The Use of Digital Technologies, Impulsivity and Psychopathological Symptoms in Adolescence
Abstract
:1. Introduction
2. Method
2.1. Participants and Procedure
2.2. Measures
2.3. Statistical Analysis
2.4. Ethics
3. Results
3.1. Independent Sample t-Test and Univariate ANOVA
3.2. Bivariate Correlations
3.3. Partial Correlations
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Kuss, D.J.; Billieux, J. Technological addictions: Conceptualisation, measurement, etiology and treatment. Addict. Behav. 2017, 64, 231–233. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association (APA). Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- King, D.L.; Haagsma, M.C.; Delfabbro, P.H.; Gradisar, M.; Griffiths, M.D. Toward a consensus definition of pathological video-gaming: A systematic review of psychometric assessment tools. Clin. Psychol. Rev. 2013, 33, 331–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. World Health Statistics 2017: Monitoring Health for the SDGs, Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2017; License: CC BY-NC-SA 3.0 IGO. [Google Scholar]
- Griffiths, M.D. A ‘components’ model of addiction within a biopsychosocial framework. J. Subst. Use 2005, 10, 191–197. [Google Scholar] [CrossRef]
- Kuss, D.J.; Griffiths, M.D. Online gaming addiction in children and adolescents: A review of empirical research. J. Behav. Addict. 2012, 1, 3–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreassen, C.S.; Billieux, J.; Griffiths, M.D.; Kuss, D.J.; Demetrovics, Z.; Mazzoni, E.; Pallesen, S. The relationship between addictive use of social media and video games and symptoms of psychiatric disorders: A large-scale cross-sectional study. Psychol. Addict. Behav. 2016, 30, 252–262. [Google Scholar] [CrossRef]
- Kim, N.R.; Hwang, S.S.H.; Choi, J.S.; Kim, D.J.; Demetrovics, Z.; Király, O.; Choi, S.W.; Youn, H.C.; Hyun, C.Y.; Griffiths, M.K.; et al. Characteristics and psychiatric symptoms of internet gaming disorder among adults using self-reported DSM-5 criteria. Psychiatry Investig. 2016, 13, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.Y.; Sidani, J.E.; Shensa, A.A.; Radovic, A.; Miller, E.; Colditz, J.B.; Hoffman, B.H.; Giles, L.M.; Primack, B.A. Association between social media use and depression among U.S. young adults. Depress. Anxiety 2016, 33, 323–331. [Google Scholar] [CrossRef]
- Pontes, H. Investigating the differential effects of social networking site addiction and Internet gaming disorder on psychological health. J. Behav. Addict. 2017, 6, 601–610. [Google Scholar] [CrossRef]
- González-Bueso, V.; Santamaría, J.J.; Fernández, D.; Merino, L.; Montero, E.; Ribas, J. Association between internet gaming disorder or pathological video-game use and comorbid psychopathology: A comprehensive review. Int. J. Environ. Res. Public Health 2018, 15, 668. [Google Scholar] [CrossRef]
- King, D.L.; Delfabbro, P.H.; Zwaans, T.; Kaptsis, D. Clinical features and axis I comorbidity of Australian adolescent pathological Internet and video game users. Aust. N. Z. J. Psychiatry 2013, 47, 1058–1067. [Google Scholar] [CrossRef]
- Ismail, F.Y.; Fatemi, A.; Johnston, M.V. Cerebral plasticity: Windows of opportunity in the developing brain. Eur. J. Paediatr. Neurol. 2017, 21, 23–48. [Google Scholar] [CrossRef] [PubMed]
- Keshavan, M.S.; Giedd, J.; Lau, J.Y.; Lewis, D.A.; Paus, T. Changes in the adolescent brain and the pathophysiology of psychotic disorders. Lancet Psychiatry 2014, 1, 549–558. [Google Scholar] [CrossRef]
- Aboujaoude, E. The Internet’s effect on personality traits: An important casualty of the “Internet addiction” paradigm. J. Behav. Addict. 2017, 6, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Cerniglia, L.; Zoratto, F.; Cimino, S.; Laviola, G.; Ammaniti, M.; Adriani, W. Internet addiction in adolescence: Neurobiological, psychosocial and clinical issues. Neurosci. Biobehav. Rev. 2017, 76, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhen, S.; Yu, C.; Zhang, Q.; Zhang, W. Sensation seeking and online gaming addiction in adolescents: A moderated mediation model of positive affective associations and impulsivity. Front. Psychol. 2017, 8, 699. [Google Scholar] [CrossRef]
- Kuss, D.J.; Griffiths, M.D.; Binder, J.F. Internet addiction in students: Prevalence and risk factors. Comput. Hum. Behav. 2013, 29, 959–966. [Google Scholar] [CrossRef] [Green Version]
- Laconi, S.; Pires, S.; Chabrol, H. Internet gaming disorder, motives, game genres and psychopathology. Comput. Hum. Behav. 2017, 75, 652–659. [Google Scholar] [CrossRef]
- Chen, Y.L.; Chen, S.H.; Gau, S.S. ADHD and autistic traits, family function, parenting style, and social adjustment for Internet addiction among children and adolescents in Taiwan: A longitudinal study. Res. Dev. Disabil. 2015, 39, 20–31. [Google Scholar] [CrossRef]
- Bekhbat, M.; Neigh, G.N. Sex differences in the neuro-immune consequences of stress: Focus on depression and anxiety. Brain Behav. Immun. 2017, 8, 202–215. [Google Scholar] [CrossRef]
- Pontes, H.; Griffiths, M.D. Measuring DSM-5 Internet Gaming Disorder: Development and validation of a short psychometric scale. Comput. Hum. Behav. 2015, 45, 137–143. [Google Scholar] [CrossRef]
- Monacis, L.; de Palo, V.; Griffiths, M.D.; Sinatra, M. Validation of the Internet Gaming Disorder Scale-Short Form (IGDS9-SF) in an Italian-speaking sample. J. Behav. Addict. 2016, 5, 683–690. [Google Scholar] [CrossRef] [PubMed]
- de Palo, V.; Monacis, L.; Sinatra, M.; Griffiths, M.D.; Pontes, H.; Petro, M.; Miceli, S. Measurement Invariance of the Nine-Item Internet Gaming Disorder Scale (IGDS9-SF) across Albania, USA, UK, and Italy. Int. J. Ment. Health Addict. 2018, 1–12. [Google Scholar] [CrossRef]
- Monacis, L.; de Palo, V.; Griffiths, M.D.; Sinatra, M. Social networking addiction, attachment style, and validation of the Italian version of the Bergen Social Media Addiction Scale. J. Behav. Addict. 2017, 6, 178–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barratt, E.S. Factor analysis of some psychometric measures of impulsiveness and anxiety. Psychol. Rep. 1965, 16, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Patton, J.H.; Stanford, M.S.; Barratt, E.S. Factor structure of the Barratt Impulsiveness Scale. J. Clin. Psychol. 1995, 51, 768–774. [Google Scholar] [CrossRef]
- Fossati, A.; Di Ceglie, A.; Acquarini, E.; Barratt, E.S. Psychometric properties of an Italian version of the Barratt Impulsiveness Scale-11 (BIS-11) in nonclinical subjects. J. Clin. Psychol. 2001, 57, 815–828. [Google Scholar] [CrossRef] [PubMed]
- Derogatis, L.R. Symptom Checklist-90-Revised: Administration, Scoring and Procedures Manual; National Computer Systems: Minneapolis, MN, USA, 1994. [Google Scholar]
- Prunas, A.; Sarno, I.; Preti, E.; Madeddu, F.; Perugini, M. Psychometric properties of the Italian version of the SCL-90-R: A study on a large community sample. Eur. Psychiatry 2012, 27, 591–597. [Google Scholar] [CrossRef]
- Andreassen, C.S.; Griffiths, M.D.; Gjertsen, S.R.; Krossbakken, E.; Kvam, S.; Pallesen, S. The relationships between behavioral addictions and the five-factor model of personality. J. Behav. Addict. 2013, 2, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Monacis, L.; de Palo, V.; Griffiths, M.D.; Sinatra, M. Exploring individual differences in online addictions: The role of identity and attachment. Int. J. Ment. Health Addict. 2017, 15, 853–868. [Google Scholar] [CrossRef]
- Sinatra, M.; de Palo, V.; Contini, P.; Volpicella, V. Identity styles and internet-related addictive behaviors in adolescents. Turk. Online J. Educ. Technol. 2016, 15, 1161–1165. [Google Scholar]
- Gentile, D.A.; Choo, H.; Liau, A.; Sim, T.; Li, D.D.; Fung, D.; Khoo, A. Pathological video game use among youths: A two-year longitudinal study. Pediatrics 2011, 127, e319–e329. [Google Scholar] [CrossRef] [PubMed]
- Liau, A.K.; Neo, E.C.; Gentile, D.; Choo, H.; Sim, T.; Li, D.; Khoo, A. Impulsivity, self-regulation, and pathological video gaming among youth: Testing a mediation model. Asia-Pac. J. Public Health 2015, 27, NP2188–NP2196. [Google Scholar] [CrossRef] [PubMed]
- Mihara, S.; Higuchi, S. Cross-sectional and longitudinal epidemiological studies of Internet gaming disorder: A systematic review of the literature. Psychiatry Clin. Neurosci. 2017, 71, 425–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerniglia, L.; Cimino, S.; Ballarotto, G.; Casini, E.; Ferrari, A.; Carbone, P.; Cersosimo, M. Motor vehicle accidents and adolescents: An empirical study on their emotional and behavioral profiles, defense strategies and parental support. Trans. Res. Part F Traffic Psychol. Behav. 2015, 35, 28–36. [Google Scholar] [CrossRef]
- Steinberg, L. A dual systems model of adolescent risk-taking. Dev. Psychobiol. 2010, 52, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Quinn, P.D.; Harden, K.P. Differential changes in impulsivity and sensation seeking and the escalation of substance use from adolescence to early adulthood. Dev. Psychopathol. 2013, 25, 223–239. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, M.D.; Davies, M.N.O.; Chappell, D. Breaking the stereotype: The case of online gaming. CyberPsychol. Behav. 2003, 6, 81–91. [Google Scholar] [CrossRef]
- Cole, H.; Griffiths, M.D. Social interactions in massively multiplayer online role-playing gamers. CyberPsychol. Behav. 2007, 10, 575–583. [Google Scholar] [CrossRef]
- Cimino, S.; Cerniglia, L.; Porreca, A.; Simonelli, A.; Ronconi, L.; Ballarotto, G. Mothers and fathers with binge eating disorder and their 18–36 months old children: A longitudinal study on parent–infant interactions and offspring’s emotional–behavioral profiles. Front. Psychol. 2016, 7, 580. [Google Scholar] [CrossRef]
- Goodman, S.H.; Gotlib, I.H. Risk for psychopathology in the children of depressed mothers: A developmental model for understanding mechanisms of transmission. Psychol. Rev. 1999, 106, 458–490. [Google Scholar] [CrossRef]
- Monacis, L.; de Palo, V.; Sinatra, M.; Berzonsky, M.D. The revised identity style inventory: Factor structure and validity in Italian speaking students. Front. Psychol. 2016, 7, 883. [Google Scholar] [CrossRef] [PubMed]
- Tambelli, R.; Cerniglia, L.; Cimino, S.; Ballarotto, G. Parent-infant interactions in families with women diagnosed with postnatal depression: A longitudinal study on the effects of a psychodynamic treatment. Front. Psychol. 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Cimino, S.; Cerniglia, L. A longitudinal study for the empirical validation of an etiopathogenetic model of internet addiction in adolescence based on early emotion regulation. BioMed Res. Int. 2018, 2018. [Google Scholar] [CrossRef] [PubMed]
- Lenhart, A.; Duggan, M.; Perrin, A.; Stepler, R.; Rainie, L.; Parker, K. Teens, Social Media & Technology Overview 2015; Pew Research Center: Washington, DC, USA, 2018; Available online: http://www.pewinternet.org/files/2015/04/PI_TeensandTech_Update2015_0409151.pdf (accessed on 23 October 2018).
- Kuss, D.J.; Louws, J.; Wiers, R.W. Online gaming addiction? Motives predict addictive play behavior in massively multiplayer online role-playing games. Cyberpsychol. Behav. Soc. Netw. 2012, 15, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Rehbein, F.; Staudt, A.; Hanslmaier, M.; Kliem, S. Video game playing in the general adult population of Germany: Can higher gaming time of males be explained by gender specific genre preferences? Comput. Hum. Behav. 2016, 55, 729–735. [Google Scholar] [CrossRef]
- Li, D.; Li, X.; Zhao, L.; Zhou, Y.; Sun, W.; Wang, Y. Linking multiple risk exposure profiles with adolescent Internet addiction: Insights from the person-centered approach. Comput. Hum. Behav. 2017, 75, 236–244. [Google Scholar] [CrossRef]
- Steinberg, L. Adolescence, 6th ed.; McGraw Hill: Boston, MA, USA, 2002. [Google Scholar]
Males (n = 338) | Females (n = 318) | Total Sample (n = 656) | 14–15 Years (n = 264) | 16–17 Years (n = 257) | 18–19 Years (n = 135) | |
---|---|---|---|---|---|---|
Mean (SD) | ||||||
IGD | 1.62 (0.723) | 1.62 (0.774) | 1.62 (0.748) | 1.66 (0.763) | 1.63 (0.757) | 1.54 (0.699) |
SMA | 2.089 (0.844) | 2.163 (0.836) | 2.12 (0.840) | 2.15 (0.856) | 2.15 (0.865) | 2.02 (0.756) |
IMP | 2.586 (0.365) | 2.599 (0.418) | 2.59 (0.391) | 2.58 (0.394) | 2.60 (0.395) | 2.59 (0.382) |
Symptoms of psychopathology | ||||||
SOM | 0.540 (0.721) | 0.467 (0.689) | 0.50 (0.71) | 0.49 (0.71) | 0.51 (0.68) | 0.52 (0.76) |
O-C | 0.465 (0.685) | 0.399 (0.652) | 0.43 (0.67) | 0.43 (0.68) | 0.42 (0.64) | 0.46 (0.71) |
I-S | 0.455 (0.558) | 0.420 (0.534) | 0.44 (0.55) | 0.43 (0.54) | 0.44 (0.53) | 0.45 (0.59) |
DEP | 0.606 (0.695) | 0.522 (0.704) | 0.56 (0.70) | 0.52 (0.68) | 0.58 (0.67) | 0.61 (0.79) |
ANX | 0.481 (0.672) | 0.438 (0.650) | 0.46 (0.66) | 0.45 (0.67) | 0.45 (0.63) | 0.51 (0.72) |
HOS | 0.365 (0.523) | 0.336 (0.510) | 0.35 (0.52) | 0.33 (0.51) | 0.35 (0.50) | 0.38 (0.57) |
PHOB | 0.429 (0.627) | 0.389 (0.612) | 0.41 (0.62) | 0.41 (0.62) | 0.40 (0.59) | 0.43 (0.66) |
PAR | 0.417 (0.616) | 0.370 (0.606) | 0.39 (0.61) | 0.36 (0.59) | 0.42 (0.62) | 0.41 (0.65) |
PSY | 0.447 (0.623) | 0.453 (0.631) | 0.45 (0.63) | 0.44 (0.62) | 0.44 (0.59) | 0.48 (0.70) |
IGD | SMA | SOM | O-C | I-S | DEP | ANX | HOS | PHOB | PAR | PSY | |
---|---|---|---|---|---|---|---|---|---|---|---|
IGD | - | 0.287 ** | −0.014 | 0.001 | 0.012 | 0.032 | 0.004 | −0.009 | 0.012 | 0.000 | 0.030 |
SMA | - | - | −0.021 | −0.006 | −0.023 | 0.007 | −0.009 | −0.029 | 0.008 | −0.011 | 0.002 |
IMP | 0.287 ** | 0.306 ** | −0.033 | −0.032 | −0.048 | −0.039 | −0.040 | −0.052 | −0.021 | −0.022 | −0.012 |
IGD | SMA | SOM | O-C | I-S | DEP | ANX | HOS | PHOB | PAR | PSY | |
---|---|---|---|---|---|---|---|---|---|---|---|
Females | |||||||||||
IGD | - | 0.331 ** | 0.013 | 0.026 | 0.041 | 0.036 | −0.004 | 0.003 | 0.024 | −0.001 | 0.016 |
SMA | - | - | −0.009 | 0.003 | −0.011 | 0.027 | −0.003 | −0.026 | 0.013 | −0.007 | −0.001 |
IMP | 0.321 ** | 0.339 ** | −0.018 | −0.001 | −0.013 | −0.027 | −0.033 | −0.044 | −0.018 | −0.026 | −0.022 |
Males | |||||||||||
IGD | - | 0.243 ** | −0.041 | −0.025 | −0.018 | 0.029 | 0.013 | −0.021 | 0.000 | 0.001 | 0.043 |
SMA | - | - | −0.030 | −0.011 | −0.035 | −0.009 | −0.012 | −0.030 | 0.005 | −0.011 | 0.004 |
IMP | 0.257 ** | 0.276 ** | −0.047 | −0.062 | −0.081 | −0.049 | −0.045 | −0.059 | −0.023 | −0.018 | −0.004 |
IGD | SMA | SOM | O_C | I_S | DEP | ANX | HOS | PHOB | PAR | PSY | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Age Group 14–15 Years | ||||||||||||
F | IGD | - | - | 0.053 | 0.062 | 0.108 | 0.011 | 0.011 | 0.032 | 0.029 | 0.013 | 0.034 |
SMA | 0.341 ** | - | 0.016 | 0.042 | 0.043 | 0.026 | 0.015 | 0.013 | 0.034 | −0.019 | −0.007 | |
IMP | 0.369 ** | 0.367 ** | 0.052 | 0.072 | 0.097 | 0.053 | 0.056 | −0.001 | 0.038 | 0.023 | 0.046 | |
M | IGD | - | 0.163 | 0.057 | 0.067 | 0.146 | 0.163 | 0.131 | 0.028 | 0.105 | 0.073 | 0.139 |
SMA | 0.163 | - | −0.062 | −0.005 | −0.011 | 0.005 | −0.032 | −0.046 | 0.042 | −0.003 | 0.006 | |
IMP | 0.196 * | 0.350 ** | −0.039 | −0.034 | −0.072 | −0.056 | −0.062 | −0.042 | −0.012 | −0.052 | −0.014 | |
Age Group 16–17 Years | ||||||||||||
F | IGD | - | - | −0.040 | −0.034 | −0.036 | 0.065 | −0.076 | −0.097 | −0.017 | −0.035 | −0.031 |
SMA | 0.347 ** | - | 0.027 | 0.029 | −0.021 | 0.085 | 0.038 | −0.056 | 0.033 | 0.048 | 0.055 | |
IMP | 0.320 ** | 0.420 ** | 0.009 | 0.001 | −0.062 | −0.020 | −0.027 | −0.047 | 0.004 | −0.001 | −0.004 | |
M | IGD | - | 0.244 ** | −0.190 * | −0.224 * | −0.246 ** | −0.165 | −0.164 | −0.165 | −0.200 * | −0.140 | −0.131 |
SMA | 0.244 ** | - | −0.038 | −0.085 | −0.101 | −0.030 | −0.035 | −0.079 | −0.069 | −0.071 | −0.044 | |
IMP | 0.291 ** | 0.239 ** | −0.116 | −0.162 | −0.176 | −0.087 | −0.077 | −0.137 | −0.110 | −0.062 | −0.053 | |
Age Group 18–19 Years | ||||||||||||
F | IGD | - | - | 0.041 | 0.085 | 0.046 | 0.076 | 0.121 | 0.152 | 0.121 | 0.046 | 0.085 |
SMA | 0.184 | - | −0.073 | −0.075 | −0.079 | −0.047 | −0.054 | −0.021 | −0.025 | −0.046 | −0.036 | |
IMP | 0.263 * | 0.157 | −0.161 | −0.134 | −0.137 | −0.169 | −0.191 | −0.108 | −0.143 | −0.132 | −0.152 | |
M | IGD | - | - | 0.133 | 0.242 | 0.143 | 0.142 | 0.168 | 0.159 | 0.209 | 0.234 | 0.213 |
SMA | 0.411 ** | - | 0.088 | 0.165 | 0.075 | 0.014 | 0.103 | 0.115 | 0.096 | 0.164 | 0.116 | |
IMP | 0.319 * | 0.194 | 0.126 | 0.139 | 0.127 | 0.035 | 0.059 | 0.076 | 0.160 | 0.167 | 0.121 |
SOM | O_C | I_S | DEP | ANX | HOS | PHOB | PAR | PSY | |
---|---|---|---|---|---|---|---|---|---|
IGD | −0.061 | −0.007 | 0.000 | 0.071 | −0.010 | −0.044 | 0.016 | −0.024 | 0.075 |
SMA | −0.050 | 0.018 | −0.057 | 0.054 | 0.016 | −0.056 | 0.044 | −0.008 | 0.029 |
IMP | −0.007 | 0.005 | −0.041 | −0.008 | −0.020 | −0.051 | 0.016 | 0.023 | 0.062 |
SOM | O_C | I_S | DEP | ANX | HOS | PHOB | PAR | PSY | ||
---|---|---|---|---|---|---|---|---|---|---|
IGD | 0.002 | 0.004 | 0.075 | 0.052 | −0.078 | −0.023 | 0.018 | −0.037 | 0.025 | |
F | SMA | −0.040 | 0.012 | −0.043 | 0.080 | 0.013 | −0.057 | 0.050 | −0.017 | 0.004 |
IMP | −0.006 | 0.069 | 0.028 | −0.028 | −0.012 | −0.062 | −0.019 | −0.006 | 0.009 | |
IGD | −0.110 | 0.013 | −0.096 | 0.068 | 0.059 | 0.059 | 0.001 | −0.017 | 0.137 * | |
M | SMA | −0.062 | 0.029 | 0.079 | 0.025 | 0.022 | −0.050 | 0.032 | 0.002 | 0.062 |
IMP | −0.007 | −0.058 | −0.123 * | 0.003 | −0.029 | −0.031 | 0.045 | 0.056 | 0.116 |
SOM | O_C | I_S | DEP | ANX | HOS | PHOB | PAR | PSY | ||
---|---|---|---|---|---|---|---|---|---|---|
Age 14–15 | ||||||||||
F | IGD | 0.051 | 0.034 | 0.235 ** | −0.096 | −0.116 | 0.020 | −0.115 | 0.012 | 0.030 |
SMA | −0.025 | 0.057 | 0.024 | 0.012 | 0.017 | 0.008 | 0.047 | −0.066 | −0.079 | |
IMP | −0.037 | 0.095 | 0.109 | −0.041 | 0.039 | −0.117 | −0.085 | −0.045 | 0.059 | |
M | IGD | −0.048 | −0.071 | 0.123 | 0.159 | 0.029 | −0.182 * | 0.051 | −0.123 | 0.122 |
SMA | −0.139 | 0.018 | −0.015 | 0.090 | -0.091 | −0.083 | 0.149 | 0.052 | 0.097 | |
IMP | 0.000 | −0.036 | −0.077 | −0.070 | −0.045 | −0.012 | 0.059 | −0.039 | 0.092 | |
Age 16–17 | ||||||||||
F | IGD | 0.002 | −0.021 | 0.121 | 0.187 * | −0.114 | −0.095 | 0.069 | −0.008 | 0.059 |
SMA | −0.034 | 0.019 | −0.183 * | 0.158 | 0.122 | −0.197 * | −0.045 | 0.079 | 0.044 | |
IMP | 0.088 | 0.033 | −0.125 | −0.015 | 0.118 | −0.061 | −0.005 | −0.018 | 0.069 | |
M | IGD | −0.006 | −0.090 | −0.210 * | 0.036 | 0.051 | 0.008 | −0.038 | 0.008 | 0.152 |
SMA | 0.099 | −0.093 | −0.175 | 0.092 | 0.134 | −0.094 | 0.025 | −0.134 | 0.036 | |
IMP | 0.012 | −0.116 | −0.249 | 0.079 | −0.034 | −0.110 | 0.029 | 0.014 | 0.155 | |
Age 18–19 | ||||||||||
F | IGD | −0.183 | 0.056 | −0.226 | 0.027 | 0.212 | 0.137 | 0.198 | −0.086 | −0.104 |
SMA | −0.089 | −0.077 | −0.094 | 0.043 | −0.001 | 0.085 | 0.092 | 0.044 | 0.004 | |
IMP | −0.041 | 0.070 | 0.000 | −0.055 | −0.328 * | 0.162 | −0.044 | 0.135 | −0.032 | |
M | IGD | −0.317 * | 0.210 | −0.077 | −0.058 | −0.162 | 0.100 | 0.112 | 0.184 | 0.071 |
SMA | 0.112 | 0.151 | −0.116 | −0.323 * | 0.001 | 0.088 | −0.140 | 0.209 | 0.136 | |
IMP | −0.082 | −0.014 | 0.143 | −0.125 | −0.199 | 0.115 | 0.213 | 0.288 * | −0.081 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerniglia, L.; Guicciardi, M.; Sinatra, M.; Monacis, L.; Simonelli, A.; Cimino, S. The Use of Digital Technologies, Impulsivity and Psychopathological Symptoms in Adolescence. Behav. Sci. 2019, 9, 82. https://doi.org/10.3390/bs9080082
Cerniglia L, Guicciardi M, Sinatra M, Monacis L, Simonelli A, Cimino S. The Use of Digital Technologies, Impulsivity and Psychopathological Symptoms in Adolescence. Behavioral Sciences. 2019; 9(8):82. https://doi.org/10.3390/bs9080082
Chicago/Turabian StyleCerniglia, Luca, Marco Guicciardi, Maria Sinatra, Lucia Monacis, Alessandra Simonelli, and Silvia Cimino. 2019. "The Use of Digital Technologies, Impulsivity and Psychopathological Symptoms in Adolescence" Behavioral Sciences 9, no. 8: 82. https://doi.org/10.3390/bs9080082
APA StyleCerniglia, L., Guicciardi, M., Sinatra, M., Monacis, L., Simonelli, A., & Cimino, S. (2019). The Use of Digital Technologies, Impulsivity and Psychopathological Symptoms in Adolescence. Behavioral Sciences, 9(8), 82. https://doi.org/10.3390/bs9080082