Machine Learning models for the Identification of Cognitive Tasks using Autonomic Reactions from Heart Rate Variability and Electrodermal Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Protocol
2.3. HRV and EDA Indices
2.3.1. Indices of HRV
2.3.2. Indices of Electrodermal Activity
2.4. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mathias, C.J.; Bannister, R. Investigation of autonomic disorders. In Autonomic Failure: A Textbook of Clinical Disorders of the Autonomic Nervous System; Mathias, C.J., Bannister, R., Eds.; Oxford University Press: Oxford, UK, 1999; pp. 169–195. [Google Scholar]
- Bunnell, D.E. Autonomic Myocardial Influences as a Factor Determining Inter-Task Consistency of Heart Rate Reactivity. Psychophysiology 1982, 19, 442–448. [Google Scholar] [CrossRef]
- Keele, S.W.; Ivry, R. Does the Cerebellum Provide a Common Computation for Diverse Tasks? A Timing Hypothesisa. Ann. N. Y. Acad. Sci. 1990, 608, 179–211. [Google Scholar] [CrossRef]
- Banks, S. Behavioral and physiological consequences of sleep restriction. J. Clin. Sleep Med. 2007, 3, 519–528. [Google Scholar]
- Gallaway, P.J.; Miyake, H.; Buchowski, M.S.; Shimada, M.; Yoshitake, Y.; Kim, A.S.; Hongu, N. Physical Activity: A Viable Way to Reduce the Risks of Mild Cognitive Impairment, Alzheimer’s Disease, and Vascular Dementia in Older Adults. Brain Sci. 2017, 7, 22. [Google Scholar] [CrossRef]
- Leger, D. The cost of sleep-related accidents: A report for the National Commission on Sleep Disorders Research. Sleep 1994, 17, 84–93. [Google Scholar] [CrossRef]
- Lyznicki, J.M.; Doege, T.C.; Davis, R.M.; Williams, M.A. Sleepiness, driving, and motor vehicle crashes. Council on Scientific Affairs, American Medical Association. JAMA 1998, 279, 1908–1913. [Google Scholar] [CrossRef]
- Pattyn, N.; Neyt, X.; Henderickx, D.; Soetens, E. Psychophysiological investigation of vigilance decrement: Boredom or cognitive fatigue? Physiol. Behav. 2008, 93, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-C.; Huang, S.-L. The influence of attention levels on psychophysiological responses. Int. J. Psychophysiol. 2012, 86, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Dinges, D.F. An overview of sleepiness and accidents. J. Sleep Res. 1995, 4, 4–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, J.; Dinges, D.F. Sleep deprivation and vigilant attention. Ann. N. Y. Acad. Sci. 2008, 1129, 305–322. [Google Scholar] [CrossRef] [PubMed]
- Jaeggi, S.M.; Buschkuehl, M.; Perrig, W.J.; Meier, B. The concurrent validity of the N-back task as a working memory measure. Memory 2010, 18, 394–412. [Google Scholar] [CrossRef]
- Durmer, J.S.; Dinges, D.F. Neurocognitive consequences of sleep deprivation. Semin. Neurol. 2005, 25, 117–129. [Google Scholar] [CrossRef]
- Rowland, L.M.; Thomas, M.L.; Thorne, D.R.; Sing, H.C.; Krichmar, J.L.; Davis, H.Q.; Balwinski, S.M.; Peters, R.D.; Kloeppel-Wagner, E.; Redmond, D.P.; et al. Oculomotor responses during partial and total sleep deprivation. Aviat. Space Environ. Med. 2005, 76, C104–C113. [Google Scholar]
- Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef]
- Boucsein, W.; Fowles, D.C.; Grimnes, S.; Ben-Shakhar, G.; Roth, W.T.; Dawson, M.E.; Filion, D.L.; Society for Psychophysiological Research Ad Hoc Committee on Electrodermal Measures. Publication recommendations for electrodermal measurements. Psychophysiology 2012, 49, 1017–1034. [Google Scholar] [PubMed] [Green Version]
- Colbert, A.P.; Spaulding, K.; Larsen, A.; Ahn, A.C.; Cutro, J.A. Electrodermal activity at acupoints: Literature review and recommendations for reporting clinical trials. J. Acupunct. Meridian Stud. 2011, 4, 5–13. [Google Scholar] [CrossRef]
- Freeman, R.; Chapleau, M.W. Testing the autonomic nervous system. Handb. Clin. Neurol. 2013, 115, 115–136. [Google Scholar]
- Dawson, M.E.; Schell, A.M.; Filion, D.L. Chapter 7: The Electrodermal System. In Handbook of Psychophysiology; Cambridge University Press: Cambridge, UK, 2007; pp. 159–181. [Google Scholar]
- Baldwin, C.L.; Penaranda, B.N. Adaptive training using an artificial neural network and EEG metrics for within- and cross-task workload classification. NeuroImage 2012, 59, 48–56. [Google Scholar] [CrossRef]
- Berka, C.; Levendowski, D.J.; Lumicao, M.N.; Yau, A.; Davis, G.; Zivkovic, V.T.; Olmstead, R.E.; Tremoulet, P.D.; Craven, P.L. EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviat. Space Environ. Med. 2007, 78, B231–B244. [Google Scholar] [PubMed]
- Brouwer, A.-M.; Hogervorst, M.A.; van Erp, J.B.F.; Heffelaar, T.; Zimmerman, P.H.; Oostenveld, R. Estimating workload using EEG spectral power and ERPs in the n-back task. J. Neural Eng. 2012, 9, 045008. [Google Scholar] [CrossRef]
- Liu, Y.; Ayaz, H.; Shewokis, P.A. Mental workload classification with concurrent electroencephalography and functional near-infrared spectroscopy. Brain Comput. Interfaces 2017, 4, 175–185. [Google Scholar] [CrossRef]
- Luque-Casado, A.; Perales, J.C.; Cárdenas, D.; Sanabria, D. Heart rate variability and cognitive processing: The autonomic response to task demands. Biol. Psychol. 2016, 113, 83–90. [Google Scholar] [CrossRef]
- Khitrov, M.Y.; Laxminarayan, S.; Thorsley, D.; Ramakrishnan, S.; Rajaraman, S.; Wesensten, N.J.; Reifman, J. PC-PVT: A platform for psychomotor vigilance task testing, analysis, and prediction. Behav. Res. Methods 2014, 46, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Nygårds, M.E.; Sörnmo, L. Delineation of the QRS complex using the envelope of the e.c.g. Med. Biol. Eng. Comput. 1983, 21, 538–547. [Google Scholar] [CrossRef] [PubMed]
- Vidaurre, C.; Sander, T.H.; Schlögl, A. BioSig: The free and open source software library for biomedical signal processing. Comput. Intell. Neurosci. 2011, 2011, 935364. [Google Scholar] [CrossRef]
- Posada-Quintero, H.F.; Florian, J.P.; Orjuela-Cañón, A.D.; Aljama-Corrales, T.; Charleston-Villalobos, S.; Chon, K.H. Power Spectral Density Analysis of Electrodermal Activity for Sympathetic Function Assessment. Ann. Biomed. Eng. 2016, 44, 3124–3135. [Google Scholar] [CrossRef] [PubMed]
- Posada-Quintero, H.F.; Florian, J.P.; Orjuela-Cañón, Á.D.; Chon, K.H. Highly sensitive index of sympathetic activity based on time-frequency spectral analysis of electrodermal activity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 311, R582–R591. [Google Scholar] [CrossRef]
- Hernando-Gallego, F.; Luengo, D.; Artes-Rodriguez, A. Feature Extraction of Galvanic Skin Responses by Non-Negative Sparse Deconvolution. IEEE J. Biomed. Health Inform. 2017, 22, 1385–1394. [Google Scholar] [CrossRef] [PubMed]
- Chon, K.H.; Dash, S.; Ju, K. Estimation of respiratory rate from photoplethysmogram data using time-frequency spectral estimation. IEEE Trans. Biomed. Eng. 2009, 56, 2054–2063. [Google Scholar] [CrossRef] [PubMed]
- Massey Jr, F.J. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 1951, 46, 68–78. [Google Scholar] [CrossRef]
- Miller, L.H. Table of percentage points of Kolmogorov statistics. J. Am. Stat. Assoc. 1956, 51, 111–121. [Google Scholar] [CrossRef]
- Wang, J.; Tsang, W.W.; Marsaglia, G. Evaluating Kolmogorov’s distribution. J. Stat. Softw. 2003, 8, 1–4. [Google Scholar]
- Friedman, J.H.; Bentley, J.L.; Finkel, R.A. An algorithm for finding best matches in logarithmic time. ACM Trans Math Softw. 1976, 3, 209–226. [Google Scholar] [CrossRef]
- Shawe-Taylor, J.; Cristianini, N. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods; Cambridge University Press: Cambridge, UK, 2000; Volume 204. [Google Scholar]
- Breiman, L. Classification and Regression Trees; Routledge: London, UK, 2017. [Google Scholar]
- Krzanowski, W. Principles of Multivariate Analysis; OUP: Oxford, UK, 2000; Volume 23. [Google Scholar]
- Seber, G.A. Multivariate Observations; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 252. [Google Scholar]
- Liu, J.C.J.; Verhulst, S.; Massar, S.A.A.; Chee, M.W.L. Sleep deprived and sweating it out: The effects of total sleep deprivation on skin conductance reactivity to psychosocial stress. Sleep 2015, 38, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Miró, E.; Cano-Lozano, M.C.; Buela-Casal, G. Electrodermal activity during total sleep deprivation and its relationship with other activation and performance measures. J. Sleep Res. 2002, 11, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Koss, M.C.; Davison, M.A. Characteristics of the electrodermal response. A model for analysis of central sympathetic reactivity. Naunyn. Schmiedebergs Arch. Pharmacol. 1976, 295, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, J.; Kling, J.W.; Riggs, L.A. Woodworth & Schlosberg’s Experimental Psychology; Holt, Rinehart, & Winston: New York, NY, USA, 1971. [Google Scholar]
- Posada-Quintero, H.F.; Bolkhovsky, J.B.; Qin, M.; Chon, K.H. Human Performance Deterioration Due to Prolonged Wakefulness Can Be Accurately Detected Using Time-Varying Spectral Analysis of Electrodermal Activity. Hum. Factors 2018, 60, 1035–1047. [Google Scholar] [CrossRef]
- Posada-Quintero, H.F.; Bolkhovsky, J.B.; Reljin, N.; Chon, K.H. Sleep Deprivation in Young and Healthy Subjects Is More Sensitively Identified by Higher Frequencies of Electrodermal Activity than by Skin Conductance Level Evaluated in the Time Domain. Front. Physiol. 2017, 8, 1–9. [Google Scholar] [CrossRef]
Indices | BL | PVT | n-back | SS |
---|---|---|---|---|
SCL | 0.19 ± 3.9 | 3.5 ± 2.4 * | 4.6 ± 2.5 * | 5.6 ± 2.5 * |
NS.SCRs | 2.1 ± 0.93 | 3.1 ± 1.1 | 2.1 ± 1.1 † | 2.5 ± 1.1 |
EDASymp | 0.079 ± 0.1 | 0.12 ± 0.1 | 0.062 ± 0.064 | 0.19 ± 0.12 * ‡ |
TVSymp | 0.29 ± 0.21 | 0.44 ± 0.2 | 0.28 ± 0.15 | 0.49 ± 0.25 * ‡ |
HRVLF | 11 ± 3.6 | 10 ± 3.5 | 7.2 ± 3 * | 9 ± 2.1 |
HRVLFn | 0.35 ± 0.093 | 0.4 ± 0.082 | 0.24 ± 0.085 * † | 0.38 ± 0.088 ‡ |
HRVHF | 6.5 ± 1.5 | 6.5 ± 1.4 | 4.9 ± 1.6 * † | 4.9 ± 1.3 * † |
HRVHFn | 0.21 ± 0.069 | 0.26 ± 0.08 | 0.16 ± 0.061 † | 0.2 ± 0.083 |
Model | Accuracy | Indices |
---|---|---|
KNN | 66% | SCL, EDASymp, TVSymp, HRVLFn, HRVHF |
LSVM | 62% | SCL, NSSCR, EDASymp, HRVLFn, HRVHF |
GSVM | 56% | SCL, NSSCR, HRVLFn |
LDA | 62% | SCL, NSSCR, HRVLFn, HRVHF |
QDA | 52% | NSSCR, HRVLF, HRVLFn, HRVHFn |
M-QDA | 53% | SCL, HRVLFn |
KNN | LSVM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
BL | PVT | n-back | SS | BL | PVT | n-back | SS | |||
BL | 69% | 13% | 13% | 6% | BL | 63% | 25% | 13% | 0% | |
PVT | 13% | 69% | 6% | 13% | PVT | 25% | 56% | 6% | 13% | |
n-back | 19% | 19% | 56% | 6% | n-back | 13% | 6% | 69% | 13% | |
SS | 6% | 25% | 0% | 69% | SS | 13% | 19% | 6% | 63% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Posada-Quintero, H.F.; Bolkhovsky, J.B. Machine Learning models for the Identification of Cognitive Tasks using Autonomic Reactions from Heart Rate Variability and Electrodermal Activity. Behav. Sci. 2019, 9, 45. https://doi.org/10.3390/bs9040045
Posada-Quintero HF, Bolkhovsky JB. Machine Learning models for the Identification of Cognitive Tasks using Autonomic Reactions from Heart Rate Variability and Electrodermal Activity. Behavioral Sciences. 2019; 9(4):45. https://doi.org/10.3390/bs9040045
Chicago/Turabian StylePosada-Quintero, Hugo F., and Jeffrey B. Bolkhovsky. 2019. "Machine Learning models for the Identification of Cognitive Tasks using Autonomic Reactions from Heart Rate Variability and Electrodermal Activity" Behavioral Sciences 9, no. 4: 45. https://doi.org/10.3390/bs9040045
APA StylePosada-Quintero, H. F., & Bolkhovsky, J. B. (2019). Machine Learning models for the Identification of Cognitive Tasks using Autonomic Reactions from Heart Rate Variability and Electrodermal Activity. Behavioral Sciences, 9(4), 45. https://doi.org/10.3390/bs9040045