The Relationship Between the Phonological Processing Network and the Tip-of-the-Tongue Phenomenon: Evidence from Large-Scale DTI Data
Abstract
1. Introduction
2. Methods
2.1. Participants
2.2. Behavioral Data
2.3. Data Acquisition
2.4. Image Preprocess
2.5. Network Construction
2.6. Graph Analysis
2.7. Statistical Analysis
3. Results
3.1. Global Properties
3.2. Nodal Properties
3.3. Age-Related Differences
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abrams, L., White, K. K., & Eitel, S. L. (2003). Isolating phonological components that increase tip-of-the-tongue resolution. Memory & Cognition, 31(8), 1153–1162. [Google Scholar] [CrossRef]
- Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. PLoS Computational Biology, 3(2), e17. [Google Scholar] [CrossRef] [PubMed]
- Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52(3), 317–332. [Google Scholar] [CrossRef]
- Anderson, J. A. E., Grundy, J. G., De Frutos, J., Barker, R. M., Grady, C., & Bialystok, E. (2018). Effects of bilingualism on white matter integrity in older adults. NeuroImage, 167, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Andersson, J. L. (2010). Non-linear registration, aka spatial normalisation, FMRIB technical report (Vol. 2, p. e21). FMRIB Analysis Group of the University of Oxford. [Google Scholar]
- Andersson, J. L. R., & Sotiropoulos, S. N. (2016). An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage, 125, 1063–1078. [Google Scholar] [CrossRef] [PubMed]
- Bamiou, D.-E., Musiek, F. E., & Luxon, L. M. (2003). The insula (Island of Reil) and its role in auditory processing. Brain Research Reviews, 42(2), 143–154. [Google Scholar] [CrossRef] [PubMed]
- Basser, P. J., Pajevic, S., Pierpaoli, C., Duda, J., & Aldroubi, A. (2000). In vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine, 44(4), 625–632. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D. S., & Bullmore, E. (2006). Small-world brain networks. The Neuroscientist, 12(6), 512–523. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D. S., Cullen, K. E., Eickhoff, S. B., Farah, M. J., Goda, Y., Haggard, P., Hu, H., Hurd, Y. L., Josselyn, S. A., Khakh, B. S., Knoblich, J. A., Poirazi, P., Poldrack, R. A., Prinz, M., Roelfsema, P. R., Spires-Jones, T. L., Sur, M., & Ueda, H. R. (2020). Reflections on the past two decades of neuroscience. Nature Reviews Neuroscience, 21(10), 524–534. [Google Scholar] [CrossRef] [PubMed]
- Bennett, I. J., & Rypma, B. (2013). Advances in functional neuroanatomy: A review of combined DTI and fMRI studies in healthy younger and older adults. Neuroscience and Biobehavioral Reviews, 37(7), 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Billeci, L., Calderoni, S., Tosetti, M., Catani, M., & Muratori, F. (2012). White matter connectivity in children with autism spectrum disorders: A tract-based spatial statistics study. BMC Neurology, 12(1), 148. [Google Scholar] [CrossRef] [PubMed]
- Bourguignon, M., Molinaro, N., Lizarazu, M., Taulu, S., Jousmäki, V., Lallier, M., Carreiras, M., & De Tiège, X. (2020). Neocortical activity tracks the hierarchical linguistic structures of self-produced speech during reading aloud. NeuroImage, 216, 116788. [Google Scholar] [CrossRef] [PubMed]
- Breining, B., Nozari, N., & Rapp, B. (2016). Does segmental overlap help or hurt? Evidence from blocked cyclic naming in spoken and written production. Psychonomic Bulletin & Review, 23(2), 500–506. [Google Scholar] [CrossRef]
- Brett, M., Markiewicz, C. J., Hanke, M., Côté, M.-A., Cipollini, B., McCarthy, P., Jarecka, D., Cheng, C. P., Larson, E., Halchenko, Y. O., Cottaar, M., Ghosh, S., Wassermann, D., Gerhard, S., Lee, G. R., Baratz, Z., Wang, H.-T., Papadopoulos Orfanos, D., Kastman, E., … freec84. (2024). nipy/nibabel: 5.2.1 (Version 5.2.1) [Computer software]. Zenodo. [Google Scholar] [CrossRef]
- Brown, R., & McNeil, D. (1966). The “Tip of the tongue” phenomenon. Journal of Verbal Learning and Verbal Behavior, 5, 325–337. [Google Scholar] [CrossRef]
- Buchsbaum, B. R., Baldo, J., Okada, K., Berman, K. F., Dronkers, N., D’Esposito, M., & Hickok, G. (2011). Conduction aphasia, sensory-motor integration, and phonological short-term memory—An aggregate analysis of lesion and fMRI data. Brain and Language, 119, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198. [Google Scholar] [CrossRef] [PubMed]
- Burke, D. M., Locantore, J. K., Austin, A. A., & Chae, B. (2004). Cherry pit primes brad Pitt: Homophone priming effects on young and older adults’ production of proper names. Psychological Science, 15(3), 164–170. [Google Scholar] [CrossRef] [PubMed]
- Burke, D. M., MacKay, D. G., Worthley, J. S., & Wade, E. (1991). On the tip of the tongue: What causes word finding failures in young and older adults? Journal of Memory and Language, 30(5), 542–579. [Google Scholar] [CrossRef]
- Burke, D. M., & Shafto, M. A. (2004). Aging and language production. Current Directions in Psychological Science, 13(1), 21–24. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q., Shu, N., An, L., Wang, P., Sun, L., Xia, M.-R., Wang, J.-H., Gong, G.-L., Zang, Y.-F., Wang, Y.-F., & He, Y. (2013). Probabilistic diffusion tractography and graph theory analysis reveal abnormal white matter structural connectivity networks in drug-naive boys with attention deficit/hyperactivity disorder. Journal of Neuroscience, 33(26), 10676–10687. [Google Scholar] [CrossRef] [PubMed]
- Catani, M., & Mesulam, M. (2008). The arcuate fasciculus and the disconnection theme in language and aphasia: History and current state. Cortex, 44(8), 953–961. [Google Scholar] [CrossRef] [PubMed]
- Crosson, B., Ford, A., McGregor, K. M., Meinzer, M., Cheshkov, S., Li, X., Walker-Batson, D., & Briggs, R. W. (2010). Functional imaging and related techniques: An introduction for rehabilitation researchers. The Journal of Rehabilitation Research and Development, 47(2), vii. [Google Scholar] [CrossRef] [PubMed]
- Dell, G. S. (1986). A spreading-activation theory of retrieval in sentence production. Psychological Review, 93(3), 283–321. [Google Scholar] [CrossRef] [PubMed]
- De Resende, E. D. P. F., Xia, F., Sidney, S., Launer, L. J., Schreiner, P. J., Erus, G., Bryan, N., & Yaffe, K. (2022). Higher literacy is associated with better white matter integrity and cognition in middle age. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 14(1), e12363. [Google Scholar] [CrossRef]
- Devlin, J. T., Matthews, P. M., & Rushworth, M. F. (2003). Semantic processing in the left inferior prefrontal cortex: A combined functional magnetic resonance imaging and transcranial magnetic stimulation study. Journal of Cognitive Neuroscience, 15(1), 71–84. [Google Scholar] [CrossRef] [PubMed]
- Dronkers, N. F., Plaisant, O., Iba-Zizen, M. T., & Cabanis, E. A. (2007). Paul Broca’s historic cases: High resolution MR imaging of the brains of Leborgne and Lelong. Brain, 130(5), 1432–1441. [Google Scholar] [CrossRef] [PubMed]
- Faust, M., & Sharfstein-Friedman, S. (2003). Naming difficulties in adolescents with dyslexia: Application of the tip-of-the-tongue paradigm. Brain and Cognition, 53(2), 211–217. [Google Scholar] [CrossRef] [PubMed]
- Fornito, A., Zalesky, A., & Bullmore, E. (2016). Fundamentals of brain network analysis. Academic Press. [Google Scholar]
- Fraga-González, G., Smit, D. J. A., Van Der Molen, M. J. W., Tijms, J., Stam, C. J., Geus, E. J. C. D., & Van Der Molen, M. W. (2021). Graph analysis of EEG Functional connectivity networks during a letter-speech sound binding task in adult dyslexics. Frontiers in Psychology, 12, 767839. [Google Scholar] [CrossRef] [PubMed]
- García-Pentón, L., Pérez Fernández, A., Iturria-Medina, Y., Gillon-Dowens, M., & Carreiras, M. (2014). Anatomical connectivity changes in the bilingual brain. NeuroImage, 84, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Gollan, T. H., & Acenas, L.-A. R. (2004). What is a TOT? Cognate and translation effects on tip-of-the-tongue states in Spanish-English and Tagalog-English bilinguals. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(1), 246–269. [Google Scholar] [CrossRef] [PubMed]
- Gough, P. M., Nobre, A. C., & Devlin, J. T. (2005). Dissociating linguistic processes in the left inferior frontal cortex with transcranial magnetic stimulation. Journal of Neuroscience, 25(35), 8010–8016. [Google Scholar] [CrossRef] [PubMed]
- Hanley, J. R., & Chapman, E. (2008). Partial knowledge in a tip-of-the-tongue state about two- and three-word proper names. Psychonomic Bulletin & Review, 15(1), 156–160. [Google Scholar] [CrossRef]
- Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Van Kerkwijk, M. H., Brett, M., Haldane, A., Del Río, J. F., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. [Google Scholar] [CrossRef]
- Hernandez-Fernandez, M., Reguly, I., Jbabdi, S., Giles, M., Smith, S., & Sotiropoulos, S. N. (2019). Using GPUs to accelerate computational diffusion MRI: From microstructure estimation to tractography and connectomes. NeuroImage, 188, 598–615. [Google Scholar] [CrossRef] [PubMed]
- Hernández, M., Guerrero, G. D., Cecilia, J. M., García, J. M., Inuggi, A., Jbabdi, S., Behrens, T. E. J., & Sotiropoulos, S. N. (2013). Accelerating fibre orientation estimation from diffusion weighted magnetic resonance imaging using GPUs. PLoS ONE, 8(4), e61892. [Google Scholar] [CrossRef] [PubMed]
- Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8(5), 393–402. [Google Scholar] [CrossRef] [PubMed]
- Hipp, J. F., Hawellek, D. J., Corbetta, M., Siegel, M., & Engel, A. K. (2012). Large-scale cortical correlation structure of spontaneous oscillatory activity. Nature Neuroscience, 15(6), e3101. [Google Scholar] [CrossRef] [PubMed]
- Hofstetter, S., Friedmann, N., & Assaf, Y. (2017). Rapid language-related plasticity: Microstructural changes in the cortex after a short session of new word learning. Brain Structure and Function, 222(3), 1231–1241. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M., Della Penna, S., Duyn, J. H., Glover, G. H., Gonzalez-Castillo, J., Handwerker, D. A., Keilholz, S., Kiviniemi, V., Leopold, D. A., De Pasquale, F., Sporns, O., Walter, M., & Chang, C. (2013). Dynamic functional connectivity: Promise, issues, and interpretations. NeuroImage, 80, 360–378. [Google Scholar] [CrossRef] [PubMed]
- Indefrey, P. (2011). The spatial and temporal signatures of word production components: A critical update. Frontiers in Psychology, 2, e255. [Google Scholar] [CrossRef] [PubMed]
- Indefrey, P., & Levelt, W. J. M. (2004). The spatial and temporal signatures of word production components. Cognition, 92(1–2), 101–144. [Google Scholar] [CrossRef] [PubMed]
- James, L. E., & Burke, D. M. (2000). Phonological priming effects on word retrieval and tip-of-the-tongue experiences in young and older adults. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(6), 1378–1391. [Google Scholar] [CrossRef] [PubMed]
- Janse, E. (2006). Lexical competition effects in aphasia: Deactivation of lexical candidates in spoken word processing. Brain and Language, 97(1), 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17(2), 825–841. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., & Smith, S. M. (2012). FSL. NeuroImage, 62(2), 782–790. [Google Scholar] [CrossRef] [PubMed]
- Jones, G. V., & Langford, S. (1987). Phonological blocking in the tip of the tongue state. Cognition, 26(2), 115–122. [Google Scholar] [CrossRef] [PubMed]
- Kamali, A., Flanders, A. E., Brody, J., Hunter, J. V., & Hasan, K. M. (2014). Tracing superior longitudinal fasciculus connectivity in the human brain using high resolution diffusion tensor tractography. Brain Structure and Function, 219(1), 269–281. [Google Scholar] [CrossRef] [PubMed]
- Kerr, E., Ivanova, B., & Strijkers, K. (2023). Lexical access in speech production: Psycho-and neurolinguistic perspectives on the spatiotemporal dynamics. In Language production (1st ed., pp. 32–65). Routledge. [Google Scholar]
- Kiss, L. Z., Nyárády, B. B., Pállinger, É., Lux, Á., Jermendy, Á. L., Csobay-Novák, C., Soós, P., Szelid, Z., Láng, O., Kőhidai, L., Dinya, E., Dósa, E., Merkely, B., & Bagyura, Z. (2024). Association of growth and differentiation factor-15 with coronary artery calcium score and ankle-brachial index in a middle-aged and elderly Caucasian population sample free of manifest cardiovascular disease. GeroScience, 46(1), 1343–1350. [Google Scholar] [CrossRef] [PubMed]
- Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical Review Letters, 87(19), 198701. [Google Scholar] [CrossRef] [PubMed]
- Latora, V., & Marchiori, M. (2003). Economic small-world behavior in weighted networks. The European Physical Journal B—Condensed Matter and Complex Systems, 32(2), 249–263. [Google Scholar] [CrossRef]
- Laver, G. D., & Burke, D. M. (1993). Why do semantic priming effects increase in old age? A meta-analysis. Psychology and Aging, 8(1), 34–43. [Google Scholar] [CrossRef] [PubMed]
- Levelt, W. J. M. (2001). Spoken word production: A theory of lexical access. Proceedings of the National Academy of Sciences of the United States of America, 98(23), 13464–13471. [Google Scholar] [CrossRef] [PubMed]
- Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22(1), 1–38. [Google Scholar] [CrossRef] [PubMed]
- Li, M., Schilling, K. G., Xu, L., Choi, S., Gao, Y., Zu, Z., Anderson, A. W., Ding, Z., & Gore, J. C. (2024). White matter engagement in brain networks assessed by integration of functional and structural connectivity. NeuroImage, 302, 120887. [Google Scholar] [CrossRef] [PubMed]
- López-Barroso, D., Catani, M., Ripollés, P., Dell’Acqua, F., Rodríguez-Fornells, A., & De Diego-Balaguer, R. (2013). Word learning is mediated by the left arcuate fasciculus. Proceedings of the National Academy of Sciences of the United States of America, 110(32), 13168–13173. [Google Scholar] [CrossRef] [PubMed]
- Mackay, D., & Burke, D. (1990). Chapter five cognition and aging: A theory of new learning and the use of old connections. Aging and Cognition: Knowledge Organization and Utilization, 71, 213–263. [Google Scholar] [CrossRef]
- Makris, N., Meyer, J. W., Bates, J. F., Yeterian, E. H., Kennedy, D. N., & Caviness, V. S. (1999). MRI-based topographic parcellation of human cerebral white matter and nuclei. NeuroImage, 9(1), 18–45. [Google Scholar] [CrossRef] [PubMed]
- Makris, N., Papadimitriou, G. M., Kaiser, J. R., Sorg, S., Kennedy, D. N., & Pandya, D. N. (2009). Delineation of the middle longitudinal fascicle in humans: A quantitative, In Vivo, DT-MRI study. Cerebral Cortex, 19(4), 777–785. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A. S., & Bock, K. (1992). The tip-of-the-tongue phenomenon: Blocking or partial activation? Memory & Cognition, 20(6), 715–726. [Google Scholar] [CrossRef]
- Michalareas, G., Vezoli, J., van Pelt, S., Schoffelen, J.-M., Kennedy, H., & Fries, P. (2016). Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron, 89(2), 384–397. [Google Scholar] [CrossRef] [PubMed]
- Michelutti, M., Urso, D., Tafuri, B., Gnoni, V., Giugno, A., Zecca, C., Dell’Abate, M. T., Vilella, D., Manganotti, P., Blasi, R., Nigro, S., & Logroscino, G. (2024). Patterns of a structural covariance network associated with Mild Behavioural Impairment in biologically defined Alzheimer’s Disease. Research Square, preprint. [Google Scholar] [CrossRef]
- Nozari, N. (2022). The neural basis of word production. In A. Papafragou, J. C. Trueswell, & L. R. Gleitman (Eds.), The Oxford handbook of the mental lexicon (1st ed., pp. 536–558). Oxford University Press. [Google Scholar] [CrossRef]
- Oberle, S., & James, L. E. (2013). Semantically- and phonologically-related primes improve name retrieval in young and older adults. Language and Cognitive Processes, 28(9), 1378–1393. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.-A., & Ha, J.-W. (2015). The effects of aging and mild cognitive impairment on the tip-of-the-tongue phenomenon in people naming task. Dementia and Neurocognitive Disorders, 14(1), 39. [Google Scholar] [CrossRef]
- Paulesu, E., Shallice, T., Danelli, L., Sberna, M., Frackowiak, R. S. J., & Frith, C. D. (2017). Anatomical Modularity of verbal working memory? Functional anatomical evidence from a famous patient with short-term memory deficits. Frontiers in Human Neuroscience, 11, 231. [Google Scholar] [CrossRef] [PubMed]
- Pyers, J. E., Gollan, T. H., & Emmorey, K. (2009). Bimodal bilinguals reveal the source of tip-of-the-tongue states. Cognition, 112(2), 323–329. [Google Scholar] [CrossRef] [PubMed]
- Qu, Q., Feng, C., & Damian, M. F. (2021). Interference effects of phonological similarity in word production arise from competitive incremental learning. Cognition, 212, 104738. [Google Scholar] [CrossRef] [PubMed]
- Ralph, M. A. L., McClelland, J. L., Patterson, K., Galton, C. J., & Hodges, J. R. (2001). No right to speak? The relationship between object naming and semantic impairment: Neuropsychological evidence and a computational model. Journal of Cognitive Neuroscience, 13(3), 341–356. [Google Scholar] [CrossRef] [PubMed]
- Reason, J., & Lucas, D. (1984). Using cognitive diaries to investigate naturally occurring memory blocks. In Everyday memory, actions and absent-mindedness (pp. 53–70). Academic Press. [Google Scholar]
- Reijmer, Y. D., Leemans, A., Brundel, M., Kappelle, L. J., Biessels, G. J., & on behalf of the Utrecht Vascular Cognitive Impairment (VCI) Study Group. (2013). Disruption of the cerebral white matter network is related to slowing of information processing speed in patients with type 2 diabetes. Diabetes, 62(6), 2112–2115. [Google Scholar] [CrossRef] [PubMed]
- Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52(3), 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Schill, J., Simonyan, K., Lang, S., Mathys, C., Thiel, C., & Witt, K. (2023). Parkinson’s disease speech production network as determined by graph-theoretical network analysis. Network Neuroscience, 7(2), 712–730. [Google Scholar] [CrossRef] [PubMed]
- Schuyler, B., Ollinger, J. M., Oakes, T. R., Johnstone, T., & Davidson, R. J. (2010). Dynamic causal modeling applied to fMRI data shows high reliability. NeuroImage, 49(1), 603–611. [Google Scholar] [CrossRef] [PubMed]
- Shafto, M. A., Burke, D. M., Stamatakis, E. A., Tam, P. P., & Tyler, L. K. (2007). On the tip-of-the-tongue: Neural correlates of increased word-finding failures in normal aging. Journal of Cognitive Neuroscience, 19(12), 2060–2070. [Google Scholar] [CrossRef] [PubMed]
- Shafto, M. A., Tyler, L. K., Dixon, M., Taylor, J. R., Rowe, J. B., Cusack, R., Calder, A. J., Marslen-Wilson, W. D., Duncan, J., Dalgleish, T., Henson, R. N., Brayne, C., Cam-CAN, & Matthews, F. E. (2014). The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study protocol: A cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing. BMC Neurology, 14(1), 204. [Google Scholar] [CrossRef] [PubMed]
- Shu, N., Liu, Y., Li, K., Duan, Y., Wang, J., Yu, C., Dong, H., Ye, J., & He, Y. (2011). Diffusion tensor tractography reveals disrupted topological efficiency in white matter structural networks in multiple sclerosis. Cerebral Cortex, 21(11), 2565–2577. [Google Scholar] [CrossRef] [PubMed]
- Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155. [Google Scholar] [CrossRef] [PubMed]
- Sporns, O., Tononi, G., & Kötter, R. (2005). The human connectome: A structural description of the human brain. PLoS Computational Biology, 1(4), e42. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, E. A., Shafto, M. A., Williams, G., Tam, P., & Tyler, L. K. (2011). White matter changes and word finding failures with increasing age. PLoS ONE, 6(1), e14496. [Google Scholar] [CrossRef] [PubMed]
- Stasenko, A., & Gollan, T. H. (2019). Tip of the tongue after any language: Reintroducing the notion of blocked retrieval. Cognition, 193, 104027. [Google Scholar] [CrossRef] [PubMed]
- Tan, L. H., Liu, H.-L., Perfetti, C. A., Spinks, J. A., Fox, P. T., & Gao, J.-H. (2001). The neural system underlying chinese logograph reading. NeuroImage, 13(5), 836–846. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J. K., & Burke, D. M. (2002). Asymmetric aging effects on semantic and phonological processes: Naming in the picture-word interference task. Psychology and Aging, 17(4), 662–676. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J. R., Williams, N., Cusack, R., Auer, T., Shafto, M. A., Dixon, M., Tyler, L. K., Cam-CAN, & Henson, R. N. (2017). The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data repository: Structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample. NeuroImage, 144, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Ueno, T., Saito, S., Rogers, T. T., & Lambon Ralph, M. A. (2011). Lichtheim 2: Synthesizing aphasia and the neural basis of language in a neurocomputational model of the dual dorsal-ventral language pathways. Neuron, 72(2), 385–396. [Google Scholar] [CrossRef] [PubMed]
- Vitevitch, M. S., & Sommers, M. S. (2003). The facilitative influence of phonological similarity and neighborhood frequency in speech production in younger and older adults. Memory & Cognition, 31(4), 491–504. [Google Scholar] [CrossRef] [PubMed]
- Wang, J., Khosrowabadi, R., Ng, K. K., Hong, Z., Chong, J. S. X., Wang, Y., Chen, C.-Y., Hilal, S., Venketasubramanian, N., Wong, T. Y., Chen, C. L.-H., Ikram, M. K., & Zhou, J. (2018). Alterations in brain network topology and structural-functional connectome coupling relate to cognitive impairment. Frontiers in Aging Neuroscience, 10, 404. [Google Scholar] [CrossRef] [PubMed]
- Wang, J., Wang, X., Xia, M., Liao, X., Evans, A., & He, Y. (2015). GRETNA: A graph theoretical network analysis toolbox for imaging connectomics. Frontiers in Human Neuroscience, 9, 386. [Google Scholar] [CrossRef] [PubMed]
- Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442. [Google Scholar] [CrossRef] [PubMed]
- Wenzl, A. (1932). Empirische und theoretische beiträge zur erinnerungsarbeit bei erschwerter wortfindung. Akademische Verlagsgesellschaft. [Google Scholar]
- Woodworth, R. S. (1929). Psychology (2nd rev. ed.). Holt. [Google Scholar]
- Xia, M., Wang, J., & He, Y. (2013). BrainNet viewer: A network visualization tool for human brain connectomics. PLoS ONE, 8(7), e68910. [Google Scholar] [CrossRef] [PubMed]
- Yarmey, A. D. (1973). I recognize your face but I can’t remember your name: Further evidence on the tip-of-the-tongue phenomenon. Memory & Cognition, 1(3), 287–290. [Google Scholar] [CrossRef]
- Yue, Q., & Martin, R. C. (2022). Phonological working memory representations in the left inferior parietal lobe in the face of distraction and neural stimulation. Frontiers in Human Neuroscience, 16, 890483. [Google Scholar] [CrossRef] [PubMed]
- Zacks, R. T., & Hasher, L. (1988). Capacity theory and the processing of inferences. In Language, memory, and aging (pp. 154–170). Cambridge University Press. [Google Scholar] [CrossRef]
Name | Coordinates | ||
---|---|---|---|
Left premotor area (PMA) | −34.28 | −11.71 | 49.18 |
Left posterior inferior frontal gyrus (pIFG) | −50.69 | 14.63 | 15.22 |
Left dorsal superior temporal gyrus (dSTG) | −48.4 | −31.53 | 20.30 |
Left anterior insula (aINS) | −36.15 | 2.73 | 0.52 |
Left posterior superior temporal gyrus (pSTG) | −62.37 | −29.14 | 3.86 |
Left posterior supramarginal gyrus (pSMG) | −54.86 | −46.04 | 33.58 |
Right dorsal superior temporal (dSTG) | 48.86 | −27.69 | 21.65 |
Right posterior inferior frontal gyrus (pIFG) | 61.35 | −23.87 | 1.50 |
Model | Predictor | Standardized β | t Value | p |
---|---|---|---|---|
global efficiency | age | 0.340 | 8.585 | <0.001 *** |
gender | −0.026 | −0.331 | 0.741 | |
global efficiency | 0.093 | 2.320 | 0.021 * | |
local efficiency | age | 0.340 | 8.542 | <0.00 *** |
gender | −0.003 | −0.033 | 0.974 | |
local efficiency | −0.021 | −0.516 | 0.606 | |
mean degree centrality | age | 0.005 | 8.542 | <0.001 *** |
gender | −0.024 | −0.299 | 0.765 | |
mean degree centrality | 0.077 | 1.925 | 0.055 † | |
mean clustering coefficient | age | 0.330 | 8.332 | <0.001 *** |
gender | −0.003 | −0.042 | 0.967 | |
mean clustering coefficient | 0.018 | 0.448 | 0.654 |
Model | Predictor | Standardized β | t Value | p |
---|---|---|---|---|
nodal efficiency | age | 0.332 | 8.319 | <0.001 *** |
dSTG.l | −0.094 | −1.771 | 0.077 † | |
pSTG.l | 0.142 | 2.708 | 0.007 ** | |
pSTG.r | 0.105 | 2.655 | 0.008 ** | |
degree centrality | age | 0.333 | 8.318 | <0.001 *** |
dSTG.l | −0.114 | −2.191 | 0.029 * | |
PMA.l | 0.107 | 1.928 | 0.054 † | |
pSTG.l | 0.085 | 1.587 | 0.113 | |
pSTG.r | 0.070 | 1.511 | 0.131 | |
clustering coefficient | age | 0.337 | 8.512 | <0.001 *** |
PMA.l | 0.171 | 3.091 | 0.002 ** | |
pSMG.l | −0.113 | −2.814 | 0.005 ** | |
dSTG.r | −0.080 | −1.429 | 0.154 |
Model | Age Group | Predictor | Standardized β | t Value | p |
---|---|---|---|---|---|
global efficiency | 18–34 | global efficiency | 0.000 | −0.004 | 0.997 |
35–65 | global efficiency | 0.020 | 0.350 | 0.727 | |
66–87 | global efficiency | 0.179 | 2.756 | 0.006 ** | |
local efficiency | 18–34 | local efficiency | −0.048 | −0.715 | 0.477 |
35–65 | local efficiency | −0.052 | −0.790 | 0.430 | |
66–87 | local efficiency | 0.174 | 2.126 | 0.035 * | |
mean degree centrality (DC) | 18–34 | mean DC | −0.038 | −0.350 | 0.727 |
35–65 | mean DC | 0.016 | 0.284 | 0.776 | |
66–87 | mean DC | 0.170 | 2.555 | 0.011 * | |
mean clustering coefficient (CC) | 18–34 | mean CC | −0.117 | −0.350 | 0.727 |
35–65 | mean CC | 0.050 | 0.284 | 0.776 | |
66–87 | mean CC | 0.521 | 2.555 | 0.011 * |
Model | Age Group | Predictor | Standardized β | t Value | p |
---|---|---|---|---|---|
nodal efficiency | 18–35 | dSTG.l | −0.292 | −2.170 | 0.033 * |
pSTG.l | 0.420 | 2.779 | 0.007 ** | ||
gender | −0.327 | −1.829 | 0.071 | ||
36–65 | pIFG.l | −0.088 | −1.499 | 0.135 | |
pSTG.l | 0.106 | 1.674 | 0.095 | ||
66–87 | PMA.l | 0.195 | 2.860 | 0.005 ** | |
degree centrality | 18–35 | dSTG.l | −0.226 | −1.855 | 0.067 † |
pSTG.l | 0.265 | 2.077 | 0.041 * | ||
gender | −0.251 | −1.421 | 0.159 | ||
36–65 | PMA.l | 0.090 | 1.631 | 0.104 | |
66–87 | PMA.l | 0.187 | 2.796 | 0.006 ** | |
clustering coefficient | 18–35 | pSTG.l | 0.159 | 1.448 | 0.151 |
36–65 | dSTG.l | −0.132 | −1.976 | 0.049 * | |
PMA.l | 0.208 | 2.523 | 0.012 * | ||
dSTG.r | −0.128 | −1.594 | 0.112 | ||
66–87 | pIFG.l | 0.163 | 1.781 | 0.076 | |
PMA.l | 0.154 | 2.053 | 0.041 * | ||
pSMG.l | −0.222 | −2.721 | 0.007 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, X.; He, Z.; Wang, J.; Wang, C. The Relationship Between the Phonological Processing Network and the Tip-of-the-Tongue Phenomenon: Evidence from Large-Scale DTI Data. Behav. Sci. 2025, 15, 977. https://doi.org/10.3390/bs15070977
Gong X, He Z, Wang J, Wang C. The Relationship Between the Phonological Processing Network and the Tip-of-the-Tongue Phenomenon: Evidence from Large-Scale DTI Data. Behavioral Sciences. 2025; 15(7):977. https://doi.org/10.3390/bs15070977
Chicago/Turabian StyleGong, Xiaoyan, Ziyi He, Jun Wang, and Cheng Wang. 2025. "The Relationship Between the Phonological Processing Network and the Tip-of-the-Tongue Phenomenon: Evidence from Large-Scale DTI Data" Behavioral Sciences 15, no. 7: 977. https://doi.org/10.3390/bs15070977
APA StyleGong, X., He, Z., Wang, J., & Wang, C. (2025). The Relationship Between the Phonological Processing Network and the Tip-of-the-Tongue Phenomenon: Evidence from Large-Scale DTI Data. Behavioral Sciences, 15(7), 977. https://doi.org/10.3390/bs15070977