When the Mind Cannot Shift: Cognitive Flexibility Impairments in Methamphetamine-Dependent Individuals
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Apparatus
2.3. Measurements and Procedure
2.3.1. Behavioral Task 1: Intra-Dimensional Task Switching
2.3.2. Behavioral Task 2: Extra-Dimensional Task Switching
2.3.3. Behavioral Task 3: Wisconsin Card Sorting Test (WCST)
2.3.4. Subjective Cognitive Flexibility: Self-Reported Questionnaire
3. Results
3.1. Behavioral Task 1 Results: Intra-Dimensional Task Switching
3.2. Behavioral Task 2 Results: Extra-Dimensional Task Switching
3.3. Behavioral Task 3 Results: Wisconsin Card Sorting Test
3.4. Subjective Results: Self-Reported Questionnaire
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Psychiatric Association, DSM-5 Task Force. (2013). Diagnostic and statistical manual of mental disorders: DSM-5™ (5th ed.). American Psychiatric Publishing, Inc. [Google Scholar] [CrossRef]
- Andreou, M., Konstantopoulos, K., & Peristeri, E. (2022). Cognitive flexibility in autism: Evidence from young autistic children. Autism Research, 15(12), 2296–2309. [Google Scholar] [CrossRef]
- Barceló, F., & Knight, R. T. (2002). Both random and perseverative errors underlie WCST deficits in prefrontal patients. Neuropsychologia, 40(3), 349–356. [Google Scholar] [CrossRef] [PubMed]
- Barrado-Moreno, V., Serrano-Ibáñez, E. R., Esteve, R., Ramírez-Maestre, C., & Sánchez-Meca, J. (2025). The role of psychological flexibility and inflexibility in substance addiction, abuse, or misuse: A systematic review and meta-analysis. International Journal of Mental Health and Addiction. [Google Scholar] [CrossRef]
- Basterfield, C., Hester, R., & Bowden, S. C. (2019). A meta-analysis of the relationship between abstinence and neuropsychological functioning in methamphetamine use disorder. Neuropsychology, 33(5), 739–753. [Google Scholar] [CrossRef]
- Bickel, W. K., Jarmolowicz, D. P., Mueller, E. T., Gatchalian, K. M., & McClure, S. M. (2012). Are executive function and impulsivity antipodes? A conceptual reconstruction with special reference to addiction. Psychopharmacology, 221(3), 361–387. [Google Scholar] [CrossRef]
- Botvinick, M., & Braver, T. (2015). Motivation and cognitive control: From behavior to neural mechanism. Annual Review of Psychology, 66(1), 83–113. [Google Scholar] [CrossRef]
- Braem, S., & Egner, T. (2018). Getting a grip on cognitive flexibility. Current Directions in Psychological Science, 27(6), 470–476. [Google Scholar] [CrossRef]
- Brecht, M.-L., & Herbeck, D. (2014). Time to relapse following treatment for methamphetamine use: A long-term perspective on patterns and predictors. Drug and Alcohol Dependence, 139, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Cañas, J., Quesada, J., Antolí, A., & Fajardo, I. (2003). Cognitive flexibility and adaptability to environmental changes in dynamic complex problem-solving tasks. Ergonomics, 46(5), 482–501. [Google Scholar] [CrossRef]
- Colzato, L. S., Huizinga, M., & Hommel, B. (2009). Recreational cocaine polydrug use impairs cognitive flexibility but not working memory. Psychopharmacology, 207(2), 225–234. [Google Scholar] [CrossRef] [PubMed]
- Corbit, L. H., & Janak, P. H. (2016). Habitual alcohol seeking: Neural bases and possible relations to alcohol use disorders. Alcoholism: Clinical and Experimental Research, 40(7), 1380–1389. [Google Scholar] [CrossRef]
- Courtney, K. E., & Ray, L. A. (2014). Methamphetamine: An update on epidemiology, pharmacology, clinical phenomenology, and treatment literature. Drug and Alcohol Dependence, 143, 11–21. [Google Scholar] [CrossRef]
- Dajani, D. R., & Uddin, L. Q. (2015). Demystifying cognitive flexibility: Implications for clinical and developmental neuroscience. Trends in Neurosciences, 38(9), 571–578. [Google Scholar] [CrossRef]
- Dean, A. C., Groman, S. M., Morales, A. M., & London, E. D. (2013). An Evaluation of the evidence that methamphetamine abuse causes cognitive decline in humans. Neuropsychopharmacology, 38(2), 259–274. [Google Scholar] [CrossRef] [PubMed]
- Dennis, J. P., & Vander Wal, J. S. (2010). The cognitive flexibility inventory: Instrument development and estimates of reliability and validity. Cognitive Therapy and Research, 34(3), 241–253. [Google Scholar] [CrossRef]
- Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64(1), 135–168. [Google Scholar] [CrossRef]
- Dreisbach, G., & Mendl, J. (2024). Flexibility as a matter of context, effort, and ability: Evidence from the task-switching paradigm. Current Opinion in Behavioral Sciences, 55, 101348. [Google Scholar] [CrossRef]
- Egner, T., & Siqi-Liu, A. (2024). Insights into control over cognitive flexibility from studies of task-switching. Current Opinion in Behavioral Sciences, 55, 101342. [Google Scholar] [CrossRef]
- Ersche, K. D., Gillan, C. M., Jones, P. S., Williams, G. B., Ward, L. H. E., Luijten, M., De Wit, S., Sahakian, B. J., Bullmore, E. T., & Robbins, T. W. (2016). Carrots and sticks fail to change behavior in cocaine addiction. Science, 352(6292), 1468–1471. [Google Scholar] [CrossRef]
- Everett, J., Lavoie, K., Gagnon, J.-F., & Gosselin, N. (2001). Performance of patients with schizophrenia on the Wisconsin Card Sorting Test (WCST). Journal of Psychiatry & Neuroscience, 26, 123–130. [Google Scholar]
- Farhadian, M., Akbarfahimi, M., Hassani Abharian, P., Hosseini, S. G., & Shokri, S. (2017). Assessment of executive functions in methamphetamine-addicted individuals: Emphasis on duration of addiction and abstinence. Basic and Clinical Neuroscience Journal, 8(2), 147–154. [Google Scholar] [CrossRef]
- Faustino, B., Oliveira, J., & Lopes, P. (2021). Diagnostic precision of the Wisconsin Card Sorting Test in assessing cognitive deficits in substance use disorders. Applied Neuropsychology: Adult, 28(2), 165–172. [Google Scholar] [CrossRef]
- Feldstein, S. N., Keller, F. R., Portman, R. E., Durham, R. L., Klebe, K. J., & Davis, H. P. (1999). A comparison of computerized and standard versions of the Wisconsin Card Sorting Test. The Clinical Neuropsychologist, 13(3), 303–313. [Google Scholar] [CrossRef]
- Fernández-Serrano, M. J., Pérez-García, M., Perales, J. C., & Verdejo-García, A. (2010a). Prevalence of executive dysfunction in cocaine, heroin and alcohol users enrolled in therapeutic communities. European Journal of Pharmacology, 626(1), 104–112. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Serrano, M. J., Pérez-García, M., Schmidt Río-Valle, J., & Verdejo-García, A. (2010b). Neuropsychological consequences of alcohol and drug abuse on different components of executive functions. Journal of Psychopharmacology, 24(9), 1317–1332. [Google Scholar] [CrossRef]
- García-Fernández, M., Fuentes-Sánchez, N., Escrig, M. A., Eerola, T., & Pastor, M. C. (2025). Gender, emotion regulation, and cognitive flexibility as predictors of depression, anxiety, and affect in healthy adults. Current Psychology, 44(7), 5685–5694. [Google Scholar] [CrossRef]
- Gargiulo, A. T., Hu, J., Ravaglia, I. C., Hawks, A., Li, X., Sweasy, K., & Grafe, L. (2022). Sex differences in cognitive flexibility are driven by the estrous cycle and stress-dependent. Frontiers in Behavioral Neuroscience, 16, 958301. [Google Scholar] [CrossRef] [PubMed]
- Gharahi, E., Soraya, S., Ahmadkhaniha, H., Sadeghi, B., Haghshenas, M., & Bozorgmehr, A. (2023). Cognitive network reconstruction in individuals who use opioids compared to those who do not: Topological analysis of cognitive function through graph model and centrality measures. Frontiers in Psychiatry, 13, 999199. [Google Scholar] [CrossRef]
- Goldstein, R. Z., & Volkow, N. D. (2011). Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications. Nature Reviews Neuroscience, 12(11), 652–669. [Google Scholar] [CrossRef]
- Gruner, P., & Pittenger, C. (2017). Cognitive inflexibility in obsessive-compulsive disorder. Neuroscience, 345, 243–255. [Google Scholar] [CrossRef]
- Hester, R., & Garavan, H. (2004). Executive dysfunction in cocaine addiction: Evidence for discordant frontal, cingulate, and cerebellar activity. The Journal of Neuroscience, 24(49), 11017–11022. [Google Scholar] [CrossRef]
- Ionescu, T. (2017). The variability-stability-flexibility pattern: A possible key to understanding the flexibility of the human mind. Review of General Psychology, 21(2), 123–131. [Google Scholar] [CrossRef]
- Izquierdo, A., & Jentsch, J. D. (2012). Reversal learning as a measure of impulsive and compulsive behavior in addictions. Psychopharmacology, 219(2), 607–620. [Google Scholar] [CrossRef]
- Jiang, H., Yang, B., Huang, H., Zhao, D., Li, H., Chen, Z., Jin, S., & Zhou, Q. (2024). Task-switching mechanisms under methamphetamine cravings: Sex differences in cued and voluntary task-switching. Frontiers in Neuroscience, 18, 1462157. [Google Scholar] [CrossRef]
- Kanen, J. W., Ersche, K. D., Fineberg, N. A., Robbins, T. W., & Cardinal, R. N. (2019). Computational modelling reveals contrasting effects on reinforcement learning and cognitive flexibility in stimulant use disorder and obsessive-compulsive disorder: Remediating effects of dopaminergic D2/3 receptor agents. Psychopharmacology, 236(8), 2337–2358. [Google Scholar] [CrossRef]
- Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., & Koch, I. (2010). Control and interference in task switching—A review. Psychological Bulletin, 136(5), 849–874. [Google Scholar] [CrossRef]
- Koch, I., Poljac, E., Müller, H., & Kiesel, A. (2018). Cognitive structure, flexibility, and plasticity in human multitasking—An integrative review of dual-task and task-switching research. Psychological Bulletin, 144(6), 557–583. [Google Scholar] [CrossRef]
- Kofman, O., Meiran, N., Greenberg, E., Balas, M., & Cohen, H. (2006). Enhanced performance on executive functions associated with examination stress: Evidence from task-switching and Stroop paradigms. Cognition & Emotion, 20(5), 577–595. [Google Scholar] [CrossRef]
- Koob, G. F., & Volkow, N. D. (2016). Neurobiology of addiction: A neurocircuitry analysis. The Lancet Psychiatry, 3(8), 760–773. [Google Scholar] [CrossRef] [PubMed]
- Kübler, A., Murphy, K., & Garavan, H. (2005). Cocaine dependence and attention switching within and between verbal and visuospatial working memory. European Journal of Neuroscience, 21(7), 1984–1992. [Google Scholar] [CrossRef] [PubMed]
- LaClair, M., Febo, M., Nephew, B., Gervais, N. J., Poirier, G., Workman, K., Chumachenko, S., Payne, L., Moore, M. C., King, J. A., & Lacreuse, A. (2019). Sex differences in cognitive flexibility and resting brain networks in middle-aged marmosets. Eneuro, 6(4), ENEURO.0154-19.2019. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, A., Bennetot-Deveria, Y., Baciu, M., Dutheil, F., Magnon, V., Gomot, M., & Mermillod, M. (2024). Understanding cognitive flexibility in emotional evaluation in autistic males and females: The social context matters. Molecular Autism, 15(1), 49. [Google Scholar] [CrossRef]
- Lai, J., Zhang, Z., Ni, G., & Luo, Y. (2024). The influence of open-skill and closed-skill sports on executive functions: A systematic review. British Journal of Hospital Medicine, 85(7), 1–16. [Google Scholar] [CrossRef] [PubMed]
- Landry, O., & Al-Taie, S. (2016). A Meta-analysis of the Wisconsin Card Sort Task in Autism. Journal of Autism and Developmental Disorders, 46(4), 1220–1235. [Google Scholar] [CrossRef]
- Leeman, R. F., & Potenza, M. N. (2012). Similarities and differences between pathological gambling and substance use disorders: A focus on impulsivity and compulsivity. Psychopharmacology, 219(2), 469–490. [Google Scholar] [CrossRef]
- London, E. D., Kohno, M., Morales, A. M., & Ballard, M. E. (2015). Chronic methamphetamine abuse and corticostriatal deficits revealed by neuroimaging. Brain Research, 1628, 174–185. [Google Scholar] [CrossRef]
- Luijten, M., Gillan, C. M., De Wit, S., Franken, I. H. A., Robbins, T. W., & Ersche, K. D. (2020). Goal-directed and habitual control in smokers. Nicotine & Tobacco Research, 22(2), 188–195. [Google Scholar] [CrossRef]
- Meade, A. W., & Craig, S. B. (2012). Identifying careless responses in survey data. Psychological Methods, 17(3), 437–455. [Google Scholar] [CrossRef]
- Meier, M. H., Olive, M. F., Jenks, O. A., & Wernik, S. R. (2024). Cannabis use and cognitive functioning across the lifespan. Current Addiction Reports, 11(3), 384–395. [Google Scholar] [CrossRef]
- Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological Science, 21(1), 8–14. [Google Scholar] [CrossRef] [PubMed]
- Moeller, S. J., Abeykoon, S., Dhayagude, P., Varnas, B., Weinstein, J. J., Perlman, G., Gil, R., Fleming, S. M., & Abi-Dargham, A. (2024). Neural correlates of metacognition impairment in opioid addiction. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 9(11), 1211–1221. [Google Scholar] [CrossRef]
- Moeller, S. J., & Goldstein, R. Z. (2014). Impaired self-awareness in human addiction: Deficient attribution of personal relevance. Trends in Cognitive Sciences, 18(12), 635–641. [Google Scholar] [CrossRef]
- Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134–140. [Google Scholar] [CrossRef] [PubMed]
- Ornstein, T. (2000). Profiles of cognitive dysfunction in chronic amphetamine and heroin abusers. Neuropsychopharmacology, 23(2), 113–126. [Google Scholar] [CrossRef]
- Pan, Z., Park, C., Brietzke, E., Zuckerman, H., Rong, C., Mansur, R. B., Fus, D., Subramaniapillai, M., Lee, Y., & McIntyre, R. S. (2019). Cognitive impairment in major depressive disorder. CNS Spectrums, 24(1), 22–29. [Google Scholar] [CrossRef]
- Ramey, T., & Regier, P. S. (2019). Cognitive impairment in substance use disorders. CNS Spectrums, 24(1), 102–113. [Google Scholar] [CrossRef]
- Richter, F. R., & Yeung, N. (2015). Corresponding influences of top-down control on task switching and long-term memory. Quarterly Journal of Experimental Psychology, 68(6), 1124–1147. [Google Scholar] [CrossRef]
- Rommelse, N. N. J., Altink, M. E., De Sonneville, L. M. J., Buschgens, C. J. M., Buitelaar, J., Oosterlaan, J., & Sergeant, J. A. (2007). Are motor inhibition and cognitive flexibility dead ends in ADHD? Journal of Abnormal Child Psychology, 35(6), 957–967. [Google Scholar] [CrossRef]
- Rosa-Alcázar, Á., Olivares-Olivares, P. J., Martínez-Esparza, I. C., Parada-Navas, J. L., Rosa-Alcázar, A. I., & Olivares-Rodríguez, J. (2020). Cognitive flexibility and response inhibition in patients with obsessive-compulsive disorder and generalized anxiety disorder. International Journal of Clinical and Health Psychology, 20(1), 20–28. [Google Scholar] [CrossRef] [PubMed]
- Sabrini, S., Wang, G. Y., Lin, J. C., Ian, J. K., & Curley, L. E. (2019). Methamphetamine use and cognitive function: A systematic review of neuroimaging research. Drug and Alcohol Dependence, 194, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Salo, R., Ursu, S., Buonocore, M. H., Leamon, M. H., & Carter, C. (2009). Impaired prefrontal cortical function and disrupted adaptive cognitive control in methamphetamine abusers: A functional magnetic resonance imaging study. Biological Psychiatry, 65(8), 706–709. [Google Scholar] [CrossRef] [PubMed]
- Schwarze, S. A., Fandakova, Y., & Lindenberger, U. (2024). Cognitive flexibility across the lifespan: Developmental differences in the neural basis of sustained and transient control processes during task switching. Current Opinion in Behavioral Sciences, 58, 101395. [Google Scholar] [CrossRef]
- Smith, J. L., Mattick, R. P., Jamadar, S. D., & Iredale, J. M. (2014). Deficits in behavioural inhibition in substance abuse and addiction: A meta-analysis. Drug and Alcohol Dependence, 145, 1–33. [Google Scholar] [CrossRef]
- Snyder, H. R. (2013). Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: A meta-analysis and review. Psychological Bulletin, 139(1), 81–132. [Google Scholar] [CrossRef]
- Stavro, K., Pelletier, J., & Potvin, S. (2013). Widespread and sustained cognitive deficits in alcoholism: A meta-analysis. Addiction Biology, 18(2), 203–213. [Google Scholar] [CrossRef]
- Tabachnick, B. G., & Fidell, L. S. (2019). Using multivariate statistics (7th ed.). Pearson. [Google Scholar]
- Thoma, P., Wiebel, B., & Daum, I. (2007). Response inhibition and cognitive flexibility in schizophrenia with and without comorbid substance use disorder. Schizophrenia Research, 92(1–3), 168–180. [Google Scholar] [CrossRef]
- Thompson, P. M., Hayashi, K. M., Simon, S. L., Geaga, J. A., Hong, M. S., Sui, Y., Lee, J. Y., Toga, A. W., Ling, W., & London, E. D. (2004). Structural abnormalities in the brains of human subjects who use methamphetamine. The Journal of Neuroscience, 24(26), 6028–6036. [Google Scholar] [CrossRef]
- Uddin, L. Q. (2021). Cognitive and behavioural flexibility: Neural mechanisms and clinical considerations. Nature Reviews Neuroscience, 22(3), 167–179. [Google Scholar] [CrossRef] [PubMed]
- Vaghi, M. M., Vértes, P. E., Kitzbichler, M. G., Apergis-Schoute, A. M., Van Der Flier, F. E., Fineberg, N. A., Sule, A., Zaman, R., Voon, V., Kundu, P., Bullmore, E. T., & Robbins, T. W. (2017). Specific frontostriatal circuits for impaired cognitive flexibility and goal-directed planning in obsessive-compulsive disorder: Evidence from resting-state functional connectivity. Biological Psychiatry, 81(8), 708–717. [Google Scholar] [CrossRef]
- Verdejo-García, A., Alcázar-Córcoles, M. A., & Albein-Urios, N. (2019). Neuropsychological interventions for decision-making in addiction: A systematic review. Neuropsychology Review, 29(1), 79–92. [Google Scholar] [CrossRef]
- Verdejo-García, A., López-Torrecillas, F., Giménez, C. O., & Pérez-García, M. (2004). Clinical implications and methodological challenges in the study of the neuropsychological correlates of cannabis, stimulant, and opioid abuse. Neuropsychology Review, 14(1), 1–41. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y., Yang, Y., Xiao, W., & Su, Q. (2016). Validity and reliability of the Chinese version of the cognitive flexibility questionnaire in evaluating college students. Chinese Journal of Mental Health, 30(1), 58–63. (In Chinese). [Google Scholar]
- Wasylyshyn, C., Verhaeghen, P., & Sliwinski, M. J. (2011). Aging and task switching: A meta-analysis. Psychology and Aging, 26(1), 15–20. [Google Scholar] [CrossRef] [PubMed]
- Whitton, A. E., Henry, J. D., & Grisham, J. R. (2014). Moral rigidity in obsessive-compulsive disorder: Do abnormalities in inhibitory control, cognitive flexibility and disgust play a role? Journal of Behavior Therapy and Experimental Psychiatry, 45(1), 152–159. [Google Scholar] [CrossRef]
- Willcutt, E. G., Doyle, A. E., Nigg, J. T., Faraone, S. V., & Pennington, B. F. (2005). Validity of the executive function theory of attention-deficit/hyperactivity disorder: A meta-analytic review. Biological Psychiatry, 57(11), 1336–1346. [Google Scholar] [CrossRef]
- Woicik, P. A., Moeller, S. J., Alia-Klein, N., Maloney, T., Lukasik, T. M., Yeliosof, O., Wang, G.-J., Volkow, N. D., & Goldstein, R. Z. (2009). The neuropsychology of cocaine addiction: Recent cocaine use masks impairment. Neuropsychopharmacology, 34(5), 1112–1122. [Google Scholar] [CrossRef] [PubMed]
- Wu, W., Huang, L., & Yang, F. (2024). Social anxiety and problematic social media use: A systematic review and meta-analysis. Addictive Behaviors, 153, 107995. [Google Scholar] [CrossRef] [PubMed]
- Yeung, A., Ng, E., & Abi-Jaoude, E. (2022). TikTok and attention-deficit/hyperactivity disorder: A cross-sectional study of social media content quality. The Canadian Journal of Psychiatry, 67(12), 899–906. [Google Scholar] [CrossRef] [PubMed]
- Zilverstand, A., Huang, A. S., Alia-Klein, N., & Goldstein, R. Z. (2018). Neuroimaging impaired response inhibition and salience attribution in human drug addiction: A systematic review. Neuron, 98(5), 886–903. [Google Scholar] [CrossRef]
Methamphetamine-Dependent Group a | Control Group a | t | |
---|---|---|---|
Sample Size | 47 | 41 | / |
Gender | all males | all males | / |
Age (years) | 35.68 (4.84) | 24.42 (2.68) | −13.59 *** |
Years of education | 11.34 (1.76) | 13.10 (1.13) | 5.32 *** |
Duration of drug use (years) | 7.06 (4.39) | / | / |
Monthly drug use before rehabilitation (g) | 8.87 (3.10) | / | / |
Methamphetamine-Dependent Group a | Control Group b | F | p | |
---|---|---|---|---|
RT (Switch) | 1.991 (0.614) | 1.102 (0.198) | 20.75 | <0.001 |
RT (Repeat) | 1.372 (0.423) | 0.807 (0.185) | 23.49 | <0.001 |
Accuracy (Switch) | 0.764 (0.224) | 0.942 (0.040) | 7.25 | 0.009 |
Accuracy (Repeat) | 0.799 (0.206) | 0.971 (0.031) | 11.53 | 0.001 |
RT Switch Cost | 0.619 (0.400) | 0.295 (0.124) | 2.92 | 0.09 |
Accuracy Switch Cost | 0.035 (0.086) | 0.029 (0.030) | 1.15 | 0.29 |
Methamphetamine-Dependent Group a | Control Group b | F | p | |
---|---|---|---|---|
RT (Switch) | 1.593 (0.369) | 1.210 (0.268) | 13.13 | <0.001 |
RT (Repeat) | 1.250 (0.306) | 0.841 (0.180) | 26.97 | <0.001 |
Accuracy (Switch) | 0.877 (0.127) | 0.958 (0.035) | 3.37 | 0.07 |
Accuracy (Repeat) | 0.901 (0.124) | 0.968 (0.030) | 1.60 | 0.21 |
RT Switch Cost | 0.343 (0.182) | 0.369 (0.155) | 0.63 | 0.43 |
Accuracy Switch Cost | 0.024 (0.030) | 0.009 (0.037) | 3.00 | 0.08 |
Methamphetamine-Dependent Group a | Control Group b | F | p | |
---|---|---|---|---|
Failures to Maintain Set | 0.366 (0.662) | 0.488 (0.597) | 2.43 | 0.12 |
Trials to Complete First Category | 6.310 (0.897) | 6.122 (0.900) | 0.01 | 0.94 |
Perseverative Errors | 2.738 (1.499) | 1.659 (1.237) | 2.96 | 0.08 |
Non-Perseverative Errors | 10.262 (3.513) | 8.100 (3.087) | 8.65 | 0.004 ** |
Assessment Measures | Methamphetamine-Dependent Participants in Reference to Controls |
---|---|
Intra-Dimensional Task Switching | Marginally greater RT switch costs |
Extra-Dimensional Task Switching | Marginally greater accuracy switch costs |
Wisconsin Card Sorting Test | Marginally more perseverative and significantly more non-perseverative errors |
Cognitive Flexibility Inventory | Significantly lower self-reported scores |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Li, Y.; Zhang, Q.; Wang, Y.; Zhou, J.; Zhang, M. When the Mind Cannot Shift: Cognitive Flexibility Impairments in Methamphetamine-Dependent Individuals. Behav. Sci. 2025, 15, 1207. https://doi.org/10.3390/bs15091207
Zhang X, Li Y, Zhang Q, Wang Y, Zhou J, Zhang M. When the Mind Cannot Shift: Cognitive Flexibility Impairments in Methamphetamine-Dependent Individuals. Behavioral Sciences. 2025; 15(9):1207. https://doi.org/10.3390/bs15091207
Chicago/Turabian StyleZhang, Xikun, Yue Li, Qikai Zhang, Yuan Wang, Jifan Zhou, and Meng Zhang. 2025. "When the Mind Cannot Shift: Cognitive Flexibility Impairments in Methamphetamine-Dependent Individuals" Behavioral Sciences 15, no. 9: 1207. https://doi.org/10.3390/bs15091207
APA StyleZhang, X., Li, Y., Zhang, Q., Wang, Y., Zhou, J., & Zhang, M. (2025). When the Mind Cannot Shift: Cognitive Flexibility Impairments in Methamphetamine-Dependent Individuals. Behavioral Sciences, 15(9), 1207. https://doi.org/10.3390/bs15091207