Decoding the Digits: How Number Notation Influences Cognitive Effort and Performance in Chinese-to-English Sight Translation
Abstract
1. Introduction
2. Literature Review
3. Methods
3.1. Participants
3.2. Apparatus and Procedures
3.3. Stimulus
3.4. Data Processing
3.4.1. Eye Movements Data Processing
3.4.2. Sight Translation Quality Assessment
- (1)
- Experts’ holistic assessment: Three expert raters (each with over ten years of interpreting experience) from the ten source text evaluators mentioned in Section 3.3 assessed the sight translation quality based on a ten-point scale including three parameters (Han & Riazi, 2017): information completeness (InfoCom), delivery fluency (DeliFlu), and target language quality (TLQual). Participant identities and task conditions were concealed during assessment, with mean scores across raters used for statistical analysis.
- (2)
- Quantitative outputs analysis: We examined both global and number-specific performance indicators. At global level, we looked into target text lexical density (TLD, percentage of content words in the output), participants’ speech rate (SR, in syllables/second), target text production duration (TPD, in seconds), silent pause duration (SPD, in seconds), and filled pauses frequency (FPF, in counts). At local level, we analyzed number production duration (NPD, in seconds), filled pause frequency during number processing (NFPF, in counts), silent pause duration preceding number processing (NSPD, in seconds), number processing attempts (NPA1, in counts), and number processing acceptability (NPA2, percentage of acceptable outputs agreed by experts). The threshold for silent pause was 2 s based on empirical evidence that pauses of this duration or longer significantly impact fluency evaluations in interpreting (Macías, 2006). Filled pauses, “audible hesitations” (Macías, 2006, p. 27), take into account filler utterances such as “uh” and “um”, which do not carry concrete meaning but may negatively influence delivery fluency.
3.4.3. NASA TLX and Retrospective Interview Analysis
3.5. Statistical Analysis
4. Results
4.1. Reading Effort of Interpreters at Global and Local Level
4.1.1. Reading Effort at Global Level: Task-Level Comparison
4.1.2. Reading Effort at Local Level: Number Processing Comparison
4.2. Sight Translation Quality at Global and Local Level
4.2.1. Sight Translation Quality at Global Level: Task-Level Differences
4.2.2. Sight Translation Quality at Local Level: Number Processing Quality
4.3. NASA TLX and Retrospective Interview Results
4.4. Key Findings
5. Discussion
5.1. Greater Cognitive Effort at Global and Local Level in the Chinese Character Number Task
5.2. Sight Translation Quality Declined at Global and Local Level in the Chinese Character Number Task Even with More Processing Attempts
5.3. Theoretical and Practical Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AOI | area of interest |
APD | Average Pupil Diameter |
ASR | automatic speech recognition |
CAI | computer-assisted interpreting |
DeliFlu | Delivery fluency |
fMRI | functional Magnetic Resonance Imaging |
FPF | Filled pauses frequency |
InfoCom | Information completeness |
IVS | eye-voice span |
LMER | Linear mixed-effects regression |
L1 | first language |
L2 | second language |
MTI | Master of Translation and Interpreting |
NAPD | Average Pupil Diameter on Numbers |
NASA TLX | NASA Task Load Index |
NFPF | Filled pause frequency during number processing |
NPA1 | Number processing attempts |
NPA2 | Number processing acceptability |
NPD | Number production duration |
NSPD | Silent pause duration preceding number processing |
NT | Number notation types |
NTFC | Total Fixation Count on Numbers |
NTFD | Total Fixation Duration on Numbers |
SPD | Silent pause duration |
TFC | Total Fixation Count |
TFD | Total Fixation Duration |
TLD | Target text lexical density |
TLQual | Target language quality |
TPD | Target text production duration |
TSC | Total Saccade Count |
TSL | Total Saccade Length |
References
- Alessandrini, M. (1990). Translating numbers in consecutive interpretation: An experimental study. The Interpreters’ Newsletter, 3, 77–80. [Google Scholar]
- Balling, L. (2008). A brief introduction to regression designs and mixed-effects modelling by a recent convert. Copenhagen Studies in Language, 36, 175–192. [Google Scholar]
- Braun, S., & Clarici, A. (1996). Inaccuracy for numerals in simultaneous interpretation: Neurolinguistic and neuropsychological perspectives. The Interpreters’ Newsletter, 7, 85–102. [Google Scholar]
- Campbell, J. I., & Epp, L. J. (2004). An encoding-complex approach to numerical cognition in Chinese-English bilinguals. Canadian Journal of Experimental Psychology, 58(4), 229–244. [Google Scholar] [CrossRef]
- Campbell, J. I., Kanz, C. L., & Xue, Q. (1999). Number processing in Chinese-English bilinguals. Mathematical Cognition, 5(1), 1–39. [Google Scholar] [CrossRef]
- Cao, B., Li, F., & Li, H. (2010a). Notation-dependent processing of numerical magnitude: Electrophysiological evidence from Chinese numerals. Biological Psychology, 83(1), 47–55. [Google Scholar] [CrossRef]
- Cao, B., Li, F., Li, H., Xiao, F., & Qin, J. (2010b). The notation effect between Chinese and Arabic numerals. Psychological Science, 33(2), 422–424. [Google Scholar]
- Carl, M., & Kay, M. (2011). Gazing and typing activities during translation: A comparative study of translation units of professional and student translators. Meta, 56(4), 952–975. [Google Scholar] [CrossRef]
- Cheung, A. K. F. (2009). Numbers in simultaneous interpreting: An experimental study. FORUM Revue Internationale d’Interprétation et de Traduction/International Journal of Interpretation and Translation, 7, 61–88. [Google Scholar] [CrossRef]
- Cheung, A. K. F. (2023). Remote simultaneous interpreting from home or hub: Accuracy of numbers from English into Mandarin Chinese. In K. Liu, & A. K. F. Cheung (Eds.), Translation and interpreting in the age of COVID-19 (pp. 113–132). Springer Nature. [Google Scholar] [CrossRef]
- Chmiel, A. (2023). Eye-tracking studies in conference interpreting. In M. Albl-Mikasa, & E. Tiselius (Eds.), The Routledge handbook of conference interpreting (pp. 457–470). Routledge. [Google Scholar] [CrossRef]
- Chmiel, A., & Lijewska, A. (2022). Reading patterns, reformulation and eye-voice span (IVS) in sight translation. Translation and Interpreting Studies, 18(2), 213–234. [Google Scholar] [CrossRef]
- Christoffels, I. K., & de Groot, A. M. B. (2005). Simultaneous interpreting: A cognitive perspective. In J. F. Kroll, & A. M. B. De Groot (Eds.), Handbook of bilingualism: Psycholinguistic approaches (pp. 454–479). Oxford University Press. [Google Scholar] [CrossRef]
- Defrancq, B., & Fantinuoli, C. (2021). Automatic speech recognition in the booth: Assessment of system performance, interpreters’ performances and interactions in the context of numbers. Target, 33(1), 73–102. [Google Scholar] [CrossRef]
- Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1–2), 1–42. [Google Scholar] [CrossRef] [PubMed]
- Desmet, B., Vandierendonck, M., & Defrancq, B. (2018). Simultaneous interpretation of numbers and the impact of technological support. In C. Fantinuoli (Ed.), Interpreting and technology (pp. 13–27). Language Science Press. [Google Scholar] [CrossRef]
- Frittella, F. M. (2019a). 70.6 billion world citizens: Investigating the difficulty of interpreting numbers. Translation and Interpreting: The International Journal of Translation and Interpreting Research, 11(1), 79–99. [Google Scholar] [CrossRef]
- Frittella, F. M. (2019b). Numbers: From stumbling block to training tool. The Interpreters’ Newsletter, 24, 35–56. [Google Scholar]
- Gile, D. (2009). Basic concepts and models for interpreter and translator training. John Benjamins. [Google Scholar] [CrossRef]
- Han, C. (2023). Translation and interpreting: Mixed-methods research. In A. Chapelle (Ed.), The Encyclopedia of Applied Linguistics (pp. 1–6). John Wiley & Sons, Ltd. [Google Scholar] [CrossRef]
- Han, C., & Riazi, M. (2017). Investigating the effects of speech rate and accent on simultaneous interpretation: A mixed-methods approach. Across Languages and Cultures, 18(2), 237–259. [Google Scholar] [CrossRef]
- Hart, S. G. (2006). NASA-task load index (NASA-TLX): 20 years later. In Proceedings of the human factors and ergonomics society annual meeting (Vol. 50, No. 9, pp. 904–908). Sage Publications. [Google Scholar] [CrossRef]
- Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., & Van de Weijer, J. (2011). Eye tracking: A comprehensive guide to methods and measures. OUP Oxford. [Google Scholar]
- Hvelplund, K. T. (2014). Eye tracking and the translation process: Reflections on the analysis and interpretation of eye-tracking data. MonTI. Monografías de Traducción e Interpretación Special Issue, 1, 201–223. [Google Scholar] [CrossRef]
- Ito, Y., & Hatta, T. (2003). Semantic processing of Arabic, Kanji, and Kana numbers: Evidence from interference in physical and numerical size judgments. Memory and Cognition, 31, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Kadosh, R. C., Henik, A., & Rubinsten, O. (2008). Are Arabic and verbal numbers processed in different ways? Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(6), 1377. [Google Scholar] [CrossRef]
- Kahneman, D. (1973). Attention and effort. Prentice-Hall. [Google Scholar]
- Kajzer-Wietrzny, M., Ivaska, I., & Ferraresi, A. (2024). Fluency in rendering numbers in simultaneous interpreting. Interpreting, 26(1), 1–23. [Google Scholar] [CrossRef]
- Korpal, P., & Stachowiak-Szymczak, K. (2018). The whole picture: Processing of numbers and their context in simultaneous interpreting. Poznan Studies in Contemporary Linguistics, 54(3), 335–354. [Google Scholar] [CrossRef]
- Korpal, P., & Stachowiak-Szymczak, K. (2020). Combined problem triggers in simultaneous interpreting: Exploring the effect of delivery rate on processing and rendering numbers. Perspectives, Studies in Translation Theory and Practice, 28(1), 126–143. [Google Scholar] [CrossRef]
- Liu, J., Liu, C., Shan, B., & Ganiyusufoglu, Ö. S. (2024). A computer-assisted interpreting system for multilingual conferences based on automatic speech recognition. IEEE Access, 12, 67498–67511. [Google Scholar] [CrossRef]
- Liu, M., & Chiu, Y. (2009). Assessing source material difficulty for consecutive interpreting: Quantifiable measures and holistic judgment. Interpreting, International Journal of Research and Practice in Interpreting, 11(2), 244–266. [Google Scholar] [CrossRef]
- Liu, W. (2009). Bilingual’s mechanism of numeral, Chinese number words processing and language selection [Ph.D. thesis, Dalian University of Technology]. [Google Scholar]
- Macías, M. P. (2006). Probing quality criteria in simultaneous interpreting: The role of silent pauses in fluency. Interpreting, 8(1), 25–43. [Google Scholar] [CrossRef]
- Mazza, C. (2001). Numbers in simultaneous interpretation. The Interpreters’ Newsletter, 11, 87–104. [Google Scholar]
- Mead, P. (2015). Numbers. In F. Pöchhacker (Ed.), Routledge encyclopedia of interpreting studies (pp. 286–288). Routledge. [Google Scholar] [CrossRef]
- Mellinger, C. D., & Hanson, T. (2016). Quantitative research methods in translation and interpreting studies. Routledge. [Google Scholar]
- Mellinger, C. D., & Hanson, T. A. (2022). Considerations of ecological validity in cognitive translation and interpreting studies. Translation, Cognition and Behaviour, 5(1), 1–26. [Google Scholar] [CrossRef]
- Miceli, G. (1990). Il sistema dei numeri nella normalità e nella patologia. In G. Denes, & L. Pizzamiglio (Eds.), Manuale di neuropsicologia. normalità e patologia dei processi cognitive (pp. 497–522). Zanichelli. [Google Scholar]
- Morrato, R. (2011). Number processing in Chinese to Italian simultaneous interpreting. FORUM, Revue Internationale D’interprétation et de Traduction/International Journal of Interpretation and Translation, 9, 209–231. [Google Scholar] [CrossRef]
- Pashler, H. (1989). Dissociations and dependencies between speed and accuracy: Evidence for a two-component theory of divided attention in simple tasks. Cognitive Psychology, 21(4), 469–514. [Google Scholar] [CrossRef]
- Pinochi, D. (2010). Simultaneous interpretation of numbers: Comparing German and English to Italian. An experimental study. The Interpreters’ Newsletter, 14, 3–57. [Google Scholar]
- Pisani, E., & Fantinuoli, C. (2021). Measuring the impact of automatic speech recognition on number rendition in simultaneous interpreting. In C. Zhang, & B. Zheng (Eds.), Empirical studies of translation and interpreting (pp. 181–197). Routledge. [Google Scholar] [CrossRef]
- Plevoets, K., & Defrancq, B. (2018). The cognitive load of interpreters in the European Parliament: A corpus-based study of predictors for the disfluency uh(m). Interpreting, International Journal of Research and Practice in Interpreting, 20(1), 1–28. [Google Scholar] [CrossRef]
- Pluzyczka, M. (2013). Eye-tracking supported research into sight translation. In S. Grucza, M. Pluzycka, & J. Zając (Eds.), Translation studies and eye tracking analysis (pp. 105–138). Peter Lang Verlag. [Google Scholar] [CrossRef]
- Pöchhacker, F. (2021). Multimodality in interpreting. In Handbook of translation studies: Volume 5 (pp. 151–157). John Benjamins Publishing Company. [Google Scholar] [CrossRef]
- Pöchhacker, F. (2022). Introducing interpreting studies (3rd ed.). Routledge. [Google Scholar] [CrossRef]
- Seubert, S. (2019). Visuelle informationen beim simultandolmetschen: Eine eyetracking-studie (Transkulturalität-Translation-Transfer). Frank & Timme. [Google Scholar]
- Stachowiak-Szymczak, K., & Korpal, P. (2019). Interpreting accuracy and visual processing of numbers in professional and student interpreters: An eye-tracking study. Across Languages and Cultures, 20(2), 235–251. [Google Scholar] [CrossRef]
- Sun, H., Huang, Z., & Gu, Z. (2024). Analysis of interpreter performance on numbers, proper nouns, and complex sentences in AI-assisted English-Chinese simultaneous interpreting: An eye-tracking experimental study. In International symposium on emerging technologies for education (pp. 153–165). Springer Nature. [Google Scholar] [CrossRef]
- Sung, Y. T., Chang, T. H., & Lin, W. C. (2016). CRIE: An automated analyzer for Chinese texts. Behavior Research Methods, 48, 1238–1251. [Google Scholar] [CrossRef]
- Szűcs, D., & Csépe, V. (2004). Access to numerical information is dependent on the modality of stimulus presentation in mental addition: A combined ERP and behavioural study. Cognitive Brain Research, 19(1), 10–27. [Google Scholar] [CrossRef] [PubMed]
- Tobii Studio User’s Manual. (2021). Tobii studio user’s manual (Version 3.4.8). Tobii Technolog. Available online: https://go.tobii.com/TSUM (accessed on 1 August 2025).
- Treviño, R., Ortiz, R., & Quinto-Pozos, D. (2022). Multimodal-multilingual interpreting: Signed–spoken interactions. In The Routledge handbook of sign language translation and interpreting (pp. 9–25). Routledge. [Google Scholar] [CrossRef]
- Xu, Y., Liu, E., & Regier, T. (2020). Numeral systems across languages support efficient communication: From approximate numerosity to recursion. Open Mind, 4, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Yang, S. (2023). Impact of text presence on number interpreting performance: Evidence from novice interpreters. Foreign Languages and Translation, 3, 16–24. (In Chinese). [Google Scholar]
Participants | Age | Language | Gender |
---|---|---|---|
18 MTI students | Range (23–28) M = 24.6 (SD = 1.99) | Chinese (L1), English (L2) | 14 females, 4 males |
Description | Task 1 | Task 2 |
---|---|---|
Independent variable Three trigger numbers in Chinese (and their English translations) | 1287亿430万元 (128 billion, 704 million, and 300 thousand Yuan) 401亿5070万元 (40 billion, 150 million, and 700 thousand Yuan) 238亿元 (23 billion and 800 million Yuan) | 六千五百四十三亿六百四十万元 (654 billion, 306 million, and 400 thousand Yuan) 九百零五亿四千九百三十万元 (90 billion, 549 million, and 300 thousand Yuan) 七百八十九亿元 (78 billion and 900 million Yuan) |
Lexical parameters | ||
Word count (character) | 120 | 120 |
Unrepeated words ratio | 0.63 | 0.64 |
Lexical density | 0.75 | 0.74 |
Difficult words | 13 | 15 |
Syntactic parameters | ||
Number of sentences | 6 | 6 |
Characters per sentence | 20 | 20 |
Complex sentences | 1 | 1 |
Expert assessment | M = 5.52 | M = 5.46 |
Text complexity (10) | SD = 0.89 | SD = 1.03 |
Category | Task 1 M (SD) | Task 2 M (SD) | Paired t-Test |
---|---|---|---|
Lexical complexity (out of 10) | 5.5 (0.70) | 5 (0.73) | p = 0.23 |
Syntactic complexity (out of 10) | 4.8 (0.63) | 4.9 (0.73) | p = 0.75 |
Information density (out of 10) | 7 (0.94) | 7.3 (0.95) | p = 0.49 |
Logic complexity (out of 10) | 5.5 (0.71) | 5 (0.82) | p = 0.16 |
Comprehension difficulty (out of 10) | 4.8 (1.03) | 5.1 (0.86) | p = 0.49 |
Gaze Category | Items | Task 1 M (SD) | Task 2 M (SD) |
---|---|---|---|
Global | APD (millimeter) | 3.22 (0.25) | 3.27 (0.22) |
TFC (count) | 188.1 (56.08) | 250.1 (84.80) | |
TFD (seconds) | 42.73 (18.39) | 57.76 (21.87) | |
TSC (count) | 363.39 (183.84) | 446.78 (227.99) | |
TSL (pixel) | 32,021.02 (10,671.35) | 42,789.48 (12,890.04) | |
IVS (seconds) | 1.63 (1.09) | 4.06 (1.94) | |
Local | NAPD (millimeter) | 3.43 (0.27) | 3.69 (0.25) |
NTFC (count) | 41.28 (34.17) | 77.78 (53.10) | |
NTFD (seconds) | 12.23 (10.05) | 22.39 (14.77) |
Gaze | Items | Term | Estimate | SE | t | p | Random Effect (Variance) | Random Effect (Std. Dev.) |
---|---|---|---|---|---|---|---|---|
Global | APD | Intercept | 3.223 | 0.054 | 58.937 | <0.001 | 0.046342 | 0.2153 |
T2 | 0.047 | 0.028 | 1.634 | =0.121 | ||||
TFC | Intercept | 3.675 | 0.130 | 28.20 | <0.001 | 0.13675 | 0.05726 | |
T2 | 0.130 | 0.054 | 2.40 | =0.03 * | ||||
TFD | Intercept | 42.728 | 4.763 | 8.971 | <0.001 | 388.75 | 19.717 | |
T2 | 15.037 | 1.475 | 10.196 | <0.001 * | ||||
TSC | Intercept | 1.467 | 0.059 | 24.59 | <0.001 | 5.32 × 10−5 | 0.007290 | |
T2 | 0.004 | 0.001 | 3.81 | =0.0006 * | ||||
TSL | Intercept | 32,021.02 | 2789.02 | 11.481 | <0.001 | 115,941,932 | 10,293 | |
T2 | 10,768.47 | 1945.75 | 5.534 | <0.001 * | ||||
IVS | Intercept | 0.390 | 0.106 | 3.68 | <0.001 | 0.2351 | 0.4849 | |
T2 | 1.495 | 0.075 | 19.75 | <0.001 * | ||||
Local | NAPD | Intercept | 3.433 | 0.061 | 56.041 | <0.001 | 0.057955 | 0.2407 |
T2 | 0.252 | 0.032 | 7.738 | <0.001 * | ||||
NTFC | Intercept | 4.174 | 0.079 | 52.44 | <0.001 | 0.9317 | 0.9647 | |
T2 | 0.973 | 0.168 | 5.77 | <0.001 * | ||||
NTFD | Intercept | 2.260 | 0.138 | 16.32 | <0.001 | 0.5087 | 0.7134 | |
T2 | 0.731 | 0.165 | 4.42 | <0.001 * |
Gaze Category | Items | Task 1 M (SD) | Task 2 M (SD) |
---|---|---|---|
Global | InfoCom (100) | 78.74 (9.87) | 69.73 (11.45) |
DeliFlu (100) | 77.20 (9.02) | 69.66 (8.66) | |
TLQual (100) | 77.70 (8.97) | 69.69 (10.33) | |
TLD (percentage) | 0.45 (0.05) | 0.47 (0.07) | |
SR (syllables/second) | 2.10 (0.33) | 2.09 (0.46) | |
TPD (seconds) | 79.11 (22.16) | 99.19 (27.90) | |
SPD (seconds) | 26.45 (13.13) | 26.04 (8.09) | |
FPF (counts) | 4.56 (5.18) | 10.16 (7.85) | |
Local | NPD (seconds) | 17.88 (11.90) | 29.12 (14.86) |
NSPD (seconds) | 5.64 (4.29) | 10.03 (5.33) | |
NFPF (counts) | 3.44 (3.97) | 8.66 (6.64) | |
NPA1 (count) | 4.28 (1.41) | 6.67 (2) | |
NPA2 (percentage) | 71.6% (12.5%) | 46.6% (12.5%) |
Gaze | Items | Term | Estimate | SE | t | p | Random Effect (Variance) | Random Effect (Std. Dev.) |
---|---|---|---|---|---|---|---|---|
Global | InfoCom | Intercept | 78.743 | 2.52 | 31.251 | <0.001 | 89.76 | 9.474 |
T2 | −9.004 | 1.65 | −5.456 | <0.001 * | ||||
DeliFlu | Intercept | 3018.24 | 147.3 | 20.490 | <0.001 | 289,442 | 537.9 | |
T2 | −556.90 | 106.03 | −5.252 | <0.001 * | ||||
TLQual | Intercept | 77.707 | 2.281 | 34.07 | <0.001 | 75.04 | 8.683 | |
T2 | −8.023 | 1.423 | −5.64 | <0.001 * | ||||
TLD | Intercept | 0.447 | 0.014 | 30.590 | <0.001 | 0.002063 | 0.045 | |
T2 | 0.028 | 0.014 | 2.013 | =0.060 | ||||
SR | Intercept | 2.103 | 0.094 | 22.245 | <0.001 | 0.12784 | 0.357 | |
T2 | −0.007 | 0.060 | −0.119 | =0.906 | ||||
TPD | Intercept | 79.109 | 5.940 | 13.32 | <0.001 | 23.157 | 9.939 | |
T2 | 20.078 | 3.313 | 6.06 | <0.001 * | ||||
SPD | Intercept | 3.272 | 0.147 | 22.22 | <0.001 | 0.1178 | 0.343 | |
T2 | 0.047 | 0.085 | 0.55 | =0.589 | ||||
FPF | Intercept | 1.428 | 0.147 | 9.69 | <0.001 | 0.9141 | 0.956 | |
T2 | 1.040 | 0.392 | 2.65 | =0.011 * | ||||
Local | NSPD | Intercept | 1.292 | 0.139 | 9.26 | <0.001 | 0.882 | 0.2970 |
T2 | 0.432 | 0.194 | 2.22 | =0.03 * | ||||
NFPF | Intercept | 1.208 | 0.234 | 5.16 | <0.001 | 0.6816 | 0.8252 | |
T2 | 0.981 | 0.279 | 3.51 | =0.002 * | ||||
NPD | Intercept | 3.509 | 0.352 | 9.95 | <0.001 | 0.7875 | 0.8873 | |
T2 | 0.933 | 0.417 | 2.24 | =0.033 * | ||||
NPA1 | Intercept | 1.771 | 0.244 | 7.24 | <0.001 | 0.1999 | 0.4460 | |
T2 | 0.736 | 0.276 | 2.66 | =0.014 * | ||||
NPA2 | Intercept | 7.166 | 0.324 | 22.076 | <0.001 | 0.2353 | 0.4851 | |
T2 | −2.5 | 0.429 | −5.818 | <0.001 * |
Items | Task 1 M (SD) | Task 2 M (SD) |
---|---|---|
Mental demand | 6 (1.57) | 8.5 (0.99) |
Physical demand | 5.44 (1.25) | 7.5 (1.04) |
Temporal demand | 5.72 (1.36) | 7.89 (1.08) |
Performance | 7.5 (0.99) | 4.83 (0.99) |
Effort | 5.61 (1.38) | 8.55 (1.09) |
Frustration | 5.33 (1.57) | 8.33 (1.08) |
Items | Term | Estimate | SE | t | p | Random Effect (Variance) | Random Effect (Std. Dev.) |
---|---|---|---|---|---|---|---|
Mental demand | Intercept | 6.00 | 0.309 | 19.407 | <0.001 | 1.1176 | 1.0572 |
T2 | 2.50 | 0.258 | 9.659 | <0.001 * | |||
Physical demand | Intercept | 5.444 | 0.271 | 20.091 | <0.001 | 0.9412 | 0.9701 |
T2 | 2.055 | 0.205 | 9.994 | <0.001 * | |||
Temporal demand | Intercept | 5.722 | 0.289 | 19.747 | <0.001 | 0.4379 | 0.6617 |
T2 | 2.166 | 0.345 | 6.273 | <0.001 * | |||
Performance | Intercept | 7.500 | 0.232 | 32.30 | <0.001 | 0.5000 | 0.7071 |
T2 | −2.66 | 0.228 | −11.66 | <0.001 * | |||
Effort | Intercept | 5.611 | 0.29 | 19.12 | <0.001 | 1.1111 | 1.054 |
T2 | 2.944 | 0.221 | 13.32 | <0.001 * | |||
Frustration | Intercept | 5.333 | 0.318 | 16.756 | <0.001 | 0.2941 | 0.5423 |
T2 | 3.000 | 0.412 | 7.277 | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zong, X.; Song, L.; Yang, S. Decoding the Digits: How Number Notation Influences Cognitive Effort and Performance in Chinese-to-English Sight Translation. Behav. Sci. 2025, 15, 1195. https://doi.org/10.3390/bs15091195
Zong X, Song L, Yang S. Decoding the Digits: How Number Notation Influences Cognitive Effort and Performance in Chinese-to-English Sight Translation. Behavioral Sciences. 2025; 15(9):1195. https://doi.org/10.3390/bs15091195
Chicago/Turabian StyleZong, Xueyan, Lei Song, and Shanshan Yang. 2025. "Decoding the Digits: How Number Notation Influences Cognitive Effort and Performance in Chinese-to-English Sight Translation" Behavioral Sciences 15, no. 9: 1195. https://doi.org/10.3390/bs15091195
APA StyleZong, X., Song, L., & Yang, S. (2025). Decoding the Digits: How Number Notation Influences Cognitive Effort and Performance in Chinese-to-English Sight Translation. Behavioral Sciences, 15(9), 1195. https://doi.org/10.3390/bs15091195