The Use of Digital Technologies, Impulsivity and Psychopathological Symptoms in Adolescence
Abstract
1. Introduction
2. Method
2.1. Participants and Procedure
2.2. Measures
2.3. Statistical Analysis
2.4. Ethics
3. Results
3.1. Independent Sample t-Test and Univariate ANOVA
3.2. Bivariate Correlations
3.3. Partial Correlations
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Kuss, D.J.; Billieux, J. Technological addictions: Conceptualisation, measurement, etiology and treatment. Addict. Behav. 2017, 64, 231–233. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association (APA). Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- King, D.L.; Haagsma, M.C.; Delfabbro, P.H.; Gradisar, M.; Griffiths, M.D. Toward a consensus definition of pathological video-gaming: A systematic review of psychometric assessment tools. Clin. Psychol. Rev. 2013, 33, 331–342. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Health Statistics 2017: Monitoring Health for the SDGs, Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2017; License: CC BY-NC-SA 3.0 IGO. [Google Scholar]
- Griffiths, M.D. A ‘components’ model of addiction within a biopsychosocial framework. J. Subst. Use 2005, 10, 191–197. [Google Scholar] [CrossRef]
- Kuss, D.J.; Griffiths, M.D. Online gaming addiction in children and adolescents: A review of empirical research. J. Behav. Addict. 2012, 1, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Andreassen, C.S.; Billieux, J.; Griffiths, M.D.; Kuss, D.J.; Demetrovics, Z.; Mazzoni, E.; Pallesen, S. The relationship between addictive use of social media and video games and symptoms of psychiatric disorders: A large-scale cross-sectional study. Psychol. Addict. Behav. 2016, 30, 252–262. [Google Scholar] [CrossRef]
- Kim, N.R.; Hwang, S.S.H.; Choi, J.S.; Kim, D.J.; Demetrovics, Z.; Király, O.; Choi, S.W.; Youn, H.C.; Hyun, C.Y.; Griffiths, M.K.; et al. Characteristics and psychiatric symptoms of internet gaming disorder among adults using self-reported DSM-5 criteria. Psychiatry Investig. 2016, 13, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.Y.; Sidani, J.E.; Shensa, A.A.; Radovic, A.; Miller, E.; Colditz, J.B.; Hoffman, B.H.; Giles, L.M.; Primack, B.A. Association between social media use and depression among U.S. young adults. Depress. Anxiety 2016, 33, 323–331. [Google Scholar] [CrossRef]
- Pontes, H. Investigating the differential effects of social networking site addiction and Internet gaming disorder on psychological health. J. Behav. Addict. 2017, 6, 601–610. [Google Scholar] [CrossRef]
- González-Bueso, V.; Santamaría, J.J.; Fernández, D.; Merino, L.; Montero, E.; Ribas, J. Association between internet gaming disorder or pathological video-game use and comorbid psychopathology: A comprehensive review. Int. J. Environ. Res. Public Health 2018, 15, 668. [Google Scholar] [CrossRef]
- King, D.L.; Delfabbro, P.H.; Zwaans, T.; Kaptsis, D. Clinical features and axis I comorbidity of Australian adolescent pathological Internet and video game users. Aust. N. Z. J. Psychiatry 2013, 47, 1058–1067. [Google Scholar] [CrossRef]
- Ismail, F.Y.; Fatemi, A.; Johnston, M.V. Cerebral plasticity: Windows of opportunity in the developing brain. Eur. J. Paediatr. Neurol. 2017, 21, 23–48. [Google Scholar] [CrossRef] [PubMed]
- Keshavan, M.S.; Giedd, J.; Lau, J.Y.; Lewis, D.A.; Paus, T. Changes in the adolescent brain and the pathophysiology of psychotic disorders. Lancet Psychiatry 2014, 1, 549–558. [Google Scholar] [CrossRef]
- Aboujaoude, E. The Internet’s effect on personality traits: An important casualty of the “Internet addiction” paradigm. J. Behav. Addict. 2017, 6, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Cerniglia, L.; Zoratto, F.; Cimino, S.; Laviola, G.; Ammaniti, M.; Adriani, W. Internet addiction in adolescence: Neurobiological, psychosocial and clinical issues. Neurosci. Biobehav. Rev. 2017, 76, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhen, S.; Yu, C.; Zhang, Q.; Zhang, W. Sensation seeking and online gaming addiction in adolescents: A moderated mediation model of positive affective associations and impulsivity. Front. Psychol. 2017, 8, 699. [Google Scholar] [CrossRef]
- Kuss, D.J.; Griffiths, M.D.; Binder, J.F. Internet addiction in students: Prevalence and risk factors. Comput. Hum. Behav. 2013, 29, 959–966. [Google Scholar] [CrossRef]
- Laconi, S.; Pires, S.; Chabrol, H. Internet gaming disorder, motives, game genres and psychopathology. Comput. Hum. Behav. 2017, 75, 652–659. [Google Scholar] [CrossRef]
- Chen, Y.L.; Chen, S.H.; Gau, S.S. ADHD and autistic traits, family function, parenting style, and social adjustment for Internet addiction among children and adolescents in Taiwan: A longitudinal study. Res. Dev. Disabil. 2015, 39, 20–31. [Google Scholar] [CrossRef]
- Bekhbat, M.; Neigh, G.N. Sex differences in the neuro-immune consequences of stress: Focus on depression and anxiety. Brain Behav. Immun. 2017, 8, 202–215. [Google Scholar] [CrossRef]
- Pontes, H.; Griffiths, M.D. Measuring DSM-5 Internet Gaming Disorder: Development and validation of a short psychometric scale. Comput. Hum. Behav. 2015, 45, 137–143. [Google Scholar] [CrossRef]
- Monacis, L.; de Palo, V.; Griffiths, M.D.; Sinatra, M. Validation of the Internet Gaming Disorder Scale-Short Form (IGDS9-SF) in an Italian-speaking sample. J. Behav. Addict. 2016, 5, 683–690. [Google Scholar] [CrossRef] [PubMed]
- de Palo, V.; Monacis, L.; Sinatra, M.; Griffiths, M.D.; Pontes, H.; Petro, M.; Miceli, S. Measurement Invariance of the Nine-Item Internet Gaming Disorder Scale (IGDS9-SF) across Albania, USA, UK, and Italy. Int. J. Ment. Health Addict. 2018, 1–12. [Google Scholar] [CrossRef]
- Monacis, L.; de Palo, V.; Griffiths, M.D.; Sinatra, M. Social networking addiction, attachment style, and validation of the Italian version of the Bergen Social Media Addiction Scale. J. Behav. Addict. 2017, 6, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Barratt, E.S. Factor analysis of some psychometric measures of impulsiveness and anxiety. Psychol. Rep. 1965, 16, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Patton, J.H.; Stanford, M.S.; Barratt, E.S. Factor structure of the Barratt Impulsiveness Scale. J. Clin. Psychol. 1995, 51, 768–774. [Google Scholar] [CrossRef]
- Fossati, A.; Di Ceglie, A.; Acquarini, E.; Barratt, E.S. Psychometric properties of an Italian version of the Barratt Impulsiveness Scale-11 (BIS-11) in nonclinical subjects. J. Clin. Psychol. 2001, 57, 815–828. [Google Scholar] [CrossRef] [PubMed]
- Derogatis, L.R. Symptom Checklist-90-Revised: Administration, Scoring and Procedures Manual; National Computer Systems: Minneapolis, MN, USA, 1994. [Google Scholar]
- Prunas, A.; Sarno, I.; Preti, E.; Madeddu, F.; Perugini, M. Psychometric properties of the Italian version of the SCL-90-R: A study on a large community sample. Eur. Psychiatry 2012, 27, 591–597. [Google Scholar] [CrossRef]
- Andreassen, C.S.; Griffiths, M.D.; Gjertsen, S.R.; Krossbakken, E.; Kvam, S.; Pallesen, S. The relationships between behavioral addictions and the five-factor model of personality. J. Behav. Addict. 2013, 2, 90–99. [Google Scholar] [CrossRef]
- Monacis, L.; de Palo, V.; Griffiths, M.D.; Sinatra, M. Exploring individual differences in online addictions: The role of identity and attachment. Int. J. Ment. Health Addict. 2017, 15, 853–868. [Google Scholar] [CrossRef]
- Sinatra, M.; de Palo, V.; Contini, P.; Volpicella, V. Identity styles and internet-related addictive behaviors in adolescents. Turk. Online J. Educ. Technol. 2016, 15, 1161–1165. [Google Scholar]
- Gentile, D.A.; Choo, H.; Liau, A.; Sim, T.; Li, D.D.; Fung, D.; Khoo, A. Pathological video game use among youths: A two-year longitudinal study. Pediatrics 2011, 127, e319–e329. [Google Scholar] [CrossRef] [PubMed]
- Liau, A.K.; Neo, E.C.; Gentile, D.; Choo, H.; Sim, T.; Li, D.; Khoo, A. Impulsivity, self-regulation, and pathological video gaming among youth: Testing a mediation model. Asia-Pac. J. Public Health 2015, 27, NP2188–NP2196. [Google Scholar] [CrossRef] [PubMed]
- Mihara, S.; Higuchi, S. Cross-sectional and longitudinal epidemiological studies of Internet gaming disorder: A systematic review of the literature. Psychiatry Clin. Neurosci. 2017, 71, 425–444. [Google Scholar] [CrossRef] [PubMed]
- Cerniglia, L.; Cimino, S.; Ballarotto, G.; Casini, E.; Ferrari, A.; Carbone, P.; Cersosimo, M. Motor vehicle accidents and adolescents: An empirical study on their emotional and behavioral profiles, defense strategies and parental support. Trans. Res. Part F Traffic Psychol. Behav. 2015, 35, 28–36. [Google Scholar] [CrossRef]
- Steinberg, L. A dual systems model of adolescent risk-taking. Dev. Psychobiol. 2010, 52, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Quinn, P.D.; Harden, K.P. Differential changes in impulsivity and sensation seeking and the escalation of substance use from adolescence to early adulthood. Dev. Psychopathol. 2013, 25, 223–239. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, M.D.; Davies, M.N.O.; Chappell, D. Breaking the stereotype: The case of online gaming. CyberPsychol. Behav. 2003, 6, 81–91. [Google Scholar] [CrossRef]
- Cole, H.; Griffiths, M.D. Social interactions in massively multiplayer online role-playing gamers. CyberPsychol. Behav. 2007, 10, 575–583. [Google Scholar] [CrossRef]
- Cimino, S.; Cerniglia, L.; Porreca, A.; Simonelli, A.; Ronconi, L.; Ballarotto, G. Mothers and fathers with binge eating disorder and their 18–36 months old children: A longitudinal study on parent–infant interactions and offspring’s emotional–behavioral profiles. Front. Psychol. 2016, 7, 580. [Google Scholar] [CrossRef]
- Goodman, S.H.; Gotlib, I.H. Risk for psychopathology in the children of depressed mothers: A developmental model for understanding mechanisms of transmission. Psychol. Rev. 1999, 106, 458–490. [Google Scholar] [CrossRef]
- Monacis, L.; de Palo, V.; Sinatra, M.; Berzonsky, M.D. The revised identity style inventory: Factor structure and validity in Italian speaking students. Front. Psychol. 2016, 7, 883. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tambelli, R.; Cerniglia, L.; Cimino, S.; Ballarotto, G. Parent-infant interactions in families with women diagnosed with postnatal depression: A longitudinal study on the effects of a psychodynamic treatment. Front. Psychol. 2015, 6. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cimino, S.; Cerniglia, L. A longitudinal study for the empirical validation of an etiopathogenetic model of internet addiction in adolescence based on early emotion regulation. BioMed Res. Int. 2018, 2018. [Google Scholar] [CrossRef] [PubMed]
- Lenhart, A.; Duggan, M.; Perrin, A.; Stepler, R.; Rainie, L.; Parker, K. Teens, Social Media & Technology Overview 2015; Pew Research Center: Washington, DC, USA, 2018; Available online: http://www.pewinternet.org/files/2015/04/PI_TeensandTech_Update2015_0409151.pdf (accessed on 23 October 2018).
- Kuss, D.J.; Louws, J.; Wiers, R.W. Online gaming addiction? Motives predict addictive play behavior in massively multiplayer online role-playing games. Cyberpsychol. Behav. Soc. Netw. 2012, 15, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Rehbein, F.; Staudt, A.; Hanslmaier, M.; Kliem, S. Video game playing in the general adult population of Germany: Can higher gaming time of males be explained by gender specific genre preferences? Comput. Hum. Behav. 2016, 55, 729–735. [Google Scholar] [CrossRef]
- Li, D.; Li, X.; Zhao, L.; Zhou, Y.; Sun, W.; Wang, Y. Linking multiple risk exposure profiles with adolescent Internet addiction: Insights from the person-centered approach. Comput. Hum. Behav. 2017, 75, 236–244. [Google Scholar] [CrossRef]
- Steinberg, L. Adolescence, 6th ed.; McGraw Hill: Boston, MA, USA, 2002. [Google Scholar]
Males (n = 338) | Females (n = 318) | Total Sample (n = 656) | 14–15 Years (n = 264) | 16–17 Years (n = 257) | 18–19 Years (n = 135) | |
---|---|---|---|---|---|---|
Mean (SD) | ||||||
IGD | 1.62 (0.723) | 1.62 (0.774) | 1.62 (0.748) | 1.66 (0.763) | 1.63 (0.757) | 1.54 (0.699) |
SMA | 2.089 (0.844) | 2.163 (0.836) | 2.12 (0.840) | 2.15 (0.856) | 2.15 (0.865) | 2.02 (0.756) |
IMP | 2.586 (0.365) | 2.599 (0.418) | 2.59 (0.391) | 2.58 (0.394) | 2.60 (0.395) | 2.59 (0.382) |
Symptoms of psychopathology | ||||||
SOM | 0.540 (0.721) | 0.467 (0.689) | 0.50 (0.71) | 0.49 (0.71) | 0.51 (0.68) | 0.52 (0.76) |
O-C | 0.465 (0.685) | 0.399 (0.652) | 0.43 (0.67) | 0.43 (0.68) | 0.42 (0.64) | 0.46 (0.71) |
I-S | 0.455 (0.558) | 0.420 (0.534) | 0.44 (0.55) | 0.43 (0.54) | 0.44 (0.53) | 0.45 (0.59) |
DEP | 0.606 (0.695) | 0.522 (0.704) | 0.56 (0.70) | 0.52 (0.68) | 0.58 (0.67) | 0.61 (0.79) |
ANX | 0.481 (0.672) | 0.438 (0.650) | 0.46 (0.66) | 0.45 (0.67) | 0.45 (0.63) | 0.51 (0.72) |
HOS | 0.365 (0.523) | 0.336 (0.510) | 0.35 (0.52) | 0.33 (0.51) | 0.35 (0.50) | 0.38 (0.57) |
PHOB | 0.429 (0.627) | 0.389 (0.612) | 0.41 (0.62) | 0.41 (0.62) | 0.40 (0.59) | 0.43 (0.66) |
PAR | 0.417 (0.616) | 0.370 (0.606) | 0.39 (0.61) | 0.36 (0.59) | 0.42 (0.62) | 0.41 (0.65) |
PSY | 0.447 (0.623) | 0.453 (0.631) | 0.45 (0.63) | 0.44 (0.62) | 0.44 (0.59) | 0.48 (0.70) |
IGD | SMA | SOM | O-C | I-S | DEP | ANX | HOS | PHOB | PAR | PSY | |
---|---|---|---|---|---|---|---|---|---|---|---|
IGD | - | 0.287 ** | −0.014 | 0.001 | 0.012 | 0.032 | 0.004 | −0.009 | 0.012 | 0.000 | 0.030 |
SMA | - | - | −0.021 | −0.006 | −0.023 | 0.007 | −0.009 | −0.029 | 0.008 | −0.011 | 0.002 |
IMP | 0.287 ** | 0.306 ** | −0.033 | −0.032 | −0.048 | −0.039 | −0.040 | −0.052 | −0.021 | −0.022 | −0.012 |
IGD | SMA | SOM | O-C | I-S | DEP | ANX | HOS | PHOB | PAR | PSY | |
---|---|---|---|---|---|---|---|---|---|---|---|
Females | |||||||||||
IGD | - | 0.331 ** | 0.013 | 0.026 | 0.041 | 0.036 | −0.004 | 0.003 | 0.024 | −0.001 | 0.016 |
SMA | - | - | −0.009 | 0.003 | −0.011 | 0.027 | −0.003 | −0.026 | 0.013 | −0.007 | −0.001 |
IMP | 0.321 ** | 0.339 ** | −0.018 | −0.001 | −0.013 | −0.027 | −0.033 | −0.044 | −0.018 | −0.026 | −0.022 |
Males | |||||||||||
IGD | - | 0.243 ** | −0.041 | −0.025 | −0.018 | 0.029 | 0.013 | −0.021 | 0.000 | 0.001 | 0.043 |
SMA | - | - | −0.030 | −0.011 | −0.035 | −0.009 | −0.012 | −0.030 | 0.005 | −0.011 | 0.004 |
IMP | 0.257 ** | 0.276 ** | −0.047 | −0.062 | −0.081 | −0.049 | −0.045 | −0.059 | −0.023 | −0.018 | −0.004 |
IGD | SMA | SOM | O_C | I_S | DEP | ANX | HOS | PHOB | PAR | PSY | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Age Group 14–15 Years | ||||||||||||
F | IGD | - | - | 0.053 | 0.062 | 0.108 | 0.011 | 0.011 | 0.032 | 0.029 | 0.013 | 0.034 |
SMA | 0.341 ** | - | 0.016 | 0.042 | 0.043 | 0.026 | 0.015 | 0.013 | 0.034 | −0.019 | −0.007 | |
IMP | 0.369 ** | 0.367 ** | 0.052 | 0.072 | 0.097 | 0.053 | 0.056 | −0.001 | 0.038 | 0.023 | 0.046 | |
M | IGD | - | 0.163 | 0.057 | 0.067 | 0.146 | 0.163 | 0.131 | 0.028 | 0.105 | 0.073 | 0.139 |
SMA | 0.163 | - | −0.062 | −0.005 | −0.011 | 0.005 | −0.032 | −0.046 | 0.042 | −0.003 | 0.006 | |
IMP | 0.196 * | 0.350 ** | −0.039 | −0.034 | −0.072 | −0.056 | −0.062 | −0.042 | −0.012 | −0.052 | −0.014 | |
Age Group 16–17 Years | ||||||||||||
F | IGD | - | - | −0.040 | −0.034 | −0.036 | 0.065 | −0.076 | −0.097 | −0.017 | −0.035 | −0.031 |
SMA | 0.347 ** | - | 0.027 | 0.029 | −0.021 | 0.085 | 0.038 | −0.056 | 0.033 | 0.048 | 0.055 | |
IMP | 0.320 ** | 0.420 ** | 0.009 | 0.001 | −0.062 | −0.020 | −0.027 | −0.047 | 0.004 | −0.001 | −0.004 | |
M | IGD | - | 0.244 ** | −0.190 * | −0.224 * | −0.246 ** | −0.165 | −0.164 | −0.165 | −0.200 * | −0.140 | −0.131 |
SMA | 0.244 ** | - | −0.038 | −0.085 | −0.101 | −0.030 | −0.035 | −0.079 | −0.069 | −0.071 | −0.044 | |
IMP | 0.291 ** | 0.239 ** | −0.116 | −0.162 | −0.176 | −0.087 | −0.077 | −0.137 | −0.110 | −0.062 | −0.053 | |
Age Group 18–19 Years | ||||||||||||
F | IGD | - | - | 0.041 | 0.085 | 0.046 | 0.076 | 0.121 | 0.152 | 0.121 | 0.046 | 0.085 |
SMA | 0.184 | - | −0.073 | −0.075 | −0.079 | −0.047 | −0.054 | −0.021 | −0.025 | −0.046 | −0.036 | |
IMP | 0.263 * | 0.157 | −0.161 | −0.134 | −0.137 | −0.169 | −0.191 | −0.108 | −0.143 | −0.132 | −0.152 | |
M | IGD | - | - | 0.133 | 0.242 | 0.143 | 0.142 | 0.168 | 0.159 | 0.209 | 0.234 | 0.213 |
SMA | 0.411 ** | - | 0.088 | 0.165 | 0.075 | 0.014 | 0.103 | 0.115 | 0.096 | 0.164 | 0.116 | |
IMP | 0.319 * | 0.194 | 0.126 | 0.139 | 0.127 | 0.035 | 0.059 | 0.076 | 0.160 | 0.167 | 0.121 |
SOM | O_C | I_S | DEP | ANX | HOS | PHOB | PAR | PSY | |
---|---|---|---|---|---|---|---|---|---|
IGD | −0.061 | −0.007 | 0.000 | 0.071 | −0.010 | −0.044 | 0.016 | −0.024 | 0.075 |
SMA | −0.050 | 0.018 | −0.057 | 0.054 | 0.016 | −0.056 | 0.044 | −0.008 | 0.029 |
IMP | −0.007 | 0.005 | −0.041 | −0.008 | −0.020 | −0.051 | 0.016 | 0.023 | 0.062 |
SOM | O_C | I_S | DEP | ANX | HOS | PHOB | PAR | PSY | ||
---|---|---|---|---|---|---|---|---|---|---|
IGD | 0.002 | 0.004 | 0.075 | 0.052 | −0.078 | −0.023 | 0.018 | −0.037 | 0.025 | |
F | SMA | −0.040 | 0.012 | −0.043 | 0.080 | 0.013 | −0.057 | 0.050 | −0.017 | 0.004 |
IMP | −0.006 | 0.069 | 0.028 | −0.028 | −0.012 | −0.062 | −0.019 | −0.006 | 0.009 | |
IGD | −0.110 | 0.013 | −0.096 | 0.068 | 0.059 | 0.059 | 0.001 | −0.017 | 0.137 * | |
M | SMA | −0.062 | 0.029 | 0.079 | 0.025 | 0.022 | −0.050 | 0.032 | 0.002 | 0.062 |
IMP | −0.007 | −0.058 | −0.123 * | 0.003 | −0.029 | −0.031 | 0.045 | 0.056 | 0.116 |
SOM | O_C | I_S | DEP | ANX | HOS | PHOB | PAR | PSY | ||
---|---|---|---|---|---|---|---|---|---|---|
Age 14–15 | ||||||||||
F | IGD | 0.051 | 0.034 | 0.235 ** | −0.096 | −0.116 | 0.020 | −0.115 | 0.012 | 0.030 |
SMA | −0.025 | 0.057 | 0.024 | 0.012 | 0.017 | 0.008 | 0.047 | −0.066 | −0.079 | |
IMP | −0.037 | 0.095 | 0.109 | −0.041 | 0.039 | −0.117 | −0.085 | −0.045 | 0.059 | |
M | IGD | −0.048 | −0.071 | 0.123 | 0.159 | 0.029 | −0.182 * | 0.051 | −0.123 | 0.122 |
SMA | −0.139 | 0.018 | −0.015 | 0.090 | -0.091 | −0.083 | 0.149 | 0.052 | 0.097 | |
IMP | 0.000 | −0.036 | −0.077 | −0.070 | −0.045 | −0.012 | 0.059 | −0.039 | 0.092 | |
Age 16–17 | ||||||||||
F | IGD | 0.002 | −0.021 | 0.121 | 0.187 * | −0.114 | −0.095 | 0.069 | −0.008 | 0.059 |
SMA | −0.034 | 0.019 | −0.183 * | 0.158 | 0.122 | −0.197 * | −0.045 | 0.079 | 0.044 | |
IMP | 0.088 | 0.033 | −0.125 | −0.015 | 0.118 | −0.061 | −0.005 | −0.018 | 0.069 | |
M | IGD | −0.006 | −0.090 | −0.210 * | 0.036 | 0.051 | 0.008 | −0.038 | 0.008 | 0.152 |
SMA | 0.099 | −0.093 | −0.175 | 0.092 | 0.134 | −0.094 | 0.025 | −0.134 | 0.036 | |
IMP | 0.012 | −0.116 | −0.249 | 0.079 | −0.034 | −0.110 | 0.029 | 0.014 | 0.155 | |
Age 18–19 | ||||||||||
F | IGD | −0.183 | 0.056 | −0.226 | 0.027 | 0.212 | 0.137 | 0.198 | −0.086 | −0.104 |
SMA | −0.089 | −0.077 | −0.094 | 0.043 | −0.001 | 0.085 | 0.092 | 0.044 | 0.004 | |
IMP | −0.041 | 0.070 | 0.000 | −0.055 | −0.328 * | 0.162 | −0.044 | 0.135 | −0.032 | |
M | IGD | −0.317 * | 0.210 | −0.077 | −0.058 | −0.162 | 0.100 | 0.112 | 0.184 | 0.071 |
SMA | 0.112 | 0.151 | −0.116 | −0.323 * | 0.001 | 0.088 | −0.140 | 0.209 | 0.136 | |
IMP | −0.082 | −0.014 | 0.143 | −0.125 | −0.199 | 0.115 | 0.213 | 0.288 * | −0.081 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerniglia, L.; Guicciardi, M.; Sinatra, M.; Monacis, L.; Simonelli, A.; Cimino, S. The Use of Digital Technologies, Impulsivity and Psychopathological Symptoms in Adolescence. Behav. Sci. 2019, 9, 82. https://doi.org/10.3390/bs9080082
Cerniglia L, Guicciardi M, Sinatra M, Monacis L, Simonelli A, Cimino S. The Use of Digital Technologies, Impulsivity and Psychopathological Symptoms in Adolescence. Behavioral Sciences. 2019; 9(8):82. https://doi.org/10.3390/bs9080082
Chicago/Turabian StyleCerniglia, Luca, Marco Guicciardi, Maria Sinatra, Lucia Monacis, Alessandra Simonelli, and Silvia Cimino. 2019. "The Use of Digital Technologies, Impulsivity and Psychopathological Symptoms in Adolescence" Behavioral Sciences 9, no. 8: 82. https://doi.org/10.3390/bs9080082
APA StyleCerniglia, L., Guicciardi, M., Sinatra, M., Monacis, L., Simonelli, A., & Cimino, S. (2019). The Use of Digital Technologies, Impulsivity and Psychopathological Symptoms in Adolescence. Behavioral Sciences, 9(8), 82. https://doi.org/10.3390/bs9080082