Exploring the Influencing Factors of Learning Burnout: A Network Comparison in Online and Offline Environments
Abstract
1. Introduction
1.1. Learning Burnout in Educational Contexts
1.2. Theoretical Framework: Social Comparison and Affective Processes
1.3. Selection of Extraneous Variables
1.4. The Importance of Network Analysis Methods
1.5. Research Questions and Hypotheses
2. Materials and Methods
2.1. Participants
2.2. Research Tools
2.2.1. Learning Burnout Scale
2.2.2. Motivational Scale
2.2.3. Nomophobia Scale
2.2.4. Problematic Mobile Phone Use Scale
2.2.5. DASS-21 Scale
2.2.6. Interactive Learning Scale
2.3. Research Methods
2.3.1. The Concept and Models of Network Analysis
2.3.2. Indicators Related to Network Analysis
- (1)
- Strength Centrality
- (2)
- Betweenness Centrality
- (3)
- Closeness Centrality
2.3.3. Indicators Related to Network Comparison
- I.
- Global Invariance Indicators
- (1)
- Network structure invariance:Network structure invariance is assessed by the maximum absolute difference of corresponding edge weights.
- (2)
- Network global strength invariance:Network global strength invariance is assessed by the sum of absolute values of all edge weights.
- II.
- Local Invariance Indicators
- (1)
- Edge strength invariance:Edge strength invariance compares edge weights of the two networks.
- (2)
- Differences in node centrality indices:Differences in node centrality indices compare node centralities of the two networks.
3. Results
3.1. Common Method Bias Test
3.2. Descriptive Statistics and Correlation Analysis
3.3. Difference Test
3.4. Network Analysis
3.4.1. Network Structure Estimation
3.4.2. Network Inference Analysis
3.4.3. Network Stability Test
3.5. Network Comparison
4. Discussion
4.1. Network Structure of Influencing Factors of Learning Burnout and Important Nodes
4.2. Network Comparison Under the Two Learning Conditions of Online and Offline Learning
4.3. Prospects and Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Altermatt, E. R., & Pomerantz, E. M. (2005). The implications of having high-achieving versus low-achieving friends: A longitudinal analysis. Social Development, 14(1), 61–81. [Google Scholar] [CrossRef]
- American College Health Association. (2022). National college health assessment: Undergraduate student reference group executive summary spring 2022. American College Health Association. [Google Scholar]
- American Psychological Association. (2018, October). Stress in America: Generation Z. American Psychological Association. [Google Scholar]
- Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191–215. [Google Scholar] [CrossRef] [PubMed]
- Barch, D. M. (2022). The dangers of small samples and insufficient methodological detail. Schizophrenia Bulletin, 49(1), 5–6. [Google Scholar] [CrossRef]
- Barrat, A., Barthélemy, M., Pastor-Satorras, R., & Vespignani, A. (2004). The architecture of complex weighted networks. Proceedings of the National Academy of Sciences, 101(11), 3747–3752. [Google Scholar] [CrossRef] [PubMed]
- Billieux, J., Maurage, P., Lopez-Fernandez, O., Kuss, D. J., & Griffiths, M. D. (2015). Can disordered mobile phone use be considered a behavioral addiction? An update on current evidence and a comprehensive model for future research. Current Addiction Reports, 2(2), 156–162. [Google Scholar] [CrossRef]
- Borsboom, D., & Cramer, A. O. J. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9(1), 91–121. [Google Scholar] [CrossRef]
- Bringmann, L. F., Elmer, T., Epskamp, S., Krause, R. W., Schoch, D., Wichers, M., Wigman, J. T. W., & Snippe, E. (2019). What do centrality measures measure in psychological networks? Journal of Abnormal Psychology, 128(8), 892–903. [Google Scholar] [CrossRef]
- Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, F., Borsboom, D., & Tuerlinckx, F. (2013). A network approach to psychopathology: New insights into clinical longitudinal data. PLoS ONE, 8(4), e60188. [Google Scholar] [CrossRef]
- Clark, L. A., & Watson, D. (1991). Tripartite model of anxiety and depression: Psychometric evidence and taxonomic implications. Journal of Abnormal Psychology, 100(3), 316–336. [Google Scholar] [CrossRef]
- Deci, E. L., Koestner, R., & Ryan, R. M. (1999). A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. Psychological Bulletin, 125(6), 627–668. [Google Scholar] [CrossRef]
- Dillenbourg, P. (1999). What do you mean by “collaborative learning”? In P. Dillenbourg (Ed.), Collaborative-learning: Cognitive and computational approaches (pp. 1–19). Elsevier Science. Available online: https://telearn.hal.science/hal-00190240v1 (accessed on 20 April 2025).
- Ding, M. (2018). The influence of social comparison on cooperative behavior and exploration of psychological mechanisms [Master’s thesis, Jinan University]. Available online: https://www.zhangqiaokeyan.com/academic-degree-domestic_mphd_thesis/020311693959.html (accessed on 17 December 2024).
- Eisenberg, N. (2020). Findings, issues, and new directions for research on emotion socialization. Developmental Psychology, 56(3), 664–670. [Google Scholar] [CrossRef]
- Eisenberg, N., Cumberland, A., & Spinrad, T. L. (1998). Parental socialization of emotion. Psychological Inquiry, 9, 241–273. [Google Scholar] [CrossRef] [PubMed]
- Elliot, A. J., & McGregor, H. A. (2001). A 2 × 2 achievement goal framework. Journal of Personality and Social Psychology, 80(3), 501–519. [Google Scholar] [CrossRef]
- Elmezain, M., Othman, E. A., & Ibrahim, H. M. (2021). Temporal degree-degree and closeness-closeness: A new centrality metrics for social network analysis. Mathematics, 9(22), 2850. [Google Scholar] [CrossRef]
- Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50(1), 195–212. [Google Scholar] [CrossRef]
- Feng, X., Wang, R., & Wu, Y. (2018). A review of current research on blended teaching at home and abroad: Based on the analytical framework of blended teaching. Journal of Distance Education, 36(3), 12. [Google Scholar] [CrossRef]
- Festinger, L. (1954). A theory of social comparison processes. Human Relations, 7(2), 117–140. [Google Scholar] [CrossRef]
- Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of the concept, state of the evidence. Review of Educational Research, 74(1), 59–109. [Google Scholar] [CrossRef]
- Fredrickson, B. L. (1998). What good are positive emotions? Review of General Psychology, 2(3), 300–319. [Google Scholar] [CrossRef]
- Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239. [Google Scholar] [CrossRef]
- Frenzel, A. C., Pekrun, R., & Goetz, T. (2007). Perceived learning environment and students’ emotional experiences: A multilevel analysis of mathematics classrooms. Learning and Instruction, 17(5), 478–493. [Google Scholar] [CrossRef]
- Gillett-Swan, J. (2017). The challenges of online learning: Supporting and engaging the isolated learner. Journal of Learning Design, 10(1), 20. [Google Scholar] [CrossRef]
- Giuntoli, L., Condini, F., Ceccarini, F., Huta, V., & Vidotto, G. (2021). The different roles of hedonic and eudaimonic motives for activities in predicting functioning and well-being experiences. Journal of Happiness Studies, 22(4), 1657–1671. [Google Scholar] [CrossRef]
- Graham, C. R. (2019). Current research in blended learning. In Handbook of distance education (pp. 173–188). Routledge. [Google Scholar] [CrossRef]
- Haslbeck, J. M. B., & Waldorp, L. J. (2015). Structure estimation for mixed graphical models in high-dimensional data. arXiv, arXiv:1510.05677. [Google Scholar] [CrossRef]
- Hevey, D. (2018). Network analysis: A brief overview and tutorial. Health Psychology and Behavioral Medicine, 6(1), 301–328. [Google Scholar] [CrossRef]
- Huta, V., & Waterman, A. S. (2014). Eudaimonia and its distinction from hedonia: Developing a classification and terminology for understanding conceptual and operational definitions. Journal of Happiness Studies, 15(6), 1425–1456. [Google Scholar] [CrossRef]
- Joiner, T. E. (1996). A confirmatory factor-analytic investigation of the tripartite model of depression and anxiety in college students. Cognitive Therapy and Research, 20(5), 521–539. [Google Scholar] [CrossRef]
- Jones, P. J., Mair, P., Riemann, B. C., Mugno, B. L., & McNally, R. J. (2018). A network perspective on comorbid depression in adolescents with obsessive-compulsive disorder. Journal of Anxiety Disorders, 53, 1–8. [Google Scholar] [CrossRef]
- Kuo, Y.-C., Walker, A. E., Schroder, K. E. E., & Belland, B. R. (2014). Interaction, internet self-efficacy, and self-regulated learning as predictors of student satisfaction in online education courses. The Internet and Higher Education, 20, 35–50. [Google Scholar] [CrossRef]
- Levinson, C. A., Zerwas, S., Calebs, B., Forbush, K., Kordy, H., Watson, H., Hofmeier, S., Levine, M., Crosby, R. D., Peat, C., Runfola, C. D., Zimmer, B., Moesner, M., Marcus, M. D., & Bulik, C. M. (2017). The core symptoms of bulimia nervosa, anxiety, and depression: A network analysis. Journal of Abnormal Psychology, 126(3), 340–354. [Google Scholar] [CrossRef]
- Li, B., Tuo, A., Li, Y., Wan, Y., Zhou, H., Liang, H., & Qin, Q. (2021). Analysis of the relationship between college students’ learning strategy selection and learning burnout from the perspective of chain mediating effects. Journal of Higher Education, 7(32), 76–79. Available online: https://xueshu.baidu.com/usercenter/paper/show?paperid=1m1806b03x2t0x10mq7g0rh0k4222879 (accessed on 20 April 2025).
- Liu, Y. (2021). A unification and extension on the multivariate longitudinal models: Examining reciprocal effect and growth trajectory. Advances in Psychological Science, 29(10), 1755–1772. [Google Scholar] [CrossRef]
- Lovibond, P. F., & Lovibond, S. H. (1995). The structure of negative emotional states: Comparison of the depression anxiety stress scales (DASS) with the beck depression and anxiety inventories. Behaviour Research and Therapy, 33(3), 335–343. [Google Scholar] [CrossRef] [PubMed]
- Lubbers, M. J., Kuyper, H., & Van Der Werf, M. P. C. (2009). Social comparison with friends versus non-friends. European Journal of Social Psychology, 39(1), 52–68. [Google Scholar] [CrossRef]
- Maslach, C., & Jackson, S. E. (1981). The measurement of experienced burnout. Journal of Organizational Behavior, 2(2), 99–113. [Google Scholar] [CrossRef]
- Midgley, C., Kaplan, A., & Middleton, M. (2001). Performance-approach goals: Good for what, for whom, under what circumstances, and at what cost? Journal of Educational Psychology, 93(1), 77–86. [Google Scholar] [CrossRef]
- Miller, K. A., Deci, E. L., & Ryan, R. M. (1988). Intrinsic motivation and self-determination in human behavior. Contemporary Sociology, 17(2), 253. [Google Scholar] [CrossRef]
- Mirvis, P. H., & Csikszentmihalyi, M. (1991). Flow: The psychology of optimal experience. The Academy of Management Review, 16(3), 636. [Google Scholar] [CrossRef]
- Newman, M. E. J. (2004). Analysis of weighted networks. Physical Review E, 70(5), 056131. [Google Scholar] [CrossRef]
- Pan, Q. (2017). Research on dimension reduction methods in high-dimensional longitudinal data analysis. Times Finance, 26, 2. Available online: https://kns.cnki.net/kcms2/article/abstract?v=hzXYN1WNkIQSPhEansBZgLNX4YR9adIaw_BP0tgI9w0qKi07Fn_btfK4R1-5UlWVdBp0-1DaZscuipKh2ertkBl1qUV37WNKV0noGgpo9iPD8lXsaB-_OOondFbLdzc2Nrxte7FvCvReEyY2XBWxNgjrWBq1cV5t2Sbu9qTI0u0Iw0Tms7uURYI_c3ntzsZp6j1dPuEkbE4= (accessed on 20 April 2025).
- Pekrun, R. (2006). The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 18(4), 315–341. [Google Scholar] [CrossRef]
- Pekrun, R., Elliot, A. J., & Maier, M. A. (2006). Achievement goals and discrete achievement emotions: A theoretical model and prospective test. Journal of Educational Psychology, 98(3), 583–597. [Google Scholar] [CrossRef]
- Pekrun, R., Elliot, A. J., & Maier, M. A. (2009). Achievement goals and achievement emotions: Testing a model of their joint relations with academic performance. Journal of Educational Psychology, 101(1), 115–135. [Google Scholar] [CrossRef]
- Pintrich, P. R. (2000). The role of goal orientation in self-regulated learning (pp. 451–502). Elsevier. [Google Scholar] [CrossRef]
- Ren, S., Gu, L., & Liu, T. (2020). Revision of the Chinese version of the Nomophobia Questionnaire. Psychologifavailablecal Exploration, 40(3), 247–253. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2020&filename=XLXT202003009 (accessed on 18 March 2025).
- Rhemtulla, M., Bork, R. V., & Cramer, A. (2017). Cross-lagged network models. Multivariate Behavioral Research. Available online: https://www.semanticscholar.org/paper/Cross-Lagged-Network-Models-Rhemtulla-Bork/fbb8ab2cea6c60c65b3254aeb2f0325009ac0f59 (accessed on 20 April 2025).
- Ryan, R. M., & Deci, E. L. (2000a). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54–67. [Google Scholar] [CrossRef]
- Ryan, R. M., & Deci, E. L. (2000b). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55, 68–78. [Google Scholar] [CrossRef]
- Safaria, T., Saputra, N. E., & Arini, D. P. (2024). The impact of nomophobia: Exploring the interplay between loneliness, smartphone usage, self-control, emotion regulation, and spiritual meaningfulness in an Indonesian context. Journal of Technology in Behavioral Science, 10, 382–401. [Google Scholar] [CrossRef]
- Sarason, I. G. (1984). Stress, anxiety, and cognitive interference: Reactions to tests. Journal of Personality and Social Psychology, 46(4), 929–938. [Google Scholar] [CrossRef]
- Schaufeli, W. B., Martínez, I. M., Pinto, A. M., Salanova, M., & Bakker, A. B. (2002). Burnout and en-gagement in university students: A cross-national study. Journal of Cross-Cultural Psychology, 33(5), 464–481. [Google Scholar] [CrossRef]
- Schiefele, U. (1991). Interest, learning, and motivation. Educational Psychologist, 26(3–4), 299–323. [Google Scholar] [CrossRef]
- Shu, H., & Gu, X. (2018). Determining the differences between online and face-to-face student–group interactions in a blended learning course. The Internet and Higher Education, 39, 13–21. [Google Scholar] [CrossRef]
- Skinner, E. A., & Pitzer, J. R. (2012). Developmental dynamics of student engagement, coping, and everyday resilience. In S. L. Christenson, A. L. Reschly, & C. Wylie (Eds.), Handbook of research on student engagement (pp. 21–44). Springer. [Google Scholar] [CrossRef]
- Taylor, S. E., & Lobel, M. (1989). Social comparison activity under threat: Downward evaluation and upward contacts. Psychological Review, 96(4), 569–575. [Google Scholar] [CrossRef]
- Van Borkulo, C. D., Van Bork, R., Boschloo, L., Kossakowski, J. J., Tio, P., Schoevers, R. A., Borsboom, D., & Waldorp, L. J. (2023). Comparing network structures on three aspects: A permutation test. Psychological Methods, 28(6), 1273–1285. [Google Scholar] [CrossRef]
- Weare, K., & Nind, M. (2011). Mental health promotion and problem prevention in schools: What does the evidence say? Health Promotion International, 26(Suppl. 1), i29–i69. [Google Scholar] [CrossRef]
- Wood, J. V. (1989). Theory and research concerning social comparisons of personal attributes. Psychological Bulletin, 106(2), 231–248. [Google Scholar] [CrossRef]
- Xing, S. F., & Yu, G. L. (2005). Current status and development trends of social comparison research. Advances in Psychological Science, 13(1), 78–84. [Google Scholar] [CrossRef]
- Yildirim, C., & Correia, A.-P. (2015). Exploring the dimensions of nomophobia: Development and validation of a self-reported questionnaire. Computers in Human Behavior, 49, 130–137. [Google Scholar] [CrossRef]
- Zhou, Z., Ji, S., & Liu, T. (2023). Development of the short and ultra-short versions of the problematic mobile phone use scale. Studies of Psychology and Behavior, 21(6), 846–853. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2024&filename=CLXW202306017 (accessed on 20 April 2025).
- Zhu, Y. (2016). Research on the mechanisms and operational methods of stimulating learning motivation. Education Modernization, 24, 212–213, 220. [Google Scholar] [CrossRef]
Online Learning | Offline Learning | |
---|---|---|
Nomophobia | 77.42 (16.574) | 78.82 (15.880) |
Problematic Mobile Phone Use | 14.12 (3.107) | 14.32 (3.216) |
Depression | 12.31 (4.459) | 12.30 (4.463) |
Anxiety | 12.05 (3.862) | 12.12 (3.957) |
Stress | 14.15 (4.535) | 13.76 (4.401) |
Interactive Learning | 46.51 (8.519) | 46.62 (9.037) |
Learning Burnout | 35.24 (9.301) | 35.05 (9.490) |
Motivation for Enjoying Relaxation | 27.48 (4.958) | 27.88 (4.525) |
Motivation for Pursuing Value | 26.56 (4.331) | 26.48 (4.554) |
t | df | p | |
---|---|---|---|
Nomophobia | −1.623 | 292 | 0.106 |
Problematic Mobile Phone Use | −1.167 | 292 | 0.244 |
Depression | 0.065 | 292 | 0.948 |
Anxiety | −0.335 | 292 | 0.738 |
Stress | 1.692 | 292 | 0.092 |
Interactive Learning | −0.242 | 292 | 0.809 |
Learning Burnout | 0.414 | 292 | 0.679 |
Motivation for Enjoying Relaxation | −1.344 | 292 | 0.180 |
Motivation for Pursuing Value | 0.267 | 292 | 0.790 |
Variable 1 | Variable 2 | p | The Difference Value of the Edge Weight |
---|---|---|---|
Stress | Interactive Learning | 0.039 * | 0.096 |
Interactive Learning | Motivation for Pursuing Value | 0.041 * | 0.264 |
Variable 2 | p | Strength Difference |
---|---|---|
Nomophobia | 0.621 | −0.084 |
Problematic Mobile Phone Use | 0.901 | 0.021 |
Depression | 0.817 | −0.035 |
Anxiety | 0.738 | −0.055 |
Stress | 0.530 | −0.134 |
Interactive Learning | 0.011 * | −0.437 |
Learning Burnout | 0.865 | 0.033 |
Motivation for Enjoying Relaxation | 0.733 | −0.041 |
Motivation for Pursuing Value | 0.545 | −0.166 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Zhu, S.; Wang, R.; Liu, T. Exploring the Influencing Factors of Learning Burnout: A Network Comparison in Online and Offline Environments. Behav. Sci. 2025, 15, 903. https://doi.org/10.3390/bs15070903
Lu J, Zhu S, Wang R, Liu T. Exploring the Influencing Factors of Learning Burnout: A Network Comparison in Online and Offline Environments. Behavioral Sciences. 2025; 15(7):903. https://doi.org/10.3390/bs15070903
Chicago/Turabian StyleLu, Jiayao, Sihang Zhu, Ranran Wang, and Tour Liu. 2025. "Exploring the Influencing Factors of Learning Burnout: A Network Comparison in Online and Offline Environments" Behavioral Sciences 15, no. 7: 903. https://doi.org/10.3390/bs15070903
APA StyleLu, J., Zhu, S., Wang, R., & Liu, T. (2025). Exploring the Influencing Factors of Learning Burnout: A Network Comparison in Online and Offline Environments. Behavioral Sciences, 15(7), 903. https://doi.org/10.3390/bs15070903