Virtual Reality-Based Cognitive and Physical Interventions in Cognitive Impairment: A Network Meta-Analysis of Immersion Level Effects
Abstract
1. Introduction
2. Methods
2.1. Literature Search Strategy
2.2. Selection and Exclusion Criteria
2.2.1. Inclusion Criteria
- (a)
- Population: Individuals with cognitive impairment, including MCI or dementia, diagnosed using standardized diagnostic criteria.
- (b)
- Intervention: VR interventions, including fully immersive VR (e.g., HMDs with motion sensors) and partially immersive VR (e.g., screen-based or desktop-interactive platforms). Interventions may involve cognitive, physical, or combined physical–cognitive tasks.
- (c)
- Comparison: Active control (e.g., traditional cognitive or physical training) or passive control (e.g., usual care or no intervention).
- (d)
- Outcomes: Studies were required to report at least one of the following quantitative outcomes:Cognitive outcomes: Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Cognitive Abilities Screening Instrument (CASI), or other scales assessing global cognition, memory, language, and attention;Executive function outcomes: Trail Making Test (TMT)-A/B, Digit Span Test (DST)-forward/backward, Symbol Digit Substitution Test (SDST), Stroop Color-Word Test (SCWT), Verbal Fluency Test (VFT), Frontal Assessment Battery (FAB), and others evaluating cognitive flexibility, working memory, task switching, and inhibition;Motor function outcomes: Timed Up and Go (TUG), grip strength, Fried frailty phenotype (FFP), etc.;Daily functioning and psychosocial outcomes: Instrumental Activities of Daily Living (IADL), SGDS (Geriatric Depression Scale), other validated tools assessing mood, depressive symptoms, or emotional well-being.
- (e)
- Study design: Only randomized controlled trials (RCTs) were included.
2.2.2. Exclusion Criteria
- (a)
- Non-RCT designs (e.g., observational studies, pre-post single group designs, case series);
- (b)
- Interventions lacking a clearly defined VR component or using simple video playback;
- (c)
- Participants were healthy individuals, had severe dementia, or other neurological/psychiatric disorders;
- (d)
- Incomplete outcome data, or the effect size could not be calculated;
- (e)
- Non-English full texts, or abstract-only/commentary publications.
2.2.3. Classification of VR Interventions
- (a)
- Fully immersive VR refers to systems that completely immerse the user in a virtual environment through HMDs (e.g., HTC Vive, Oculus Rift) or motion-based immersive systems (e.g., Computer Assisted Rehabilitation Environment (CAREN). These systems provide 360° stereoscopic vision, motion tracking, and auditory feedback, effectively isolating users from the physical world and generating a strong sense of presence and embodiment.
- (b)
- Partially immersive VR, in contrast, presents the virtual environment on conventional flat displays such as monitors, TVs, projectors, or tablets. Users interact via standard input devices (e.g., mouse, keyboard, or limited motion sensors), maintaining partial awareness of their real surroundings. This configuration provides limited sensory feedback and weaker spatial immersion compared with fully immersive systems.
2.3. Risk of Bias and Quality Assessment
2.4. Data Synthesis and Statistical Analysis
3. Results
3.1. Study Selection and Quality Assessment
3.2. Characteristics of Included Studies
3.3. Cognitive Function Outcomes
3.3.1. MMSE
3.3.2. MoCA
3.3.3. CASI
3.4. Executive Function Outcomes
3.4.1. TMT-A
3.4.2. TMT-B
3.4.3. SDST
3.4.4. DST-Forward
3.4.5. DST-Backward
3.4.6. SCWT
3.4.7. VFT
3.4.8. FAB
3.5. Physical Function Outcomes
3.5.1. TUG
3.5.2. Grip Strength
3.5.3. FFP
3.6. Emotional and Quality of Life Outcomes
3.6.1. IADL
3.6.2. SGDS
4. Discussion
4.1. Differential Effects of Immersion: Neural Mechanisms, Cognitive Domain Specificity, and Mental Health Links
4.2. Advantages over Traditional Therapies: Enhancing Physical Activity Adherence
4.3. Reconciling Contradictory Findings: From Surface Discrepancies to Precision Prescriptions
4.3.1. The “Effective vs. Passive Control, but Not vs. Active Control” Paradox
4.3.2. No Difference Between VR Types: A Task-Specific Insight
4.4. Clinical Translation: Stratified Implementation Framework
4.5. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anonymous. (2024). 2024 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 20(5), 3708–3821. [Google Scholar] [CrossRef] [PubMed Central]
- Arshad, H., Khattak, H. G., & Anwar, K. (2023). Effect of exergames by using Xbox 360 Kinect on cognition of older adults with mild cognitive impairment. Rawal Medical Journal, 48(4), 994–998. [Google Scholar] [CrossRef]
- Baldimtsi, E., Mouzakidis, C., Karathanasi, E. M., Verykouki, E., Hassandra, M., Galanis, E., Hatzigeorgiadis, A., Goudas, M., Zikas, P., Evangelou, G., Papagiannakis, G., Bellis, G., Kokkotis, C., Tsatalas, T., Giakas, G., Theodorakis, Y., & Tsolaki, M. (2023). Effects of virtual reality physical and cognitive training intervention on cognitive abilities of elders with mild cognitive impairment. Journal of Alzheimer’s Disease Reports, 7(1), 1475–1490. [Google Scholar] [CrossRef] [PubMed Central]
- Bauer, A. C. M., & Andringa, G. (2020). The potential of immersive virtual reality for cognitive training in elderly. Gerontology, 66(6), 614–623. [Google Scholar] [CrossRef] [PubMed]
- Beanato, E., Moon, H. J., Windel, F., Vassiliadis, P., Wessel, M. J., Popa, T., Pauline, M., Neufeld, E., De Falco, E., Gauthier, B., Steiner, M., Blanke, O., & Hummel, F. C. (2024). Noninvasive modulation of the hippocampal-entorhinal complex during spatial navigation in humans. Science Advances, 10(44), eado4103. [Google Scholar] [CrossRef] [PubMed Central]
- Belleville, S., Fouquet, C., Hudon, C., Zomahoun, H. T. V., & Croteau, J. (2017). Neuropsychological measures that predict progression from mild cognitive impairment to Alzheimer’s type dementia in older adults: A systematic review and meta-analysis. Neuropsychology Review, 27(4), 328–353. [Google Scholar] [CrossRef] [PubMed Central]
- Breves, P., & Stein, J.-P. (2023). Cognitive load in immersive media settings: The role of spatial presence and cybersickness. Virtual Reality, 27(2), 1077–1089. [Google Scholar] [CrossRef]
- Buele, J., Avilés-Castillo, F., Valle Soto, C. D., Varela-Aldás, J., & Palacios-Navarro, G. (2024). Effects of a dual intervention (motor and virtual reality-based cognitive) on cognition in patients with mild cognitive impairment: A single-blind, randomized controlled trial. Journal of Neuroengineering and Rehabilitation, 21(1), 130. [Google Scholar] [CrossRef]
- Chiu, H. M., Hsu, M. C., & Ouyang, W. C. (2023). Effects of incorporating virtual reality training intervention into health care on cognitive function and wellbeing in older adults with cognitive impairment: A randomized controlled trial. International Journal of Human-Computer Studies, 170, 1–12. [Google Scholar] [CrossRef]
- Choi, W., & Lee, S. (2019). Virtual kayak paddling exercise improves postural balance, muscle performance, and cognitive function in older adults with mild cognitive impairment: A randomized controlled trial. Journal of Aging and Physical Activity, 27, 861–870. [Google Scholar] [CrossRef]
- Ciesielska, N., Sokołowski, R., Mazur, E., Podhorecka, M., Polak-Szabela, A., & Kędziora-Kornatowska, K. (2016). Is the montreal cognitive assessment (MoCA) test better suited than the mini-mental state examination (MMSE) in mild cognitive impairment (MCI) detection among people aged over 60? Meta-analysis. Psychiatria Polska, 50(5), 1039–1052. [Google Scholar] [CrossRef]
- Delbroek, T., Vermeylen, W., & Spildooren, J. (2017). The effect of cognitive-motor dual task training with the biorescue force platform on cognition, balance and dual task performance in institutionalized older adults: A randomized controlled trial. Journal of Physical Therapy Science, 29(7), 1137–1143. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Faria, A. L., Pinho, M. S., & Bermúdez, I. B. S. (2018). Capturing expert knowledge for the personalization of cognitive rehabilitation: Study combining computational modeling and a participatory design strategy. JMIR Rehabilitation and Assistive Technologies, 5(2), e10714. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fu, E., & Compton, M. (2021). Non-pharmacological interventions that improve quality of life in people with mild cognitive impairment. Biomedical Journal of Scientific & Technical Research, 39(4), 31543–31547. [Google Scholar] [CrossRef]
- Gale, S. A., Acar, D., & Daffner, K. R. (2018). Dementia. The American Journal of Medicine, 131(10), 1161–1169. [Google Scholar] [CrossRef]
- Gauthier, S., Reisberg, B., Zaudig, M., Petersen, R. C., Ritchie, K., Broich, K., Belleville, S., Brodaty, H., Bennett, D., Chertkow, H., Cummings, J. L., de Leon, M., Feldman, H., Ganguli, M., Hampel, H., Scheltens, P., Tierney, M. C., Whitehouse, P., & Winblad, B. (2006). Mild cognitive impairment. The Lancet, 367(9518), 1262–1270. [Google Scholar] [CrossRef]
- Gómez-Cáceres, B., Cano-López, I., Aliño, M., & Puig-Perez, S. (2023). Effectiveness of virtual reality-based neuropsychological interventions in improving cognitive functioning in patients with mild cognitive impairment: A systematic review and meta-analysis. The Clinical Neuropsychologist, 37(7), 1337–1370. [Google Scholar] [CrossRef]
- Guzmán, D. E., Rengifo, C. F., & García-Cena, C. E. (2024). Serious games for cognitive rehabilitation in older adults: A conceptual framework. Multimodal Technologies and Interaction, 8(8), 64. [Google Scholar] [CrossRef]
- Hill, N. T., Mowszowski, L., Naismith, S. L., Chadwick, V. L., Valenzuela, M., & Lampit, A. (2017). Computerized cognitive training in older adults with mild cognitive impairment or dementia: A systematic review and meta-analysis. American Journal of Psychiatry, 174(4), 329–340. [Google Scholar] [CrossRef]
- Howett, D., Castegnaro, A., Krzywicka, K., Hagman, J., Marchment, D., Henson, R., Rio, M., A King, J., Burgess, N., & Chan, D. (2019). Differentiation of mild cognitive impairment using an entorhinal cortex-based test of virtual reality navigation. Brain, 142(6), 1751–1766. [Google Scholar] [CrossRef] [PubMed Central]
- Ijaz, K., Ahmadpour, N., Naismith, S. L., & Calvo, R. A. (2019). An immersive virtual reality platform for assessing spatial navigation memory in predementia screening: Feasibility and usability study. JMIR Mental Health, 6(9), e13887. [Google Scholar] [CrossRef]
- Kang, J. M., Kim, N., Lee, S. Y., Woo, S. K., Park, G., Yeon, B. K., Park, J. W., Youn, J., Ryu, S., Lee, J., & Cho, S.-J. (2021). Effect of cognitive training in fully immersive virtual reality on visuospatial function and frontal-occipital functional connectivity in predementia: Randomized controlled trial. Journal of Medical Internet Research, 23(5), e24526. [Google Scholar] [CrossRef] [PubMed Central]
- Kwan, R. Y. C., Liu, J., Sin, O. S. K., Fong, K. N. K., Qin, J., Wong, J. C. Y., & Lai, C. (2024). Effects of virtual reality motor-cognitive training for older peoplewith cognitive frailty: Multicentered randomized controlled trial. Journal of Medical Internet Research, 26(1), e57809. [Google Scholar] [CrossRef]
- Kwan, R. Y. C., Liu, J. Y. W., Fong, K. N. K., Qin, J., Leung, P. K., Sin, O. S. K., Hon, P. Y., Suen, L. W., Tse, M., & Lai, C. K. (2021). Feasibility and effects of virtual reality motor-cognitive training in community-dwelling older people with cognitive frailty: Pilot randomized controlled trial. JMIR Serious Games, 9(3), e28400. [Google Scholar] [CrossRef]
- Li, A., Montaño, Z., Chen, V. J., & Gold, J. I. (2011). Virtual reality and pain management: Current trends and future directions. Pain Management, 1(2), 147–157. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, A., Qiang, W., Li, J., Geng, Y., Qiang, Y., & Zhao, J. (2025). Evaluating the clinical efficacy of an exergame-based training program for enhancing physical and cognitive functions in older adults with mild cognitive impairment and dementia residing in rural long-term care facilities: Randomized controlled trial. Journal of Medical Internet Research, 27, e69109. [Google Scholar] [CrossRef]
- Liao, Y.-Y., Hsuan Chen, I., Lin, Y. J., Chen, Y., & Hsu, W. C. (2019). Effects of virtual reality-based physical and cognitive training on executive function and dual-task gait performance in older adults with mild cognitive impairment: A randomized control trial. Frontiers in Aging Neuroscience, 11, 162. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.-Y., Tseng, H.-Y., Lin, Y.-J., Wang, C.-J., & Hsu, W.-C. (2020). Using virtual reality-based training to improve cognitive function, instrumental activities of daily living and neural efficiency in older adults with mild cognitive impairment. European Journal of Physical and Rehabilitation Medicine, 56(1), 47–57. [Google Scholar] [CrossRef]
- Makransky, G., Terkildsen, T. S., & Mayer, R. E. (2019). Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learning and Instruction, 60, 225–236. [Google Scholar] [CrossRef]
- Meeusen, R. (2005). Exercise and the brain: Insight in new therapeutic modalities. Annals of Transplantation, 10(4), 49–51. [Google Scholar]
- Miskowiak, K. W., Jespersen, A. E., Kessing, L. V., Aggestrup, A. S., Glenthøj, L. B., Nordentoft, M., Ott, C. V., & Lumbye, A. (2022). Cognition assessment in virtual reality: Validity and feasibility of a novel virtual reality test for real-life cognitive functions in mood disorders and psychosis spectrum disorders. Journal of Psychiatric Research, 145, 182–189. [Google Scholar] [CrossRef]
- Nuzum, H., Stickel, A., Corona, M., Zeller, M., Melrose, R. J., & Wilkins, S. S. (2020). Potential benefits of physical activity in MCI and dementia. Behavioural Neurology, 2020(1), 7807856. [Google Scholar] [CrossRef]
- Olazarán, J., Reisberg, B., Clare, L., Cruz, I., Peña-Casanova, J., Del Ser, T., Woods, B., Beck, C., Auer, S., Lai, C., Spector, A., Fazio, S., Bond, J., Kivipelto, M., Brodaty, H., Rojo, J. M., Collins, H., Teri, L., Mittelman, M., … Muñiz, R. (2010). Nonpharmacological therapies in Alzheimer’s disease: A systematic review of efficacy. Dementia and Geriatric Cognitive Disorders, 30(2), 161–178. [Google Scholar] [CrossRef]
- Oliveira, J., Gamito, P., Souto, T., Conde, R., Ferreira, M., Corotnean, T., Fernandes, A., Silva, H., & Neto, T. (2021). Virtual reality-based cognitive stimulation on people with mild to moderate dementia due to Alzheimer’s disease: A pilot randomized controlled trial. International Journal of Environmental Research and Public Health, 18(10), 5290. [Google Scholar] [CrossRef]
- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Papaioannou, T., Voinescu, A., Petrini, K., & Stanton Fraser, D. (2022). Efficacy and moderators of virtual reality for cognitive training in people with dementia and mild cognitive impairment: A systematic review and meta-analysis. Journal of Alzheimer’s Disease, 88(4), 1341–1370. [Google Scholar] [CrossRef]
- Park, J.-H. (2022). Does the virtual shopping training improve executive function and instrumental activities of daily living of patients with mild cognitive impairment? Asian Journal of Psychiatry, 69, 102977. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-H., Liao, Y., Kim, D.-R., Song, S., Lim, J. H., Park, H., Lee, Y., & Park, K. W. (2020). Feasibility and tolerability of a culture-based virtual reality (VR) training program in patients with mild cognitive impairment: A randomized controlled pilot study. International Journal of Environmental Research and Public Health, 17(9), 3030. [Google Scholar] [CrossRef]
- Park, J. S., Jung, Y. J., & Lee, G. (2020). Virtual Reality-Based Cognitive-Motor Rehabilitation in Older Adults with Mild Cognitive Impairment: A Randomized Controlled Study on Motivation and Cognitive Function. Healthcare, 8, 335. [Google Scholar] [CrossRef]
- Ren, Y., Wang, Q., Liu, H., Wang, G., & Lu, A. (2024). Effects of immersive and non-immersive virtual reality-based rehabilitation training on cognition, motor function, and daily functioning in patients with mild cognitive impairment or dementia: A systematic review and meta-analysis. Clinical Rehabilitation, 38(3), 305–321. [Google Scholar] [CrossRef] [PubMed]
- Riva, G., & Serino, S. (2020). Virtual reality in the assessment, understanding and treatment of mental health disorders. Journal of Clinical Medicine, 9(11), 3434. [Google Scholar] [CrossRef] [PubMed Central]
- Rizzolatti, G., & Fogassi, L. (2014). The mirror mechanism: Recent findings and perspectives. Philosophical Transactions of the Royal Society B-Biological Sciences, 369(1644), 20130420. [Google Scholar] [CrossRef] [PubMed Central]
- Saredakis, D., Szpak, A., Birckhead, B., Keage, H. A. D., Rizzo, A., & Loetscher, T. (2020). Factors associated with virtual reality sickness in head-mounted displays: A systematic review and meta-analysis. Frontiers in Human Neuroscience, 14, 96. [Google Scholar] [CrossRef] [PubMed Central]
- Seelye, A. M., Schmitter-Edgecombe, M., Das, B., & Cook, D. J. (2012). Application of cognitive rehabilitation theory to the development of smart prompting technologies. IEEE Reviews in Biomedical Engineering, 5, 29–44. [Google Scholar] [CrossRef] [PubMed Central]
- Serino, S., Pedroli, E., Tuena, C., De Leo, G., Stramba-Badiale, M., Goulene, K., Mariotti, N. G., & Riva, G. (2017). A novel virtual reality-based training protocol for the enhancement of the “mental frame syncing” in individuals with Alzheimer’s disease: A development-of-concept trial. Frontiers in Aging Neuroscience, 9, 240. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Snowden, M. B., Atkins, D. C., Steinman, L. E., Bell, J. F., Bryant, L. L., Copeland, C., & Fitzpatrick, A. L. (2015). Longitudinal association of dementia and depression. American Journal of Geriatric Psychiatry, 23(9), 897–905. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, H., Yu, H. Y., Chou, C. C., Crone, N. E., Madsen, J. R., Anderson, W. S., & Kreiman, G. (2016). Cascade of neural processing orchestrates cognitive control in human frontal cortex. Elife, 5, e12352. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, Z., Liu, X., Huo, H., Tang, M., Liu, T., Wu, Z., Qiao, X., Chen, D., An, R., Dong, Y., Fan, L., Wang, J., Du, X., & Fan, Y. (2022). The role of low-frequency oscillations in three-dimensional perception with depth cues in virtual reality. Neuroimage, 257, 119328. [Google Scholar] [CrossRef]
- Thapa, N., Park, H. J., Yang, J. G., Son, H., Jang, M., Lee, J., Kang, S. W., Park, K. W., & Park, H. (2020). The effect of a virtual reality-based intervention program on cognition in older adults with mild cognitive impairment: A randomized control trial. Journal of Clinical Medicine, 9(5), 1283. [Google Scholar] [CrossRef]
- Tieri, G., Morone, G., Paolucci, S., & Iosa, M. (2018). Virtual reality in cognitive and motor rehabilitation: Facts, fiction and fallacies. Expert Review of Medical Devices, 15(2), 107–117. [Google Scholar] [CrossRef]
- Urbina, L. (2024). Global dementia strategy: Current stage and challenges. International Psychogeriatrics, 36(S1), 2. [Google Scholar] [CrossRef]
- World Health Organization. (2020). WHO guidelines on physical activity and sedentary behaviour. WHO Guidelines Approved by the Guidelines Review Committee. World Health Organization. [Google Scholar]
- World Health Organization. (2021). Global status report on the public health response to dementia. World Health Organization. [Google Scholar]
- Wu, P.-F., Yen, S.-W., Fan, K.-Y., Wang, W.-F., & Wu, F.-C. (2023). Investigating the mental workload of experiencing virtual reality on people with mild cognitive impairment. In Human aspects of IT for the aged population: International conference on human-computer interaction. Springer. [Google Scholar]
- Yang, H.-L., Chu, H., Kao, C.-C., Chiu, H.-L., Tseng, I.-J., Tseng, P., & Chou, K.-R. (2019). Development and effectiveness of virtual interactive working memory training for older people with mild cognitive impairment: A single-blind randomised controlled trial. Age and Ageing, 48(4), 519–525. [Google Scholar] [CrossRef]
- Yang, J. G., Thapa, N., Park, H. J., Bae, S., Park, K. W., Park, J. H., & Park, H. (2022). Virtual reality and exercise training enhance brain, cognitive, and physical health in older adults with mild cognitive impairment. International Journal of Environmental Research and Public Health, 19(20), 13300. [Google Scholar] [CrossRef]
- Yang, Q., Zhang, L., Chang, F., Yang, H., Chen, B., & Liu, Z. (2025). Virtual reality interventions for older adults with mild cognitive impairment: Systematic review and meta-analysis of randomized controlled trials. Journal of Medical Internet Research, 27, e59195. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, D., Li, X., & Lai, F. H. (2023). The effect of virtual reality on executive function in older adults with mild cognitive impairment: A systematic review and meta-analysis. Aging Mental Health, 27(4), 663–673. [Google Scholar] [CrossRef] [PubMed]
- Yu, N., Shi, W., Dong, W., & Kang, R. (2025). The impact of virtual reality immersion on learning outcomes: A comparative study of declarative and procedural knowledge acquisition. Behavioral Sciences, 15(10), 1322. [Google Scholar] [CrossRef]
- Zhu, K., Zhang, Q., He, B., Huang, M., Lin, R., & Li, H. (2022). Immersive Virtual reality–based cognitive intervention for the improvement of cognitive function, depression, and perceived stress in older adults with mild cognitive impairment and mild dementia: Pilot pre-post study. JMIR Serious Games, 10(1), e32117. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S., Sui, Y., Shen, Y., Zhu, Y., Ali, N., Guo, C., & Wang, T. (2021). Effects of virtual reality intervention on cognition and motor function in older adults with mild cognitive impairment or dementia: A systematic review and meta-analysis. Frontiers in Aging Neuroscience, 13, 586999. [Google Scholar] [CrossRef] [PubMed Central]




| Study (Year) | Disease Type | Sample Size (ET/CT) | Population Source | Age (Years, Mean ± SD) | Female (%) | Education (Years, Mean ± SD) | Intervention Cycle and Frequency |
|---|---|---|---|---|---|---|---|
| Li et al. (2025) | MCI & Dementia | 232 (116/116) | Rural day care centers (China) | ET: 73.0 ± 4.4 CT: 72.7 ± 5.0 | ET: 58.6 CT: 53.4 | ET: 6.5 ± 3.0 CT: 6.3 ± 3.0 | 60 min/session, 2×/week, 12 weeks |
| Kwan et al. (2024) | Cognitive Frailty | 293 (146/147) | Community centers (Hong Kong, China) | ET: 75.2 ± 7.1 CT: 73.9 ± 6.6 | ET: 75.3 CT: 81.0 | - | 60 min/session, 2×/week, 8 weeks |
| Buele et al. (2024) | MCI | 34 (17/17) | Community center (Ecuador) | ET: 75.4 ± 5.8 CT: 77.4 ± 6.8 | ET: 58.8 CT: 76.5 | ET: 5.5 ± 3.2 CT: 4.8 ± 3.3 | 40 min/session, 2×/week, 6 weeks |
| Chiu et al. (2023) | Cognitive Impairment | 60 (30/30) | Long-term care facilities (Taiwan, China) | ET: 80.7 ± 8.8 CT: 80.0 ± 7.9 | ET: 46.7 CT: 66.7 | - | 60 min/session, 1×/week, 8 weeks |
| Arshad et al. (2023) | MCI | 51 (26/25) | Hospital rehabilitation unit (Pakistan) | ET: 62.9 ± 5.6 CT: 63.2 ± 5.1 | ET: 61.5 CT: 60.0 | - | 30 min/session, 5×/week, 6 weeks |
| J. G. Yang et al. (2022) | MCI | 99 (33/33/33) * | Community cohort (South Korea) | ET1: 72.5 ± 5.0 ET2: 67.9 ± 3.6 CT: 72.6 ± 5.6 | ET1: 60.6 ET2: 90.9 CT: 81.8 | ET1: 9.5 ± 3.7 ET2: 8.5 ± 3.9 CT: 8.5 ± 3.6 | 100 min/session, 3×/week, 8 weeks |
| J.-H. Park (2022) | MCI | 32 (16/16) | Senior center (South Korea) | ET: 72.3 ± 5.1 CT: 70.9 ± 4.5 | ET: 43.8 CT: 62.5 | ET: 7.6 ± 3.9 CT: 7.5 ± 2.9 | 16 sessions, 2×/week, 8 weeks |
| Oliveira et al. (2021) | AD | 17 (10/7) | Nursing home (Portugal) | ET: 82.6 ± 5.4 CT: 84.1 ± 6.3 | ET: 70.0 CT: 71.4 | - | 45 min/session, 2×/week, 5 weeks |
| Kwan et al. (2021) | MCI | 17 (9/8) | Community center (Hong Kong) | ET: 73.0 ± 5.6 CT: 77.5 ± 11.3 | ET: 88.9 CT: 87.5 | - | 30 min/session, 2×/week, 8 weeks |
| Kang et al. (2021) | Prodromal Dementia | 41 (23/18) | Memory clinic (South Korea) | ET: 75.5 ± 4.7 CT: 73.3 ± 7.0 | ET: 73.9 CT: 66.7 | ET: 7.7 ± 4.1 CT: 8.6 ± 4.8 | 20–30 min/session, 2×/week, 4 weeks |
| Thapa et al. (2020) | MCI | 68 (34/34) | Regional healthcare centers (South Korea) | ET: 72.6 ± 5.4 CT: 72.7 ± 5.6 | ET: 17.6 CT: 29.4 | ET: 9.3 ± 4.0 CT: 8.4 ± 3.5 | 100 min/session, 3×/week, 8 weeks |
| J. S. Park et al. (2020) | MCI | 34 (18/17) | Community-dwelling (South Korea) | ET: 75.8 ± 8.5 CT: 77.2 ± 7.2 | ET: 55.6 CT: 58.8 | - | 30 min/session, 5×/week, 6 weeks |
| J.-H. Park et al. (2020) | aMCI | 21 (10/11) | Hospital memory clinic (South Korea) | ET: 71.8 ± 6.6 CT: 69.5 ± 7.5 | ET: 70.0 CT: 63.6 | ET: 7.2 ± 3.6 CT: 8.0 ± 2.9 | 30 min/session, 2×/week, 12 weeks |
| Liao et al. (2020) | MCI | 34 (18/16) | Day care centers (Taiwan, China) | ET: 75.5 ± 5.2 CT: 73.1 ± 6.8 | ET: 61.1 CT: 75.0 | ET: 9.3 ± 3.8 CT: 9.9 ± 2.1 | 60 min/session, 3×/week, 12 weeks |
| H.-L. Yang et al. (2019) | MCI | 66 (33/33) | Retirement communities (Taiwan, China) | ET: 75.4 ± 6.6 CT: 81.7 ± 7.2 | ET: 75.8 CT: 81.8 | - | 45 min/session, 3×/week, 12 weeks |
| Liao et al. (2019) | MCI | 34 (18/16) | Community centers (Taiwan, China) | ET: 75.5 ± 5.2 CT: 73.1 ± 6.8 | ET: 61.1 CT: 75.0 | ET: 9.3 ± 3.8 CT: 9.9 ± 2.1 | 60 min/session, 3×/week, 12 weeks |
| Choi and Lee (2019) | MCI | 60 (30/30) | Welfare center (South Korea) | ET: 77.3 ± 4.4 CT: 75.4 ± 4.0 | ET: 83.3 CT: 86.7 | - | 60 min/session, 2×/week, 6 weeks |
| Delbroek et al. (2017) | MCI | 20 (10/10) | Nursing home (Belgium) | ET: 86.9 ± 5.6 CT: 87.5 ± 6.6 | ET: 80.0 CT: 50.0 | - | 18–30 min/session, 2×/week, 6 weeks |
| Serino et al. (2017) | AD | 20 (10/10) | Social center (Italy) | ET: 86.6 ± 6.1 CT: 88.7 ± 3.6 | ET: 90.0 CT: 80.0 | ET: 9.8 ± 4.0 CT: 7.0 ± 5.0 | 20 min/session, 3×/week, 3–4 weeks |
| Baldimtsi et al. (2023) | MCI | 67 (28/28/11) * | Day care center (Greece) | ET1: 66.1 ± 10.0 ET2: 73.0 ± 8.5 CT: 74.4 ± 7.0 | ET1: 74.1 ET2: 100 CT: 85.7 | - | 32 sessions, 2–3×/week, 12 weeks |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Gao, W.; Lin, X. Virtual Reality-Based Cognitive and Physical Interventions in Cognitive Impairment: A Network Meta-Analysis of Immersion Level Effects. Behav. Sci. 2025, 15, 1610. https://doi.org/10.3390/bs15121610
Li W, Gao W, Lin X. Virtual Reality-Based Cognitive and Physical Interventions in Cognitive Impairment: A Network Meta-Analysis of Immersion Level Effects. Behavioral Sciences. 2025; 15(12):1610. https://doi.org/10.3390/bs15121610
Chicago/Turabian StyleLi, Wanyi, Wei Gao, and Xiangyang Lin. 2025. "Virtual Reality-Based Cognitive and Physical Interventions in Cognitive Impairment: A Network Meta-Analysis of Immersion Level Effects" Behavioral Sciences 15, no. 12: 1610. https://doi.org/10.3390/bs15121610
APA StyleLi, W., Gao, W., & Lin, X. (2025). Virtual Reality-Based Cognitive and Physical Interventions in Cognitive Impairment: A Network Meta-Analysis of Immersion Level Effects. Behavioral Sciences, 15(12), 1610. https://doi.org/10.3390/bs15121610

