Self-Controlled Feedback and Behavioral Outcomes in Motor Skill Learning: A Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction and Statistical Analysis
2.4. Risk of Bias Assessment
3. Results
3.1. Study Characteristics
3.2. SC Versus PR Feedback in Acquisition Phase
3.3. SC Versus PR Feedback in Retention and Transfer Phases
3.4. Moderator Analysis of SC Compared to PR Feedback
3.5. SC Versus YK Feedback in Three Phases
3.6. Moderator Analysis of SC Compared to YK Feedback
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SC | Self-Controlled |
PR | Passively Received |
YK | Yoked |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analysis |
SMD | Standardized Mean Difference |
References
- Ahmadi, P., Sabzi, H. A., Heirani, A., & Hasanvand, B. (2011). The effect of feedback after good, poor, good poor trials, and self-control conditions in an acquisition and learning of force production task. Facta Universitatis. Series Physical Education and Sport, 9, 35–43. [Google Scholar]
- Alesi, M., & Battaglia, G. (2019). Motor development and Down syndrome. In International review of research in developmental disabilities: State of the art of research on down syndrome (pp. 169–211). Elsevier Academic Press. [Google Scholar]
- Anderson, J. T., Toolan, C., Coker, E., Singer, H., Pham, D., Jackson, N., Lord, C., & Wilson, R. B. (2024). A novel dance intervention program for children and adolescents with developmental disabilities: A pilot randomized control trial. BMC Sports Science Medicine and Rehabilitation, 16(1), 109. [Google Scholar] [CrossRef]
- Bacelar, M. F. B., Parma, J. O., Cabral, D., Daou, M., Lohse, K. R., & Miller, M. W. (2022). Dissociating the contributions of motivational and information processing factors to the self-controlled feedback learning benefit. Psychology of Sport and Exercise, 59, 102119. [Google Scholar] [CrossRef]
- Batista, M. T. S., Figueiredo, L. S., Martins, C. A., Nogueira, N., Ferreira, B. D., & Benda, R. N. (2022). Expectation of teaching and self-controlled KR in motor skills acquisition: Are there additive effects? Research Quarterly for Exercise and Sport, 94(2), 391–400. [Google Scholar] [CrossRef]
- Carter, M. J., Carlsen, A. N., & Ste-Marie, D. M. (2014). Self-controlled feedback is effective if it is based on the learner’s performance: A replication and extension of Chiviacowsky and Wulf (2005). Frontiers in Psychology, 5, 1325. [Google Scholar] [CrossRef]
- Carter, M. J., & Patterson, J. T. (2012). Self-controlled knowledge of results: Age-related differences in motor learning, strategies, and error detection. Human Movement Science, 31(6), 1459–1472. [Google Scholar] [CrossRef] [PubMed]
- Carter, M. J., Smith, V., Carlsen, A. N., & Ste-Marie, D. M. (2017). Anodal transcranial direct current stimulation over the primary motor cortex does not enhance the learning benefits of self-controlled feedback schedules. Psychological Research, 82(3), 496–506. [Google Scholar] [CrossRef] [PubMed]
- Chiviacowsky, S. (2014). Self-controlled practice: Autonomy protects perceptions of competence and enhances motor learning. Psychology of Sport and Exercise, 15(5), 505–510. [Google Scholar] [CrossRef]
- Chiviacowsky, S., & Wulf, G. (2002). Self-controlled feedback: Does it enhance learning because performers get feedback when they need it? Research Quarterly for Exercise and Sport, 73(4), 408–415. [Google Scholar] [CrossRef]
- Chiviacowsky, S., Wulf, G., de Medeiros, F. L., Kaefer, A., & Tani, G. (2008). Learning benefits of self-controlled knowledge of results in 10-Year-Old children. Research Quarterly for Exercise and Sport, 79(3), 405–410. [Google Scholar] [CrossRef]
- Chiviacowsky, S., Wulf, G., & Lewthwaite, R. (2012a). Self-controlled learning: The importance of protecting perceptions of competence. Frontiers in Psychology, 3, 458. [Google Scholar] [CrossRef]
- Chiviacowsky, S., Wulf, G., Lewthwaite, R., & Campos, T. (2012b). Motor learning benefits of self-controlled practice in persons with Parkinson’s disease. Gait & Posture, 35(4), 601–605. [Google Scholar] [CrossRef]
- Chiviacowsky, S., Wulf, G., Machado, C., & Rydberg, N. (2012c). Self-controlled feedback enhances learning in adults with Down syndrome. Brazilian Journal of Physical Therapy, 16(3), 191–196. [Google Scholar] [CrossRef]
- Couvillion, K. F., Bass, A. D., & Fairbrother, J. T. (2019). Increased cognitive load during acquisition of a continuous task eliminates the learning effects of self-controlled knowledge of results. Journal of Sports Sciences, 38(1), 94–99. [Google Scholar] [CrossRef]
- David, F. J., Baranek, G. T., Wiesen, C., Miao, A. F., & Thorpe, D. E. (2012). Coordination of precision grip in 2–6 years-old children with autism spectrum disorders compared to children developing typically and children with developmental disabilities. Frontiers in Integrative Neuroscience, 6, 122. [Google Scholar] [CrossRef]
- Fernandes, J. M., de Milander, M., & van der Merwe, E. (2022). The effect of a motor intervention programme for learners identified with moderate to severe intellectual disabilities. Heliyon, 8(10), e11165. [Google Scholar] [CrossRef]
- Fernandes, J. M., de Milander, M., & van der Merwe, E. (2024). Motor proficiency of learners with moderate to severe intellectual disabilities. African Journal of Disability, 13, 1262. [Google Scholar] [CrossRef]
- Gil, M. J., & Kim, J. G. (2023). Effects of self-controlled feedback on the performance and learning of easy versus difficult golf putting in college students. Asia-Pacific Journal of Convergent Research Interchange (APJCRI), 9(9), 745–752. [Google Scholar] [CrossRef]
- Grand, K. F., Bruzi, A. T., Dyke, F. B., Godwin, M. M., Leiker, A. M., Thompson, A. G., Buchanan, T. L., & Miller, M. W. (2015). Why self-controlled feedback enhances motor learning: Answers from electroencephalography and indices of motivation. Human Movement Science, 43, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S., Pfeiffer, J., & Patterson, J. T. (2011). Self-control of feedback during motor learning: Accounting for the absolute amount of feedback using a yoked group with self-control over feedback. Journal of Motor Behavior, 43(2), 113–119. [Google Scholar] [CrossRef] [PubMed]
- Hebert, E. P., & Coker, C. (2021). Optimizing feedback frequency in motor learning: Self-controlled and moderate frequency KR enhance skill acquisition. Perceptual and Motor Skills, 128(5), 2381–2397. [Google Scholar] [CrossRef]
- Hemayattalab, R. (2014). Effects of self-control and instructor-control feedback on motor learning in individuals with cerebral palsy. Research in Developmental Disabilities, 35(11), 2766–2772. [Google Scholar] [CrossRef]
- Hemayattalab, R., Arabameri, E., Pourazar, M., Ardakani, M. D., & Kashefi, M. (2013). Effects of self-controlled feedback on learning of a throwing task in children with spastic hemiplegic cerebral palsy. Research in Developmental Disabilities, 34(9), 2884–2889. [Google Scholar] [CrossRef]
- Hemayattalab, R., & Rostami, L. R. (2010). Effects of frequency of feedback on the learning of motor skill in individuals with cerebral palsy. Research in Developmental Disabilities, 31(1), 212–217. [Google Scholar] [CrossRef]
- Hermassi, S., Sellami, M., Bouhafs, E. G., Schwesig, R., & De Giorgio, A. (2019). Effect of verbal instruction on motor learning ability of anaerobic and explosive exercises in physical education university students. Frontiers in Psychology, 10, 2097. [Google Scholar] [CrossRef] [PubMed]
- Hicheur, H., Chauvin, A., Cavin, V., Fuchslocher, J., Tschopp, M., & Taube, W. (2020). Augmented-feedback training improves cognitive motor performance of soccer players. Medicine & Science in Sports & Exercise, 52(1), 141–152. [Google Scholar] [CrossRef]
- Huet, M., Camachon, C., Fernandez, L., Jacobs, D. M., & Montagne, G. (2009). Self-controlled concurrent feedback and the education of attention towards perceptual invariants. Human Movement Science, 28(4), 450–467. [Google Scholar] [CrossRef] [PubMed]
- Janelle, C. M., Kim, J., & Singer, R. N. (1995). Subject-controlled performance feedback and learning of a closed motor skill. Percept Mot Skills, 81(2), 627–634. [Google Scholar] [CrossRef]
- Jaszczur-Nowicki, J., Romero-Ramos, O., Rydzik, L., Ambrozy, T., Biegajlo, M., Nogal, M., Wiśniowski, W., Kruczkowski, D., Łuszczewska-Sierakowska, I., & Niznikowski, T. (2021). Motor learning of complex tasks with augmented feedback: Modality-dependent effectiveness. International Journal of Environmental Research and Public Health, 18(23), 12495. [Google Scholar] [CrossRef] [PubMed Central]
- Jimenez-Diaz, J., Chaves-Castro, K., & Morera-Castro, M. (2020). Effect of self-controlled and regulated feedback on motor skill performance and learning: A Meta-analytic study. Journal of Motor Behavior, 53(3), 385–398. [Google Scholar] [CrossRef] [PubMed]
- Kaefer, A., Chiviacowsky, S., Meira, C. d. M., & Tani, G. (2014). Self-controlled practice enhances motor learning in introverts and extroverts. Research Quarterly for Exercise and Sport, 85(2), 226–233. [Google Scholar] [CrossRef]
- Kantak, S. S., & Winstein, C. J. (2012). Learning–performance distinction and memory processes for motor skills: A focused review and perspective. Behavioural Brain Research, 228(1), 219–231. [Google Scholar] [CrossRef]
- Kim, Y., Kim, J., Kim, H., Kwon, M., Lee, M., & Park, S. (2019). Neural mechanism underlying self-controlled feedback on motor skill learning. Human Movement Science, 66, 198–208. [Google Scholar] [CrossRef]
- Kwon, S.-M., Lee, S.-M., & Lee, H.-W. (2014). The effect of transformed high frequency self-controlled feedback on learning of older adult’s gate ball stroke task. Korean Journal of Sports Science, 23(4), 485–495. [Google Scholar]
- Lim, S., Ali, A., Kim, W., Kim, J., Choi, S., & Radlo, S. J. (2015). Influence of self-controlled feedback on learning a serial motor skill. Perceptual and Motor Skills, 120(2), 462–474. [Google Scholar] [CrossRef]
- Magill, R. A., & Hall, K. G. (1990). A review of the contextual interference effect in motor skill acquisition. Human Movement Science, 9(3), 241–289. [Google Scholar] [CrossRef]
- Maher, C. G., Sherrington, C., Herbert, R. D., Moseley, A. M., & Elkins, M. (2003). Reliability of the PEDro scale for rating quality of randomized controlled trials. Physical Therapy, 83(8), 713–721. [Google Scholar] [CrossRef]
- McKay, B., Bacelar, M. F. B., Parma, J. O., Miller, M. W., & Carter, M. J. (2023). The combination of reporting bias and underpowered study designs has substantially exaggerated the motor learning benefits of self-controlled practice and enhanced expectancies: A meta-analysis. International Review of Sport and Exercise Psychology, 18(1), 242–262. [Google Scholar] [CrossRef]
- McKay, B., & Ste-Marie, D. M. (2020). Autonomy support and reduced feedback frequency have trivial effects on learning and performance of a golf putting task. Human Movement Science, 71, 102612. [Google Scholar] [CrossRef] [PubMed]
- McKay, B., Yantha, Z., Hussien, J., Carter, M., & Ste-Marie, D. (2022). Meta-analytic findings in the self-controlled motor learning literature: Underpowered, biased, and lacking evidential value. Meta-Psychology, 6. [Google Scholar] [CrossRef]
- McQuillan, A. V., Swanwick, A. R., Chambers, E. M., Schlüter, K. D., & Sugden, A. D. (2021). A comparison of characteristics, developmental disorders and motor progression between children with and without developmental coordination disorder. Human Movement Science, 78, 102823. [Google Scholar] [CrossRef]
- McRae, M., Patterson, J. T., & Hansen, S. (2015). Examining the preferred self-controlled KR schedules of learners and peers during motor skill learning. Journal of Motor Behavior, 47(6), 527–534. [Google Scholar] [CrossRef] [PubMed]
- Moinuddin, A., Goel, A., & Sethi, Y. (2021). The role of augmented feedback on motor learning: A systematic review. Cureus, 13(11), e19695. [Google Scholar] [CrossRef] [PubMed]
- Mödinger, M., Woll, A., & Wagner, I. (2021). Video-based visual feedback to enhance motor learning in physical education—A systematic review. German Journal of Exercise and Sport Research, 52(3), 447–460. [Google Scholar] [CrossRef]
- Newell, K. M. (1976). Motor learning without knowledge of results through the development of a response recognition mechanism. Journal of Motor Behavior, 8(3), 209–217. [Google Scholar] [CrossRef]
- Nijmeijer, E. M., Elferink-Gemser, M. T., McCrory, S., Cortes, N., & Benjaminse, A. (2023). How to improve movement execution in sidestep cutting? Involve me and I will learn. Human Movement Science, 90, 103115. [Google Scholar] [CrossRef]
- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., & Chou, R. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Bmj-British Medical Journal, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Pashabadi, A., Salehi, Y., & Pakzamir, F. (2021). Effects of self-controlled feedback on learning a sports skill in children with ADHD: Performance under pressure. Life Span and Disability, 24(2), 221–235. [Google Scholar]
- Patterson, J. T., & Carter, M. (2010). Learner regulated knowledge of results during the acquisition of multiple timing goals. Human Movement Science, 29(2), 214–227. [Google Scholar] [CrossRef]
- Patterson, J. T., Carter, M., & Hansen, S. (2013). Self-controlled KR schedules: Does repetition order matter? Human Movement Science, 32(4), 567–579. [Google Scholar] [CrossRef]
- Patterson, J. T., Carter, M., & Sanli, E. (2011). Decreasing the proportion of self-control trials during the acquisition period does not compromise the learning advantages in a self-controlled context. Research Quarterly for Exercise and Sport, 82(4), 624–633. [Google Scholar] [CrossRef]
- Patterson, J. T., McRae, M., & Hansen, S. (2019). On whether task experience of the peer differentially impacts feedback scheduling and skill acquisition of a learner. Frontiers in Psychology, 10, 1987. [Google Scholar] [CrossRef]
- Post, P. G., Aiken, C. A., Laughlin, D. D., & Fairbrother, J. T. (2016). Self-control over combined video feedback and modeling facilitates motor learning. Human Movement Science, 47, 49–59. [Google Scholar] [CrossRef]
- Puklavec, A., Antekolović, L., & Mikulić, P. (2021). Acquisition of the long jump skill using varying feedback. Croatian Journal of Education, 23(1). [Google Scholar] [CrossRef]
- Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68–78. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R. A. (1991). Frequent augmented feedback can degrade learning: Evidence and interpretations. In Tutorials in motor neuroscience (pp. 59–75). Kluwer Academic/Plenum Publishers. [Google Scholar]
- Souissi, M. A., Souissi, H., Elghoul, Y., Masmoudi, L., Trabelsi, O., Ammar, A., Chtourou, H., & Souissi, N. (2021). Information processing and technical knowledge contribute to self-controlled video feedback for children learning the snatch movement in weightlifting. Perceptual and Motor Skills, 128(4), 1785–1805. [Google Scholar] [CrossRef] [PubMed]
- Ste-Marie, D. M., Carter, M. J., Law, B., Vertes, K., & Smith, V. (2015). Self-controlled learning benefits: Exploring contributions of self-efficacy and intrinsic motivation via path analysis. Journal of Sports Sciences, 34(17), 1650–1656. [Google Scholar] [CrossRef]
- St Germain, L., Williams, A., Balbaa, N., Poskus, A., Leshchyshen, O., Lohse, K. R., & Carter, M. J. (2022). Increased perceptions of autonomy through choice fail to enhance motor skill retention. Journal of Experimental Psychology: Human Perception and Performance, 48(4), 370. [Google Scholar] [CrossRef]
- Tsai, M.-J., & Jwo, H. (2015). Controlling absolute frequency of feedback in a self-controlled situation enhances motor learning. Perceptual and Motor Skills, 121(3), 746–758. [Google Scholar] [CrossRef]
- van der Meer, B. R., van den Hoven, M. A. C., van der Kamp, J., & Savelsbergh, G. J. P. (2024). Self-controlled video feedback facilitates the learning of tactical skills in tennis. Research Quarterly for Exercise and Sport, 95(2), 537–545. [Google Scholar] [CrossRef] [PubMed]
- van Maarseveen, M. J. J., Oudejans, R. R. D., & Savelsbergh, G. J. P. (2018). Self-controlled video feedback on tactical skills for soccer teams results in more active involvement of players. Human Movement Science, 57, 194–204. [Google Scholar] [CrossRef]
- Winstein, C., & Schmidt, R. (1990). Reduced frequency of knowledge of results enhances motor skill learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 677–691. [Google Scholar] [CrossRef]
- Woodard, K. F., & Fairbrother, J. T. (2020). Cognitive loading during and after continuous task execution alters the effects of self-controlled knowledge of results. Frontiers in Psychology, 11, 1046. [Google Scholar] [CrossRef] [PubMed]
- Wulf, G., & Lewthwaite, R. (2016). Optimizing performance through intrinsic motivation and attention for learning: The OPTIMAL theory of motor learning. Psychonomic Bulletin & Review, 23(5), 1382–1414. [Google Scholar] [CrossRef] [PubMed]
- Yadi, S. (2016, August 28). The role of augmented feedback on motor skill learning. 6th International Conference on Educational, Management, Administration and Leadership, Bandung, Indonesia. [Google Scholar]
- Yamamoto, R., Akizuki, K., Yamaguchi, K., Yabuki, J., & Kaneno, T. (2022). A study on how concurrent visual feedback affects motor learning of adjustability of grasping force in younger and older adults. Scientific Reports, 12(1), 10755. [Google Scholar] [CrossRef]
- Yantha, Z., McKay, B., & Ste-Marie, D. (2021). The recommendation for learners to be provided with control over their feedback schedule is questioned in a self-controlled learning paradigm. Journal of Sports Sciences, 40, 769–782. [Google Scholar] [CrossRef] [PubMed]
- Zamani, M. H., Fatemi, R., & Soroushmoghadam, K. (2015). Comparing the effects of self-controlled and examiner-controlled feedback on learning in children with developmental coordination disorder. Iranian Journal of Psychiatry and Behavioral Sciences, 9(4), e2422. [Google Scholar] [CrossRef]
Study | Feedback Type | Phase | Sample Size | Skill Level | Cognitive Status | Mean Age | Environment | Learning Task | Feedback Model | Number of Trials During Acquisition |
---|---|---|---|---|---|---|---|---|---|---|
Janelle et al. (1995) | YK | A R | 36 | U | N | 19.6 | O | Throwing task | Ve | 40 |
Patterson and Carter (2010) | YK | R T | 24 | U | N | 21.4 | I | Key-pressing | Vi | 90 |
Ahmadi et al. (2011) | PR | A R | 48 | N | N | 22.3 | I | Force production task | Vi | 72 |
Hansen et al. (2011) | YK | A R T | 16 | U | N | 21.8 | I | Key-pressing | Vi | 80 |
Patterson et al. (2011) | YK | R T | 20 | N | N | 22.3 | I | Key-pressing | Vi | 90 |
Carter and Patterson (2012) | YK | R | 40 | U | N | 45.95 | I | Low-friction slide task | Vi | 60 |
Patterson et al. (2013) | YK | R T | 48 | U | N | 21.3 | I | Key-pressing | Vi | 90 |
Carter et al. (2014) | YK | A R T | 16 | U | N | 21.35 | I | Low-friction slider task | Vi | 60 |
Chiviacowsky (2014) | YK | A R | 28 | N | N | 22.5 | I | Coincident-anticipation timing | Ve | 30 |
Hemayattalab (2014) | PR | A R T | 15 | N | I | 12.26 | I | Throwing task | Vi | 100 |
Grand et al. (2015) | YK | A R T | 36 | N | N | 23.1 | I | Throwing task | Ve | 60 |
Lim et al. (2015) | YK | A R | 24 | N | N | 27.2 | I | Taekwondo Poomsae | Vi | 72 |
Ste-Marie et al. (2015) | YK | R | 92 | N | N | 11.1 | I | Double-mini trampoline | Ve | 60 |
Tsai and Jwo (2015) | YK | A R T | 24 | U | N | 25.1 | I | Hand grip | Ve | 60 |
Zamani et al. (2015) | PR | A R | 12 | N | I | 10 | I | Throwing task | Ve | 240 |
Post et al. (2016) | YK | A | 44 | N | N | 21.8 | O | Golf putting | Vi | 60 |
Kim et al. (2019) | YK | A R T | 42 | N | N | 16.91 | I | Key-pressing | Vi | 200 |
Patterson et al. (2019) | PR | A R | 24 | U | N | 21.9 | I | Key-pressing | Vi | 80 |
Woodard and Fairbrother (2020) | YK | T | 24 | N | N | 20.38 | I | Continuous tracing task | Ve | 32 |
Hebert and Coker (2021) | PR | A R | 95 | N | N | 21.08 | O | Throwing task | Ve | 50 |
Pashabadi et al. (2021) | YK | A R T | 30 | N | I | 9 | O | Football chip pass skill | Ve | 60 |
Souissi et al. (2021) | YK | A | 24 | E | N | 10.84 | I | Weightlifting snatch | Vi | 144 |
Yantha et al. (2021) | YK | R T | 40 | N | N | 21.77 | O | Golf putting | Ve | 50 |
Batista et al. (2022) | YK | R T | 20 | N | N | 24.86 | I | Throwing task | Ve | 45 |
Bacelar et al. (2022) | YK | A R T | 100 | N | N | 20.65 | I | Throwing task | Vi | 100 |
St Germain et al. (2022) | YK | A R T | 152 | N | N | 20.64 | I | Rapid aiming task | Vi | 72 |
Gil and Kim (2023) | YK | A R | 28 | N | N | 22.3 | I | Golf putting | Ve | 20 |
Nijmeijer et al. (2023) | YK | A R | 22 | N | N | 22.9 | U | Sidestep cutting task | Vi | 20 |
van der Meer et al. (2024) | YK | A R | 23 | E | N | 43.3 | O | Tennis | Vi | 20 |
Phase | Moderator | Level | No. of Studies | SMD | 95%CI | Homogeneity Test | ||
---|---|---|---|---|---|---|---|---|
Q | df | p | ||||||
Acquisition | Cognitive status * | Normal | 18 | 0.130 | [−0.082, 0.343] | 4.895 | 1 | 0.027 |
Impaired | 3 | 0.789 ** | [0.246, 1.333] | |||||
Feedback model | Verbal | 8 | 0.118 | [−0.150, 0.387] | 0.538 | 1 | 0.463 | |
Visual | 13 | 0.270 | [−0.034, 0.575] | |||||
Environment | Indoor | 15 | 0.205 | [−0.076, 0.486] | 0.026 | 1 | 0.872 | |
Outdoor | 5 | 0.241 | [−0.098, 0.580] | |||||
Skill type | Series | 4 | 0.446 | [−0.705, 1.598] | 0.278 | 1 | 0.598 | |
Discrete | 15 | 0.134 | [−0.020, 0.287] | |||||
Mean age | Adult | 16 | 0.176 | [−0.030, 0.381] | 0.154 | 1 | 0.695 | |
Adolescent | 5 | 0.332 | [−0.421, 1.084] | |||||
Retention | Cognitive status | Normal | 23 | 0.535 *** | [0.275, 0.797] | 3.373 | 1 | 0.066 |
Impaired | 3 | 1.768 ** | [0.479, 3.056] | |||||
Feedback model | Verbal | 11 | 0.666 *** | [0.306, 1.025] | 0.062 | 1 | 0.803 | |
Visual | 15 | 0.598 ** | [0.206, 0.990] | |||||
Environment | Indoor | 20 | 0.656 *** | [0.321, 0.990] | 0.136 | 1 | 0.713 | |
Outdoor | 5 | 0.550 * | [0.098, 1.002] | |||||
Skill type | Series | 8 | 0.628 * | [0.085, 1.170] | 0.001 | 1 | 0.995 | |
Discrete | 16 | 0.630 *** | [0.291, 0.968] | |||||
Mean age | Adult | 21 | 0.533 *** | [0.246, 0.821] | 2.252 | 1 | 0.133 | |
Adolescent | 5 | 1.072 ** | [0.430, 1.715] | |||||
Transfer | Feedback model | Verbal | 6 | 0.372 * | [0.009, 0.735] | 3.288 | 1 | 0.070 |
Visual | 9 | 0.941 *** | [0.445, 1.437] | |||||
Skill type | Series | 5 | 1.040 *** | [0.697, 1.383] | 3.334 | 1 | 0.068 | |
Discrete | 9 | 0.553 ** | [0.157, 0.948] | |||||
Mean age | Adult | 12 | 0.719 ** | [0.289, 1.066] | 0.008 | 1 | 0.929 | |
Adolescent | 3 | 0.704 ** | [0.269, 1.140] |
Phase | Moderator | Level | No. of Studies | SMD | 95%CI | Homogeneity Test | ||
---|---|---|---|---|---|---|---|---|
Q | df | p | ||||||
Acquisition | Feedback model | Verbal | 6 | 0.092 | [−0.326, 0.509] | 0.261 | 1 | 0.609 |
Visual | 10 | 0.234 | [−0.118, 0.586] | |||||
Environment | Indoor | 11 | 0.155 | [−0.177, 0.487] | 0.233 | 1 | 0.630 | |
Outdoor | 4 | 0.309 | [−0.221, 0.839] | |||||
Skill type | Series | 3 | 0.630 | [−1.042, 2.301] | 0.385 | 1 | 0.535 | |
Discrete | 11 | 0.098 | [−0.077, 0.273] | |||||
Mean age | Adult | 13 | 0.199 | [−0.070, 0.467] | 0.057 | 1 | 0.812 | |
Adolescent | 3 | 0.079 | [−0.872, 1.029] | |||||
Retention | Feedback model | Verbal | 9 | 0.646 *** | [0.401, 0.891] | 0.223 | 1 | 0.637 |
Visual | 12 | 0.763 *** | [0.342, 1.184] | |||||
Environment | Indoor | 16 | 0.694 *** | [0.370, 1.018] | 0.012 | 1 | 0.912 | |
Outdoor | 4 | 0.722 *** | [0.346, 1.098] | |||||
Skill type | Series | 7 | 0.793 ** | [0.277, 1.310] | 0.211 | 1 | 0.646 | |
Discrete | 12 | 0.649 *** | [0.311, 0.986] | |||||
Mean age | Adult | 18 | 0.690 *** | [0.387, 0.993] | 0.048 | 1 | 0.827 | |
Adolescent | 3 | 0.748 *** | [0.329, 1.167] | |||||
Transfer | Feedback model | Verbal | 6 | 0.372 * | [0.009, 0.735] | 2.670 | 1 | 0.102 |
Visual | 8 | 0.900 *** | [0.381, 1.418] | |||||
Skill type * | Series | 5 | 1.040 *** | [0.697, 1.383] | 4.435 | 1 | 0.035 | |
Discrete | 8 | 0.478 * | [0.083, 0.873] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Tao, T.; Yuan, Y.; Guo, W. Self-Controlled Feedback and Behavioral Outcomes in Motor Skill Learning: A Meta-Analysis. Behav. Sci. 2025, 15, 1291. https://doi.org/10.3390/bs15091291
Wang B, Tao T, Yuan Y, Guo W. Self-Controlled Feedback and Behavioral Outcomes in Motor Skill Learning: A Meta-Analysis. Behavioral Sciences. 2025; 15(9):1291. https://doi.org/10.3390/bs15091291
Chicago/Turabian StyleWang, Biye, Tao Tao, Yuchen Yuan, and Wei Guo. 2025. "Self-Controlled Feedback and Behavioral Outcomes in Motor Skill Learning: A Meta-Analysis" Behavioral Sciences 15, no. 9: 1291. https://doi.org/10.3390/bs15091291
APA StyleWang, B., Tao, T., Yuan, Y., & Guo, W. (2025). Self-Controlled Feedback and Behavioral Outcomes in Motor Skill Learning: A Meta-Analysis. Behavioral Sciences, 15(9), 1291. https://doi.org/10.3390/bs15091291