of pesticides and/or fertilizers before/during S/M: due to the chemical products emitted, respectively, VOCs and bioaerosols.
- vii.
- Meteorological parameters: because of the recognized relationship between (i) high wind intensities, (ii) low precipitation, (iii) poorly aggregated soils, (iv) high-intensity agricultural activities and wind erosion in agricultural fields, which in turn can cause the resuspension of particles.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ni, J.; Heber, A.J. An on-site computer system for comprehensive agricultural air quality research. Comput. Electron. Agric. 2010, 71, 38–49. [Google Scholar] [CrossRef]
- Abdurrahman, M.I.; Chaki, S.; Saini, G. Stubble burning: Effects on health & environment, regulations and management practices. Environ. Adv. 2020, 2, 100011. [Google Scholar]
- Lee, S.; Adhikari, A.; Grinshpun, S.A.; Mckay, R.; Shukla, R.; Reponen, T. Personal exposure to airborne dust and microorganisms in agricultural environments. J. Occup. Environ. Hyg. 2006, 3, 118–130. [Google Scholar] [CrossRef]
- Contiero, P.; Borgini, A.; Bertoldi, M.; Abita, A.; Cuffari, G.; Tomao, P.; Ovidio, M.C.D.; Reale, S.; Scibetta, S.; Tagliabue, G. An Epidemiological Study to Investigate Links between Atmospheric Pollution from Farming and SARS-CoV-2 Mortality. Int. J. Environ. Res. Public Health 2022, 19, 4637. [Google Scholar] [CrossRef]
- Mazzola, M.; Johnson, T.E.; Cook, R.J. Influence of field burning and soil treatments on growth of wheat after Kentucky bluegrass, and effect of Rhizoctonia cerealis on bluegrass emergence and growth. Plant Pathol. 1997, 46, 708–715. [Google Scholar] [CrossRef]
- Wu, C.; Jimenez, J.; Claiborn, C.; Gould, T.; Simpson, C.D.; Larson, T.; Liu, L.S. Agricultural burning smoke in Eastern Washington: Part II. Exposure assessment. Atmos. Environ. 2006, 40, 5379–5392. [Google Scholar] [CrossRef]
- Mao, S.; Li, J.; Cheng, Z.; Zhong, G.; Li, K.; Liu, X.; Zhang, G. Contribution of Biomass Burning to Ambient Particulate Polycyclic Aromatic Hydrocarbons at a Regional Background Site in East China. Environ. Sci. Technol. Lett. 2018, 5, 56–61. [Google Scholar] [CrossRef]
- Wan, X.; Kang, S.; Li, Q.; Rupakheti, D.; Zhang, Q.; Guo, J.; Chen, P.; Tripathee, L.; Rupakheti, M.; Panday, A.K.; et al. Organic molecular tracers in the atmospheric aerosols from Lumbini, Nepal, in the northern Indo-Gangetic Plain: Influence of biomass burning. Atmos. Chem. Phys. 2017, 17, 8867–8885. [Google Scholar] [CrossRef]
- Mandalakis, M.; Gustafsson, Ö.; Alsberg, T.; Egebäck, A.-L.; Reddy, C.M.; Xu, L.; Klanova, J.; Holoubek, I.; Stephanou, E.G. Contribution of Biomass Burning to Atmospheric Polycyclic Aromatic Hydrocarbons at Three European Background Sites. Environ. Sci. Technol. 2005, 39, 2976–2982. [Google Scholar] [CrossRef]
- Souri, A.H.; Choi, Y.; Jeon, W.; Kochanski, A.K.; Diao, L.; Mandel, J.; Bhave, P.V.; Pan, S. Quantifying the Impact of Biomass Burning Emissions on Major Inorganic Aerosols and Their Precursors in the U.S. J. Geophys. Res. Atmos. 2017, 122, 12020–12041. [Google Scholar] [CrossRef]
- Lammel, G.; Heil, A.; Stemmler, I.; Dvorská, A.; Klánová, J. On the Contribution of Biomass Burning to POPs (PAHs and PCDDs) in Air in Africa. Environ. Sci. Technol. 2013, 47, 11616–11624. [Google Scholar] [CrossRef]
- ILO—International Labour Organization. Safety and Health in Agriculture; ILO: Geneva, Switzerland, 2011. [Google Scholar]
- Babaoglu, U.T. Effects of different occupational exposure factors on the respiratory system of farmers: The case of Central Anatolia. J. Public Health 2021, 30, 2123–2131. [Google Scholar] [CrossRef]
- Lamprecht, B.; Schirnhofer, L.; Kaiser, B.; Studnicka, M.; Buist, A.S. Farming and the prevalence of non-reversible airways obstruction—Results from a population-based study. Am. J. Ind. Med. 2007, 50, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Chatzi, L.; Prokopakis, E.; Tzanakis, N.; Alegakis, A.; Bizakis, I.; Siafakas, N.; Lionis, C. Allergic Rhinitis, Asthma, and Atopy Among Grape Farmers in a Rural Population in Crete, Greece. Chest 2005, 127, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Dalphin, J.; Dubiez, A.; Monnet, E.; Gora, D.; Westeel, V.; Pernet, D.; Polio, J.; Gibey, R.; Laplante, J.; Depierre, A. Prevalence of Asthma and Respiratory Symptoms in Dairy Farmers in the French Province of the Doubs. Am. J. Respir. Crit. Care Med. 1998, 158, 1493–1498. [Google Scholar] [CrossRef] [PubMed]
- Gainet, M.; Thaon, I.; Westeel, V.; Chaudemanche, H.; Venier, A.G.; Dubiez, A.; Laplante, J.J. Twelve-year longitudinal study of respiratory status in dairy farmers. Eur. Respir. J. 2007, 30, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Zejda, J.E.; Dosman, J.A. Respiratory disorders in agriculture. Tuber. Lung Dis. 1993, 74, 74–86. [Google Scholar] [CrossRef] [PubMed]
- Fanti, G.; Spinazz, A.; Borghi, F.; Rovelli, S.; Campagnolo, D.; Keller, M.; Borghi, A.; Cattaneo, A.; Cauda, E.; Cavallo, D.M. Evolution and Applications of Recent Sensing Technology for Occupational Risk Assessment: A Rapid Review of the Literature. Sensors 2022, 22, 4841. [Google Scholar] [CrossRef]
- Fanti, G.; Borghi, F.; Spinazzè, A.; Rovelli, S.; Campagnolo, D.; Keller, M.; Cattaneo, A.; Cauda, E.; Cavallo, D.M. Features and Practicability of the Next-Generation Sensors and Monitors for Exposure Assessment to Airborne Pollutants: A Systematic Review. Sensors 2021, 21, 4513. [Google Scholar] [CrossRef]
- Švajlenka, J.; Kozlovská, M.; Pošiváková, T. Biomonitoring the indoor environment of agricultural buildings. J. Neurol. Sci. 2018, 25, 292–295. [Google Scholar] [CrossRef]
- Tudi, M.; Ruan, H.D.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- Amoatey, P.; Al-mayahi, A.; Omidvarborna, H.; Baawain, M.S.; Sulaiman, H. Occupational exposure to pesticides and associated health effects among greenhouse farm workers. Environ. Sci. Pollut. Res. 2020, 27, 22251–22270. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Campos-Ramos, A.; Arago, A. Characterization of atmospheric aerosols by SEM in a rural area in the western part of Mexico and its relation with different pollution sources part of Me. Atmos. Environ. 2009, 43, 6159–6167. [Google Scholar] [CrossRef]
- Swanepoel, A.J.; Kromhout, H.; Portengen, T.; Renton, K.; Jinnah, Z.A.; Gardiner, K.; Rees, D. Respirable Dust and Quartz Exposure from Three South African Farms with Sandy, Sandy Loam, and Clay Soils. Ann. Work. Expo. Health 2011, 55, 634–643. [Google Scholar]
- Le Blond, J.S.; Woskie, S.; Horwell, C.J.; Williamson, B.J. Particulate matter produced during commercial sugarcane harvesting and processing: A respiratory health hazard? Atmos. Environ. 2017, 149, 34–46. [Google Scholar] [CrossRef]
- Zhuo, D.; Liu, L.; Yu, H.; Yuan, C. Research Article a national assessment of the effect of intensive agro-land use practices on nonpoint source pollution using emission scenarios and geo-spatial data. Environ. Sci. Pollut. Res. 2018, 25, 1683–1705. [Google Scholar] [CrossRef]
- Pavilonis, B.T.; Anthony, T.R.; Shaughnessy, P.T.O.; Humann, M.J.; Merchant, J.A.; Moore, G.; Thorne, P.S.; Weisel, C.P.; Sanderson, W.T. Indoor and outdoor particulate matter and endotoxin concentrations in an intensely agricultural county. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 299–305. [Google Scholar] [CrossRef]
- De Assuncao, J.V.; Pesquero, C.R.; Nardocci, A.C.; Francisco, A.P.; Soares, N.S.; Ribeiro, H. Airborne polycyclic aromatic hydrocarbons in a medium-sized city affected by preharvest sugarcane burning and inhalation risk for human health. J. Air Waste Manag. Assoc. 2014, 64, 1130–1139. [Google Scholar] [CrossRef]
- Loftus, C.; Yost, M.; Sampson, P.; Torres, E.; Arias, G.; Vasquez, V.B.; Hartin, K.; Armstrong, J.; Tchong-french, M.; Vedal, S.; et al. Ambient ammonia exposures in an agricultural community and pediatric asthma morbidity. Epidemiology 2016, 26, 794–801. [Google Scholar] [CrossRef]
- Buczaj, A.; Brzana, W.; Tarasińska, J.; Buczaj, M.; Choina, P. Study on the concentration of airbone respirable asbestos fibres in rural areas of the Lublin region in south-east Poland. J. Neurol. Sci. 2014, 21, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Green, F.H.Y.; Yoshida, K.; Fick, G.; Paul, J.; Hugh, A.; Green, W.F. Oeupatinfa l Environmental Health Characterization of airborne mineral dusts associated with farming activities in rural Alberta, Canada. Int. Arch. Occup. Environ. Health 1990, 62, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Reinhardt, T.E.; Ottmar, R.D.; Castilla, C.; Reinhardt, T.E.; Ottmar, R.D.; Smoke, C.C.; Reinhardt, T.E.; Corporation, U.R.S. Smoke Impacts from Agricultural Burning in a Rural Brazilian Town Smoke Impacts from Agricultural Burning in a Rural Brazilian Town. J. Air Waste Manag. Assoc. 2011, 51, 443–450. [Google Scholar] [CrossRef]
- Sevimoglu, O.; Rogge, W.F. Particuology Seasonal size-segregated PM 10 and PAH concentrations in a rural area of sugarcane agriculture versus a coastal urban area in Southeastern. Particuology 2016, 28, 52–59. [Google Scholar] [CrossRef]
- Maw, S.J.; Johnson, C.L.; Lewis, A.C.; Mcquaid, J.B. A note on the emission of nitrogen oxides from silage in opened bunker silos. Environ. Monit. Assess. 2002, 74, 209–215. [Google Scholar] [CrossRef] [PubMed]
- You, X.I.; Senthilselvan, A.; Cherry, N.M.; Kim, H. Determinants of airborne concentrations of volatile organic compounds in rural areas of Western Canada Determinants of airborne concentrations of volatile organic compounds in rural areas of Western Canada. J. Expo. Sci. Environ. Epidemiol. 2008, 18, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, J.; Wu, C.; Claiborn, C.; Gould, T.; Simpson, C.D.; Larson, T.; Liu, L.S. Agricultural burning smoke in eastern Washington—part I: Atmospheric characterization. Atmos. Environ. 2006, 40, 639–650. [Google Scholar] [CrossRef]
- Ryu, S.Y.; Kwon, B.G.; Kim, Y.J.; Kim, H.H.; Chun, K.J. Characteristics of biomass burning aerosol and its impact on regional air quality in the summer of 2003 at Gwangju, Korea. Atmos. Res. 2007, 84, 362–373. [Google Scholar] [CrossRef]
- Maesano, C.N.; Caillaud, D.; Youssouf, H.; Banerjee, S.; Homme, J.P.; Audi, C.; Horo, K.; Toloba, Y.; Ramousse, O.; Annesi-maesano, I. Indoor exposure to particulate matter and volatile organic compounds in dwellings and workplaces and respiratory health in French farmers. Multidiscip. Respir. Med. 2019, 14, 33. [Google Scholar] [CrossRef]
- Zbieranowski, A.L.; Aherne, J. Ambient concentrations of atmospheric ammonia, nitrogen dioxide and nitric acid across a rural e urban e agricultural transect in southern Ontario, Canada. Atmos. Environ. 2012, 62, 481–491. [Google Scholar] [CrossRef]
- Wei, M.; Xu, C.; Xu, X.; Zhu, C.; Li, J.; Lv, G. Science of the Total Environment Characteristics of atmospheric bacterial and fungal communities in PM 2.5 following biomass burning disturbance in a rural area of North China Plain. Sci. Total Environ. 2019, 651, 2727–2739. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Chen, Z.; Tian, Q.; Mao, Y.; Liu, W.; Shi, M. Ecotoxicology and Environmental Safety Characterization and source identi fi cation of PM 2.5-bound polycyclic aromatic hydrocarbons in urban, suburban, and rural ambient air, central China during summer harvest. Ecotoxicol. Environ. Saf. 2020, 191, 110219. [Google Scholar] [CrossRef] [PubMed]
- Ramli, N.A.; Faizah, N.; Yusof, F.; Zarkasi, K.Z.; Suroto, A. Chemical, Biological and Morphological Properties of Fine Particles during Local Rice Straw Burning Activities. Int. J. Environ. Res. Public Health 2021, 18, 8192. [Google Scholar] [CrossRef] [PubMed]
- Ali-Sak, Z.H.; Kurtuluş, Ş.; Ocaklı, B.; Töreyin, Z.N.; Bayhan, İ.; Yeşilnacar, M.İ.; Akgün, M.; Arslanoğlu, İ.; Arbak, P.M. The relationship between particulate matter and childhood respiratory complaints and peak expiratory flows in Harran agricultural area. Turk. J. Pediatr. 2021, 63, 263–272. [Google Scholar]
- Barnig, C.; Reboux, G.; Roussel, S.; Casset, A.; Sohy, C.; Dalphin, J.; Blay, F. De Indoor dust and air concentrations of endotoxin in urban and rural environments. Lett. Appl. Microbiol. 2012, 53, 161–167. [Google Scholar]
- Blanes-vidal, V.; Nadimi, E.S.; Ellermann, T.; Andersen, H.V.; Løfstrøm, P. Perceived annoyance from environmental odors and association with atmospheric ammonia levels in non-urban residential communities: A cross-sectional study. Environ. Health 2012, 11, 27. [Google Scholar] [CrossRef] [PubMed]
- Avecilla, F.; Panebianco, J.E.; Buschiazzo, D.E. Agricultural and Forest Meteorology Meteorological conditions during dust (PM 10) emission from a tilled loam soil: Identifying variables and thresholds. Agric. For. Meteorol. 2017, 244–245, 21–32. [Google Scholar] [CrossRef]
- Fu, J.; Li, R.; Wu, X.; Zhang, M.; Chen, W.; Tong, D. High-resolution inventory of emissions of atmospheric PM 10 from agricultural tillage and harvesting operations in China: Historical trend, spatio-temporality, and optimization methodology. Air Qual. Atmos. Health 2022, 15, 853–865. [Google Scholar] [CrossRef]
- Cassel, T.; Trzepla-nabaglo, K.; Flocchini, R. PM 10 Emission Factors for Harvest and Tillage of Row Crops. In Proceedings of the 12th International Emission Inventory Conference, San Diego, CA, USA, 29 April–1 May 2003. [Google Scholar]
- Zhang, J.; Liu, L.; Zhao, Y.; Li, H.; Lian, Y.; Zhang, Z. Development of a high-resolution emission inventory of agricultural machinery with a novel methodology: A case study for Yangtze River Delta region. Environ. Pollut. 2020, 266, 115075. [Google Scholar] [CrossRef]
- Kubsh, J. Managing emissions from non-road vehicles. ICCT Consult. Rep. 2017. [Google Scholar]
- Hou, X.; Xu, C.; Li, J.; Liu, S.; Zhang, X. ScienceDirect Evaluating agricultural tractors emissions using remote monitoring and emission tests in Beijing, China. Biosyst. Eng. 2021, 213, 105–118. [Google Scholar] [CrossRef]
- Vehicle Emission Control Center, Ministry of Ecology and Environment (VECC), 2020 (China mobile source environmental management annual report 2020), Ministry of Ecology and Environment, 2020.
- Choi, H.; Sunwoo, Y. Environmental Benefits of Ammonia Reduction in an Agriculture-Dominated Area in South Korea. Atmosphere 2022, 13, 384. [Google Scholar] [CrossRef]
- Wang, R.; Bei, N.; Wu, J.; Li, X.; Liu, S.; Yu, J.; Jiang, Q.; Tie, X.; Li, G. Cropland nitrogen dioxide emissions and effects on the ozone pollution in the North China plain. Environ. Pollut. 2022, 294, 118617. [Google Scholar] [CrossRef]
- Rolland, M.; Gabrielle, B.; Laville, P.; Cellier, P.; Beekmann, M.; Gilliot, J.; Michelin, J.; Hadjar, D.; Curci, G. High-resolution inventory of NO emissions from agricultural soils over the Ile-de-France region. Environ. Pollut. 2010, 158, 711–722. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, L.; Bai, Z.; Xu, W.; Zhang, F.; Zhang, X.; Liu, X.; Xie, Y. Comprehensive quanti fication of global cropland ammonia emissions and potential abatement. Sci. Total Environ. 2022, 812, 151450. [Google Scholar] [CrossRef] [PubMed]
- Borghi, F.; Spinazzè, A.; Rovelli, S.; Campagnolo, D.; Del Buono, L.; Cattaneo, A.; Cavallo, D.M. Miniaturized Monitors for Assessment of Exposure to Air Pollutants: A Review. Int. J. Environ. Res. Public Health 2017, 14, 909. [Google Scholar] [CrossRef]
- Ruiter, S.; Kuijpers, E.; Saunders, J.; Snawder, J.; Warren, N.; Gorce, J.-P.; Blom, M.; Krone, T.; Bard, D.; Pronk, A.; et al. Exploring Evaluation Variables for Low-Cost Particulate Matter Monitors to Assess Occupational Exposure. Int. J. Environ. Res. Public Health 2020, 17, 8602. [Google Scholar] [CrossRef]
- Zuidema, C.; Stebounova, L.V.; Sousan, S.; Gray, A.; Stroh, O.; Thomas, G.; Peters, T.; Koehler, K. Estimating personal exposures from a multi-hazard sensor network. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 1013–1022. [Google Scholar] [CrossRef]
- Bergmans, B.; Cattaneo, A.; Duarte, R.M.B.O.; João, F.P.; Saraga, D.; García, M.R.; Querol, X.; Leonarda, F.; Safell, J.; Spinazzé, A.; et al. Particulate matter indoors: A strategy to sample and monitor size-selective fractions. Appl. Spectrosc. Rev. 2022, 57, 675. [Google Scholar] [CrossRef]
- Rovelli, S.; Cattaneo, A.; Borghi, F.; Spinazzè, A.; Campagnolo, D.; Limbeck, A.; Cavallo, D.M. Mass concentration and size-distribution of atmospheric particulate matter in an urban environment. Aerosol Air Qual. Res. 2017, 17, 1142–1155. [Google Scholar] [CrossRef]
- Chang, X.; Sun, L.; Yu, X.; Jia, G.; Liu, J.; Liu, Z.; Zhu, X.; Wang, Y. Agriculture, Ecosystems and Environment Effect of windbreaks on particle concentrations from agricultural fields under a variety of wind conditions in the farming-pastoral ecotone of northern China. Agric. Ecosyst. Environ. 2019, 281, 16–24. [Google Scholar] [CrossRef]
- Ravi, S.; Odorico, P.D.; Over, T.M.; Zobeck, T.M. On the effect of air humidity on soil susceptibility to wind erosion: The case of air-dry soils. Geophys. Res. Lett. 2004, 31, 2–5. [Google Scholar] [CrossRef]
- Ravi, S.; Zobeck, T.E.D.M.; Over, T.M.; Okin, G.S.; Dorico, D.O. On the effect of moisture bonding forces in air-dry soils on threshold friction velocity of wind erosion. Sedimentology 2006, 53, 597–609. [Google Scholar] [CrossRef]
- Neuman, C.M.; Sanderson, S. Humidity control of particle emissions in aeolian systems. J. Geophys. Res. Earth Surf. 2008, 113, 1–10. [Google Scholar]
- Hussein, T.; Karppinen, A.; Kukkonen, J.; Ha, J. Meteorological dependence of size-fractionated number concentrations of urban aerosol particles. Atmos. Environ. 2006, 40, 1427–1440. [Google Scholar] [CrossRef]
- Moran, R.E.; Bennett, D.H.; Garcia, J.; Schenker, M.B. International Journal of Hygiene and Occupational exposure to particulate matter from three agricultural crops in California. Int. J. Hyg. Environ. Health 2014, 217, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Ravindra, K.; Singh, T.; Mor, S. Emissions of air pollutants from primary crop residue burning in India and their mitigation strategies for cleaner emissions. J. Clean. Prod. 2019, 208, 261–273. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Kumar, S.; Sharma, D.; Singh, R.P.; Kharol, S.K.; Sharma, M.; Singh, A.K.; Singh, S.; Singh, A.; Singh, D. Effects of crop residue burning on aerosol properties, plume characteristics, and long-range transport over northern India. J. Geophys. Res. Atmos. 2014, 119, 5424–5444. [Google Scholar] [CrossRef]
- Sen, A.; Abdelmaksoud, A.S.; Nazeer Ahammed, Y.; Alghamdi, M. ِ; Banerjee, T.; Bhat, M.A.; Chatterjee, A.; Choudhuri, A.K.; Das, T.; Dhir, A.; et al. Variations in particulate matter over Indo-Gangetic Plains and Indo-Himalayan Range during four field campaigns in winter monsoon and summer monsoon: Role of pollution pathways. Atmos. Environ. 2017, 154, 200–224. [Google Scholar]
- Maffia, J.; Dinuccio, E.; Amon, B.; Balsari, P. Review article PM emissions from open field crop management: Emission factors, assessment methods and mitigation measures—A review. Atmos. Environ. 2020, 226, 117381. [Google Scholar] [CrossRef]
- Cambra-Lopez, M.; Aarnink, A.J.A.; Zhao, Y.; Calvet, S.; Torres, A.G. Airborne particulate matter from livestock production systems: A review of an air pollution problem. Environ. Pollut. 2010, 158, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Phillips, V.R.; Holden, M.R.; Sneath, R.W.; Short, J.L.; White, R.P.; Hartung, J.; Seedorf, J.; Schro, M. The Development of Robust Methods for Measuring Concentrations and Emission Rates of Gaseous and Particulate Air Pollutants in Livestock Buildings. J. Agric. Eng. Res. 1998, 70, 11–24. [Google Scholar] [CrossRef]
- Aschan-leygonie, C.; Baudet-michel, S.; Harpet, C.; Lavie, É.; Grésillon, E.; Aschan-leygonie, C.; Baudet-michel, S.; Harpet, C.; Lavie, É.; Grésillon, E. Comment évaluer l’exposition aux pesticides de l’air en population générale? Enseignements d’une revue bibliographique. Cybergeo Eur. J. Geogr. 2015, document 729. [Google Scholar] [CrossRef]
- Willenbockel, C.T.; Prinz, J.; Dietrich, S.; Marx-stoelting, P.; Weikert, C.; Tralau, T.; Niemann, L. A Critical Scoping Review of Pesticide Exposure Biomonitoring Studies in Overhead Cultures. Toxics 2022, 10, 170. [Google Scholar] [CrossRef] [PubMed]
- De Graaf, L.; Boulanger, M.; Bureau, M.; Bouvier, G.; Meryet-figuiere, M. Occupational pesticide exposure, cancer and chronic neurological disorders: A systematic review of epidemiological studies in greenspace workers. Environ. Res. 2022, 203, 111822. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, D.; Öncel, S.; Karadağ, E. The effectiveness of educational interventions aimed at agricultural workers ’ knowledge, behaviour, and risk perception for reducing the risk of pesticide exposure: A systematic review and meta-analysis. Int. Arch. Occup. Environ. Health 2022, 95, 1167–1178. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, G.; Young, B.N.; Wemott, S.; Erlandson, G.; Martinez, N.; Mendoza, J.; Dooley, G.; Quinn, C.; Benka-coker, W.O.; Magzamen, S. Factors Associated with Levels of Organophosphate Pesticides in Household Dust in Agricultural Communities. Int. J. Environ. Res. Public Health 2022, 19, 862. [Google Scholar] [CrossRef]
- Weschler, C.J.; Nazaroff, W.W. Semivolatile organic compounds in indoor environments. Atmos. Environ. 2008, 42, 9018–9040. [Google Scholar] [CrossRef]
- Glorennec, P.; Serrano, T.; Fravallo, M.; Warembourg, C.; Monfort, C.; Cordier, S.; Viel, J.; Le, F.; Le, B.; Chevrier, C. Determinants of children’s exposure to pyrethroid insecticides in western France. Environ. Int. 2017, 104, 76–82. [Google Scholar] [CrossRef]
- Degrendele, C.; Prokeš, R.; Šenk, P.; Roz, S.; Melymuk, L.; Přibylová, P.; Dalvie, M.A.; Röösli, M.; Kl, J.; Fuhrimann, S. Human Exposure to Pesticides in Dust from Two Agricultural Sites in South Africa. Toxics 2022, 10, 629. [Google Scholar] [CrossRef]
- He, D.; Li, F.; Wu, M.; Luo, H.; Qiu, L.; Ma, X. Emission of volatile organic compounds (VOCs) from application of commercial pesticides in China. J. Environ. Manag. 2022, 314, 115069. [Google Scholar] [CrossRef] [PubMed]
- Department of Pesticide Regulation. Preliminary Estimates of Volatile Organic Compounds Emissions from Pesticides in the San Joaquin Valley: Emission for 2019; Department of Pesticide Regulation: Sacramento, CA, USA, 2020; Volume 6884.
- Zhang, Y.; Deng, W.; Hu, Q.; Wu, Z.; Yang, W.; Zhang, H.; Wang, Z. Comparison between idling and cruising gasoline vehicles in primary emissions and secondary organic aerosol formation during photochemical ageing. Sci. Total Environ. 2020, 722, 137934. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xu, Z.; Liu, P.; Zhuang, Y. Assessment of volatile organic compound emissions from pesticides in China and their contribution to ozone formation potential. Environ. Monit. Assess. 2022, 194, 737. [Google Scholar] [CrossRef] [PubMed]
- Jahne, M.A.; Rogers, S.W.; Holsen, T.M.; Grimberg, S.J. Quantitative microbial risk assessment of bioaerosols from a manure application site. Aerobiologia 2014, 31, 73–87. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borghi, F.; Spinazzè, A.; De Nardis, N.; Straccini, S.; Rovelli, S.; Fanti, G.; Oxoli, D.; Cattaneo, A.; Cavallo, D.M.; Brovelli, M.A. Studies on Air Pollution and Air Quality in Rural and Agricultural Environments: A Systematic Review. Environments 2023, 10, 208. https://doi.org/10.3390/environments10120208
Borghi F, Spinazzè A, De Nardis N, Straccini S, Rovelli S, Fanti G, Oxoli D, Cattaneo A, Cavallo DM, Brovelli MA. Studies on Air Pollution and Air Quality in Rural and Agricultural Environments: A Systematic Review. Environments. 2023; 10(12):208. https://doi.org/10.3390/environments10120208
Chicago/Turabian StyleBorghi, Francesca, Andrea Spinazzè, Nicholas De Nardis, Serena Straccini, Sabrina Rovelli, Giacomo Fanti, Daniele Oxoli, Andrea Cattaneo, Domenico Maria Cavallo, and Maria Antonia Brovelli. 2023. "Studies on Air Pollution and Air Quality in Rural and Agricultural Environments: A Systematic Review" Environments 10, no. 12: 208. https://doi.org/10.3390/environments10120208
APA StyleBorghi, F., Spinazzè, A., De Nardis, N., Straccini, S., Rovelli, S., Fanti, G., Oxoli, D., Cattaneo, A., Cavallo, D. M., & Brovelli, M. A. (2023). Studies on Air Pollution and Air Quality in Rural and Agricultural Environments: A Systematic Review. Environments, 10(12), 208. https://doi.org/10.3390/environments10120208