Soil Organic Carbon Estimation in Ferrara (Northern Italy) Combining In Situ Geochemical Analyses and Hyperspectral Remote Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. PRISMA
2.3. Available PRISMA Images and Soil Sampling
2.4. Analyses of Soil Samples
2.4.1. Thermo-Gravimetric Analyses
2.4.2. Elemental Speciation of Carbon
2.5. Modeling
2.5.1. Pre-Processing
- Valid bands: We removed from the PRISMA spectra the bands that were affected by missing data or that were outside atmospheric windows (Table 2).
- First derivative: We computed the first derivative curve of each reflectance spectrum to remove noise and emphasize some spectral features that might have been concealed in the original curves. We carried out the subsequent preprocessing steps and the modeling operations using both the original spectra and the first derivative (FDR) spectra to check which ones would perform best.
- Wavelet transform: We applied a discrete wavelet transform (DWT) to smooth the spectral curves. A DWT utilizes coupled high-pass and low-pass filters, which are applied to a curve yield a set of detail and approximation coefficients. The filters are then applied iteratively to the approximation coefficients l times, where l is the level of the DWT, ultimately yielding one set of approximation coefficients and l sets of detail coefficients. By then applying the inverted filters only to the approximation coefficients, a smoothed curve can be obtained. We applied a 3-level DWT using a Daubechies 4 wavelet.
- PCA: We carried out a principal component analysis (PCA), using the smoothed curves. The components found by a PCA are the eigenvectors of the covariance matrix computed for all the bands under consideration, while their corresponding eigenvalues are their explained variances. We searched for a number of components whose total explained variance would be at least 0.85. We then used the eigenvector entries for each band to assign a weight to each band.
- Spectral indices: For any two bands, we computed three spectral indices.NDI = (Ri − Rj)/(Ri + Rj)RI = Ri/RjDI = Ri − Rj
- Inputs: We used as “optimal” input variables the NDI, RI, and DI whose coefficients of correlation with the output variable were highest. To these, we added the three bands whose weights, computed in Step 4, were the highest. These were the 1595.9796 nm, 1575.3931 nm, and 1585.6315 nm bands for the original spectra and the 2462.813 nm, 2469.4155 nm, and 2476.7913 nm bands for the FDR spectra.
2.5.2. Neural Network
2.5.3. Ordinary Least-Squares Regression
2.5.4. Cross-Validation
3. Results and Discussion
3.1. Geochemical Analyses
3.2. Time Series of the Sentinel-2 NDVI
3.3. Model Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Research Council. Basic Research Opportunities in Earth Science; National Academy Press: Washington, DC, USA, 2001; p. 168. [Google Scholar]
- Xu, X.; Liu, W. The global distribution of Earth’s critical zone and its controlling factors. Geophys. Res. Lett. 2017, 44, 3201–3208. [Google Scholar] [CrossRef]
- Chorover, J.; Kretzschmar, R.; Garcia-Pichel, F.; Sparks, D.L. Soil biogeochemical processes within the critical zone. Elements 2007, 3, 321–326. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; De Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil Quality—A Critical Review. Soil. Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Hoffland, E.; Kuyper, T.W.; Comans, R.N.J.; Creamer, R.E. Eco-functionality of organic matter in soils. Plant Soil 2020, 455, 1–22. [Google Scholar] [CrossRef]
- Deb, S.; Bhadoria, P.B.S.; Mandal, B.; Rakshit, A.; Singh, H.B. Soil organic carbon: Towards better soil health, productivity and climate change mitigation. Clim. Chang. Environ. Sustain. 2015, 3, 26. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Malone, B.P.; Wheeler, I. Digital mapping of soil carbon. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2013; Volume 118, pp. 1–47. [Google Scholar]
- Scharlemann, J.P.; Tanner, E.V.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Sanderman, J.; Hengl, T.; Fiske, G.J. Soil carbon debt of 12,000 years of human land use. Proc. Natl. Acad. Sci. USA 2017, 114, 9575–9580. [Google Scholar] [CrossRef]
- Keskin, H.; Grunwald, S.; Harris, W.G. digital mapping of soil carbon fractions with machine learning. Geoderma 2019, 339, 40–58. [Google Scholar] [CrossRef]
- Sothe, C.; Gonsamo, A.; Arabian, J.; Kurz, W.A.; Finkelstein, S.A.; Snider, J. Large soil carbon storage in terrestrial ecosystems of Canada. Glob. Biogeochem. Cycles 2022, 36, e2021GB007213. [Google Scholar] [CrossRef]
- Angelopoulou, T.; Tziolas, N.; Balafoutis, A.; Zalidis, G.; Bochtis, D. Remote sensing techniques for soil organic carbon estimation: A review. Remote Sens. 2019, 11, 676. [Google Scholar] [CrossRef]
- Batjes, N.H. Harmonized soil profile data for applications at global and continental scales: Updates to the WISE database. Soil Use Manag. 2009, 25, 124–127. [Google Scholar] [CrossRef]
- Tóth, G.; Jones, A.; Montanarella, L. The LUCAS topsoil database and derived information on the regional variability of cropland topsoil properties in the European Union. Environ. Monit. Assess. 2013, 185, 7409–7425. [Google Scholar] [CrossRef]
- Wills, S.; Loecke, T.; Sequeira, C.; Teachman, G.; Grunwald, S.; West, L.T. Overview of the U.S. Rapid Carbon Assessment Project: Sampling design, initial summary and uncertainty estimates. In Soil Carbon; Springer International Publishing: Cham, Switzerland, 2014; pp. 95–104. [Google Scholar]
- Viscarra Rossel, R.; Behrens, T.; Ben-Dor, E.; Brown, D.; Demattê, J.; Shepherd, K.; Shi, Z.; Stenberg, B.; Stevens, A.; Adamchuk, V.; et al. A global spectral library to characterize the world’s soil. Earth-Sci. Rev. 2016, 155, 198–230. [Google Scholar] [CrossRef]
- Stevens, A.; Nocita, M.; Tóth, G.; Montanarella, L.; van Wesemael, B. Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy. PLoS ONE 2013, 8, e66409. [Google Scholar] [CrossRef]
- Biney, J.K.M.; Saberioon, M.; Borůvka, L.; Houška, J.; Vašát, R.; Chapman Agyeman, P.; Coblinski, J.A.; Klement, A. Exploring the suitability of UAS-based multispectral images for estimating soil organic carbon: Comparison with proximal soil sensing and spaceborne imagery. Remote Sens. 2021, 13, 308. [Google Scholar] [CrossRef]
- Vaudour, E.; Gholizadeh, A.; Castaldi, F.; Saberioon, M.; Borůvka, L.; Urbina-Salazar, D.; Fouad, Y.; Arrouays, D.; Richer-de-Forges, A.C.; Biney, J.; et al. Satellite imagery to map topsoil organic carbon content over cultivated areas: An overview. Remote Sens. 2022, 14, 2917. [Google Scholar] [CrossRef]
- Li, S.; Viscarra Rossel, R.A.; Webster, R. The cost-effectiveness of reflectance spectroscopy for estimating soil organic carbon. Eur. J. Soil Sci. 2022, 73, e13202. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Chabrillat, S.; Demattê, J.A.M.; Taylor, G.R.; Hill, J.; Whiting, M.L.; Sommer, S. Using imaging spectroscopy to study soil properties. Remote Sens. Environ. 2009, 113, S38–S55. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; Van Wesemael, B.; Aitkenhead, M.; Bachmann, M.; Barthès, B.; Ben Dor, E.; Brown, D.J.; Clairotte, M.; Csorba, A.; et al. Soil spectroscopy: An alternative to wet chemistry for soil monitoring. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2015; Volume 132, pp. 139–159. [Google Scholar] [CrossRef]
- Wang, S.; Guan, K.; Zhang, C.; Lee, D.; Margenot, A.J.; Ge, Y.; Peng, J.; Zhou, W.; Zhou, Q.; Huang, Y. Using soil library hyperspectral reflectance and machine learning to predict soil organic carbon: Assessing potential of airborne and spaceborne optical soil sensing. Remote Sens. Environ. 2022, 271, 112914. [Google Scholar] [CrossRef]
- Meng, X.; Bao, Y.; Liu, J.; Liu, H.; Zhang, X.; Zhang, Y.; Wang, P.; Tang, H.; Kong, F. Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102111. [Google Scholar] [CrossRef]
- Pignatti, S.; Palombo, A.; Pascucci, S.; Romano, F.; Santini, F.; Simoniello, T.; Umberto, A.; Vincenzo, C.; Acito, N.; Diani, M.; et al. The PRISMA hyperspectral mission: Science activities and opportunities for agriculture and land monitoring. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, Melbourne, Australia, 21–26 July 2013; pp. 4558–4561. [Google Scholar]
- Colombani, N.; Salemi, E.; Mastrocicco, M.; Castaldelli, G. Groundwater nitrogen speciation in intensively cultivated lowland areas. In Advances in the Research of Aquatic Environment; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2011; pp. 291–298. [Google Scholar]
- Di Giuseppe, D.; Bianchini, G.; Vittori Antisari, L.; Martucci, A.; Natali, C.; Beccaluva, L. Geochemical characterization and biomonitoring of reclaimed soils in the Po River delta (Northern Italy): Implications for the agricultural activities. Environ. Monit. Assess. 2014, 186, 2925–2940. [Google Scholar] [CrossRef]
- Amorosi, A.; Centineo, M.C.; Dinelli, E.; Lucchini, F.; Tateo, F. Geochemical and mineralogical variations as indicators of provenance changes in Late Quaternary deposits of SE Po Plain. Sediment. Geol. 2002, 151, 273–292. [Google Scholar] [CrossRef]
- Mastrocicco, M.; Colombani, N.; Salemi, E.; Castaldelli, G. Numerical assessment of effective evapotranspiration from maize plots to estimate groundwater recharge in lowlands. Agric. Water Manag. 2010, 97, 1389–1398. [Google Scholar] [CrossRef]
- Bianchini, G.; Cremonini, S.; Di Giuseppe, D.; Gabusi, R.; Marchesini, M.; Vianello, G.; Vittori Antisari, L. Late Holocene palaeo-environmental reconstruction and human settlement in the Eastern Po Plain (Northern Italy). Catena 2019, 176, 324–335. [Google Scholar] [CrossRef]
- Bianchini, G.; Di Giuseppe, D.; Natali, C.; Beccaluva, L. Ophiolite inheritance in the Po Plain sediments: Insights on heavy metals distribution and risk assessment. Ofioliti 2013, 38, 1–14. [Google Scholar] [CrossRef]
- Simeoni, U.; Corbau, C. A Review of the delta Po evolution (Italy) related to climatic changes and human impacts. Geomorphology 2009, 107, 64–71. [Google Scholar] [CrossRef]
- Targetti, S.; Raggi, M.; Zavalloni, M.; Viaggi, D. Perceived benefits from reclaimed rural landscapes: Evidence from the lowlands of the Po River delta, Italy. Ecosyst. Serv. 2021, 49, 101288. [Google Scholar] [CrossRef]
- Guarini, R.; Loizzo, R.; Longo, F.; Mari, S.; Scopa, T.; Varacalli, G. Overview of the PRISMA space and ground segment and its hyperspectral products. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 431–434. [Google Scholar]
- Pepe, M.; Pompilio, L.; Gioli, B.; Busetto, L.; Boschetti, M. Detection and classification of non-photosynthetic vegetation from PRISMA hyperspectral data in croplands. Remote Sens. 2020, 12, 3903. [Google Scholar] [CrossRef]
- Dean, W.E. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition—Comparison with other methods. J. Sediment. Res. 1974, 44, 242–248. [Google Scholar]
- Zethof, J.H.T.; Leue, M.; Vogel, C.; Stoner, S.W.; Kalbitz, K. Identifying and quantifying geogenic organic carbon in soils—The case of graphite. Soil 2019, 5, 383–398. [Google Scholar] [CrossRef]
- Natali, C.; Bianchini, G.; Cremonini, S.; Salani, G.M.; Vianello, G.; Brombin, V.; Ferrari, M.; Vittori Antisari, L. Peat soil burning in the Mezzano Lowland (Po Plain, Italy): Triggering mechanisms and environmental consequences. Geohealth 2021, 5, e2021GH000444. [Google Scholar] [CrossRef]
- Sarkar, B.; Singh, M.; Mandal, S.; Churchman, G.J.; Bolan, N.S. Clay Minerals—Organic Matter Interactions in Relation to Carbon Stabilization in Soils. In The Future of Soil Carbon; Academic Press: Cambridge, MA, USA, 2018; pp. 71–86. [Google Scholar]
- Brombin, V.; Mistri, E.; Feudis, M.D.; Forti, C.; Salani, G.M.; Natali, C.; Falsone, G.; Vittori Antisari, L.; Bianchini, G. Soil carbon investigation in three pedoclimatic and agronomic settings of Northern Italy. Sustainability 2020, 12, 539. [Google Scholar] [CrossRef]
- Griffith, J.A.; Martinko, E.A.; Whistler, J.L.; Price, K.P. Interrelationships among landscapes, NDVI, and stream water quality in the U.S. Central Plains. Ecol. Appl. 2002, 12, 1702–1718. [Google Scholar] [CrossRef]
- Zhong, C.; Wang, C.; Wu, C. MODIS-based fractional crop mapping in the U.S. Midwest with spatially constrained phenological mixture analysis. Remote Sens. 2015, 7, 512–529. [Google Scholar] [CrossRef]
- Mzid, N.; Castaldi, F.; Tolomio, M.; Pascucci, S.; Casa, R.; Pignatti, S. Evaluation of agricultural bare soil properties retrieval from Landsat 8, Sentinel-2 and PRISMA satellite data. Remote Sens. 2022, 14, 714. [Google Scholar] [CrossRef]
PRISMA Date | Sentinel-2 Date | NDVI | |
---|---|---|---|
<0.2 | <0.3 | ||
21 October 2019 | 21 October 2019 | 93 | 96 |
7 April 2020 | 8 April 2020 | 99 | 100 |
17 May 2020 | 18 May 2020 | 80 | 99 |
23 May 2020 | 23 May 2020 | 45 | 69 |
26 June 2020 | 27 June 2020 | 5 | 9 |
31 July 2020 | 1 August 2020 | 1 | 5 |
16 September 2020 | 15 September 2020 | 52 | 68 |
14 February 2021 | 14 February 2021 | 7 | 12 |
24 April 2021 | 23 April 2021 | 68 | 76 |
23 May 2021 | 23 May 2021 | 46 | 61 |
4 June 2021 | 4 June 2021 | 6 | 6 |
11 September 2021 | 10 September 2021 | 54 | 65 |
Spectral Region | Band Number | Central Wavelength (nm) | Reason for Exclusion | Optimal Inputs Bands |
---|---|---|---|---|
VNIR | 1–3 | N/A | Invalid bands | 0.598 |
VNIR | 66 | 402.4402 | Half the image missing | 0.513 |
SWIR | 1–3 | 2496.874–2483.5906 | Atmospheric absorption | 0.336 |
SWIR | 72–86 | 1949.639–1812.8206 | Atmospheric absorption | |
SWIR | 126–132 | 1416.3103–1349.599 | Atmospheric absorption | 0.405 |
SWIR | 171 | 942.9579 | Half the image missing | 0.564 |
SWIR | 172–173 | N/A | Invalid bands | 0.450 |
Geochemical Parameter | OLS Regression | Neural Network | ||||
---|---|---|---|---|---|---|
FDR Spectra | Original Spectra | FDR Spectra | Original Spectra | |||
Bands | Optimal Inputs | Bands | Optimal Inputs | Optimal Inputs | Optimal Inputs | |
SOC | 0.546 | 0.641 | 0.560 | 0.598 | 0.490 | 0.441 |
SIC | 0.467 | 0.473 | 0.400 | 0.513 | 0.476 | 0.523 |
TC | 0.328 | 0.542 | 0.343 | 0.336 | 0.174 | 0.203 |
LOI 105 °C | 0.373 | 0.372 | 0.372 | 0.405 | 0.161 | 0.223 |
LOI 550 °C | 0.492 | 0.554 | 0.544 | 0.564 | 0.420 | 0.463 |
LOI 1000 °C | 0.506 | 0.524 | 0.463 | 0.450 | 0.432 | 0.535 |
First Derivative | Original | |||||||
---|---|---|---|---|---|---|---|---|
Variable | Coeff | Error | p-Value | Variable | Coeff | Error | p-Value | |
Bands | (Intercept) | 2.4874 | 0.1996 | <2 × 10−16 | (Intercept) | 2.4301 | 0.2412 | <2 × 10−16 |
W411 | −532.181 | 273.0237 | 0.0543 | W411 | 11.5369 | 6.6923 | 0.088 | |
W434 | −3114.71 | 610.7111 | 1.76 × 10−6 | W623 | −18.5079 | 3.3148 | 2.23 × 10−7 | |
W1501 | 612.3953 | 253.1339 | 0.0175 | W1078 | −3.8762 | 2.4529 | 0.117 | |
W2198 | 1059.413 | 637.0933 | 0.0997 | W2456 | 3.8642 | 2.6764 | 0.152 | |
W2283 | 711.4486 | 424.7182 | 0.0972 | |||||
Optimal values | (Intercept) | 2.1442 | 0.1763 | <2 × 10−16 | (Intercept) | 2.3981 | 0.2256 | <2 × 10−16 |
NDI (W596, W538) | 1.4379 | 0.4935 | 0.00443 | W1595 | −2.985 | 1.8033 | 0.101 | |
DI (W2143, W426) | 2064.025 | 278.5008 | 4.68 × 10−11 | DI (W434, W463) | 121.0718 | 22.0937 | 3.36 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salani, G.M.; Lissoni, M.; Bianchini, G.; Brombin, V.; Natali, S.; Natali, C. Soil Organic Carbon Estimation in Ferrara (Northern Italy) Combining In Situ Geochemical Analyses and Hyperspectral Remote Sensing. Environments 2023, 10, 173. https://doi.org/10.3390/environments10100173
Salani GM, Lissoni M, Bianchini G, Brombin V, Natali S, Natali C. Soil Organic Carbon Estimation in Ferrara (Northern Italy) Combining In Situ Geochemical Analyses and Hyperspectral Remote Sensing. Environments. 2023; 10(10):173. https://doi.org/10.3390/environments10100173
Chicago/Turabian StyleSalani, Gian Marco, Michele Lissoni, Gianluca Bianchini, Valentina Brombin, Stefano Natali, and Claudio Natali. 2023. "Soil Organic Carbon Estimation in Ferrara (Northern Italy) Combining In Situ Geochemical Analyses and Hyperspectral Remote Sensing" Environments 10, no. 10: 173. https://doi.org/10.3390/environments10100173
APA StyleSalani, G. M., Lissoni, M., Bianchini, G., Brombin, V., Natali, S., & Natali, C. (2023). Soil Organic Carbon Estimation in Ferrara (Northern Italy) Combining In Situ Geochemical Analyses and Hyperspectral Remote Sensing. Environments, 10(10), 173. https://doi.org/10.3390/environments10100173