Identifying Common Patterns in the Time of Day of Mindfulness Meditation Associated with Long-Term Maintenance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedure
2.2. Measures
2.2.1. Dynamic Time-Warping Distance
2.2.2. Session Timing Variance
2.2.3. Entropy
2.3. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amireault, S., Godin, G., & Vézina-Im, L.-A. (2013). Determinants of physical activity maintenance: A systematic review and meta-analyses. Health Psychology Review, 7(1), 55–91. [Google Scholar] [CrossRef]
- Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84, 191–215. [Google Scholar] [CrossRef] [PubMed]
- Bandura, A. (1986). Social foundations of thought and action (pp. 23–28). Prentice Hall. [Google Scholar]
- Baumel, A., Muench, F., Edan, S., & Kane, J. (2019). Objective user engagement with mental health apps: Systematic search and panel-based usage analysis. Journal of Medical Internet Research, 21, e14567. [Google Scholar] [CrossRef]
- Becker, M. H., & Maiman, L. A. (1975). Sociobehavioral determinants of compliance with health and medical care recommendations. Medical Care, 13(1), 10–24. [Google Scholar] [CrossRef]
- Berardi, V., Fowers, R., Rubin, G., & Stecher, C. (2023). Time of day preferences and daily temporal consistency for predicting the sustained use of a commercial meditation app: Longitudinal observational study. Journal of Medical Internet Research, 25(1), e42482. [Google Scholar] [CrossRef]
- Bostock, S., Crosswell, A. D., Prather, A. A., & Steptoe, A. (2019). Mindfulness on-the-go: Effects of a mindfulness meditation app on work stress and well-being. Journal of Occupational Health Psychology, 24(1), 127–138. [Google Scholar] [CrossRef]
- Brooks, T. L., Leventhal, H., Wolf, M. S., O’Conor, R., Morillo, J., Martynenko, M., Wisnivesky, J. P., & Federman, A. D. (2014). Strategies used by older adults with asthma for adherence to inhaled corticosteroids. Journal of General Internal Medicine, 29(11), 1506–1512. [Google Scholar] [CrossRef]
- Bryan, C. J., Tipton, E., & Yeager, D. S. (2021). Behavioural science is unlikely to change the world without a heterogeneity revolution. Nature Human Behaviour, 5(8), 8. [Google Scholar] [CrossRef] [PubMed]
- Cardeña, E., Sjöstedt, J. O. A., & Marcusson-Clavertz, D. (2015). Sustained attention and motivation in zen meditators and non-meditators. Mindfulness, 6(5), 1082–1087. [Google Scholar] [CrossRef]
- Cohn, M. A., & Fredrickson, B. L. (2010). In search of durable positive psychology interventions: Predictors and consequences of long-term positive behavior change. The Journal of Positive Psychology, 5(5), 355–366. [Google Scholar] [CrossRef]
- Dunton, G. F., & Vaughan, E. (2008). Anticipated affective consequences of physical activity adoption and maintenance. Health Psychology, 27, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Forbes, L., Gutierrez, D., & Johnson, S. K. (2018). Investigating adherence to an online introductory mindfulness program. Mindfulness, 9(1), 271–282. [Google Scholar] [CrossRef]
- Galla, B. M., & Duckworth, A. L. (2015). More than resisting temptation: Beneficial habits mediate the relationship between self-control and positive life outcomes. Journal of Personality and Social Psychology, 109(3), 508–525. [Google Scholar] [CrossRef] [PubMed]
- Gardner, B. (2015). A review and analysis of the use of ‘habit’ in understanding, predicting and influencing health-related behaviour. Health Psychology Review, 9(3), 277–295. [Google Scholar] [CrossRef]
- Gardner, B., de Bruijn, G.-J., & Lally, P. (2011). A systematic review and meta-analysis of applications of the self-report habit index to nutrition and physical activity behaviours. Annals of Behavioral Medicine, 42(2), 174–187. [Google Scholar] [CrossRef]
- Gardner, B., Lally, P., & Wardle, J. (2012). Making health habitual: The psychology of ‘habit-formation’ and general practice. British Journal of General Practice, 62(605), 664–666. [Google Scholar] [CrossRef] [PubMed]
- Gál, É., Ștefan, S., & Cristea, I. A. (2021). The efficacy of mindfulness meditation apps in enhancing users’ well-being and mental health related outcomes: A meta-analysis of randomized controlled trials. Journal of Affective Disorders, 279, 131–142. [Google Scholar] [CrossRef]
- Giorgino, T. (2009). Computing and visualizing dynamic time warping alignments in R: The dtw package. Journal of Statistical Software, 31(1), 1. [Google Scholar] [CrossRef]
- Greenberg, P. E., Fournier, A.-A., Sisitsky, T., Simes, M., Berman, R., Koenigsberg, S. H., & Kessler, R. C. (2021). The economic burden of adults with major depressive disorder in the United States (2010 and 2018). PharmacoEconomics, 39(6), 653–665. [Google Scholar] [CrossRef]
- Herman, P. M., Anderson, M. L., Sherman, K. J., Balderson, B. H., Turner, J. A., & Cherkin, D. C. (2017). Cost-effectiveness of mindfulness-based stress reduction versus cognitive behavioral therapy or usual care among adults with chronic low back pain. Spine, 42(20), 1511–1520. [Google Scholar] [CrossRef]
- Howells, A., Ivtzan, I., & Eiroa-Orosa, F. J. (2016). Putting the ‘app’ in happiness: A randomised controlled trial of a smartphone-based mindfulness intervention to enhance wellbeing. Journal of Happiness Studies, 17(1), 163–185. [Google Scholar] [CrossRef]
- Huberty, J., Green, J., Glissmann, C., Larkey, L., Puzia, M., & Lee, C. (2019a). Efficacy of the mindfulness meditation mobile app “calm” to reduce stress among college students: Randomized controlled trial. JMIR mHealth and uHealth, 7(6), e14273. [Google Scholar] [CrossRef] [PubMed]
- Huberty, J., Puzia, M. E., Larkey, L., Vranceanu, A.-M., & Irwin, M. R. (2021). Can a meditation app help my sleep? A cross-sectional survey of calm users. PLoS ONE, 16(10), e0257518. [Google Scholar] [CrossRef]
- Huberty, J., Vranceanu, A.-M., Carney, C., Breus, M., Gordon, M., & Puzia, M. E. (2019b). Characteristics and usage patterns among 12,151 paid subscribers of the Calm meditation app: Cross-sectional survey. JMIR mHealth and uHealth, 7(11), e15648. [Google Scholar] [CrossRef]
- Judah, G., Gardner, B., & Aunger, R. (2013). Forming a flossing habit: An exploratory study of the psychological determinants of habit formation. British Journal of Health Psychology, 18(2), 338–353. [Google Scholar] [CrossRef]
- Lally, P., van Jaarsveld, C. H. M., Potts, H. W. W., & Wardle, J. (2010). How are habits formed: Modelling habit formation in the real world. European Journal of Social Psychology, 40(6), 998–1009. [Google Scholar] [CrossRef]
- Lally, P., Wardle, J., & Gardner, B. (2011). Experiences of habit formation: A qualitative study. Psychology, Health & Medicine, 16(4), 484–489. [Google Scholar] [CrossRef]
- Longyear, R. L., & Kushlev, K. (2021). Can mental health apps be effective for depression, anxiety, and stress during a pandemic? Practice Innovations, 6(2), 131–137. [Google Scholar] [CrossRef]
- Meyerowitz-Katz, G., Ravi, S., Arnolda, L., Feng, X., Maberly, G., & Astell-Burt, T. (2020). Rates of Attrition and Dropout in App-Based Interventions for Chronic Disease: Systematic Review and Meta-Analysis. Journal of Medical Internet Research, 22(9), e20283. [Google Scholar] [CrossRef]
- Miller, D. I. (2019). When do growth mindset interventions work? Trends in Cognitive Sciences, 23(11), 910–912. [Google Scholar] [CrossRef]
- Muñoz, R. F., Bunge, E. L., Chen, K., Schueller, S. M., Bravin, J. I., Shaughnessy, E. A., & Pérez-Stable, E. J. (2016). Massive open online interventions: A novel model for delivering behavioral-health services worldwide. Clinical Psychological Science, 4, 194–205. [Google Scholar] [CrossRef]
- Ntoumanis, N., Ng, J. Y. Y., Prestwich, A., Quested, E., Hancox, J. E., Thøgersen-Ntoumani, C., Deci, E. L., Ryan, R. M., Lonsdale, C., & Williams, G. C. (2021). A meta-analysis of self-determination theory-informed intervention studies in the health domain: Effects on motivation, health behavior, physical, and psychological health. Health Psychology Review, 15(2), 214–244. [Google Scholar] [CrossRef] [PubMed]
- O’Carroll, R. E., Chambers, J. A., Dennis, M., Sudlow, C., & Johnston, M. (2013). Improving adherence to medication in stroke survivors: A pilot randomised controlled trial. Annals of Behavioral Medicine: A Publication of the Society of Behavioral Medicine, 46(3), 358–368. [Google Scholar] [CrossRef]
- Papageorgiou, S. N. (2022). On correlation coefficients and their interpretation. Journal of Orthodontics, 49(3), 359–361. [Google Scholar] [CrossRef]
- Phillips, L. A., Burns, E., & Leventhal, H. (2020). Time-of-day differences in treatment-related habit strength and adherence. Annals of Behavioral Medicine, 55(3), 280–285. [Google Scholar] [CrossRef]
- Phillips, L. A., Cohen, J., Burns, E., Abrams, J., & Renninger, S. (2016). Self-management of chronic illness: The role of “habit” versus reflective factors in exercise and medication adherence. Journal of Behavioral Medicine, 39(6), 1076–1091. [Google Scholar] [CrossRef]
- Phillips, L. A., Leventhal, H., & Leventhal, E. A. (2013). Assessing theoretical predictors of long-term medication adherence: Patients’ treatment-related beliefs, experiential feedback and habit development. Psychology & Health, 28(10), 1135–1151. [Google Scholar]
- Phillips, L. A., More, K. R., Russell, D., & Kim, H. S. (2024). Evaluating the impact of individuals’ morningness-eveningness on the effectiveness of a habit-formation intervention for a simple and a complex behavior. Journal of Behavioral Medicine, 47(5), 804–818. [Google Scholar] [CrossRef] [PubMed]
- Phillips, L. A., & Mullan, B. A. (2023). Ramifications of behavioural complexity for habit conceptualisation, promotion, and measurement. Health Psychology Review, 17(3), 402–415. [Google Scholar] [CrossRef]
- Phillips, L. A., Pironet, A., & Vrijens, B. (2023). Evaluating objective metrics of habit strength for taking medications. Journal of Behavioral Medicine, 46(4), 632–641. [Google Scholar] [CrossRef]
- Pokorski, M., & Suchorzynska, A. (2018). Psychobehavioral effects of meditation. Advances in Experimental Medicine and Biology, 1023, 85–91. [Google Scholar] [CrossRef]
- Ponte Márquez, P. H., Feliu-Soler, A., Solé-Villa, M. J., Matas-Pericas, L., Filella-Agullo, D., Ruiz-Herrerias, M., Soler-Ribaudi, J., Roca-Cusachs Coll, A., & Arroyo-Díaz, J. A. (2019). Benefits of mindfulness meditation in reducing blood pressure and stress in patients with arterial hypertension. Journal of Human Hypertension, 33(3), 237–247. [Google Scholar] [CrossRef] [PubMed]
- Prochaska, J. O., & Velicer, W. F. (1997). The transtheoretical model of health behavior change. American Journal of Health Promotion, 12(1), 38–48. [Google Scholar] [CrossRef]
- Rebar, A. L., Elavsky, S., Maher, J. P., Doerksen, S. E., & Conroy, D. E. (2014). Habits predict physical activity on days when intentions are weak. Journal of Sport and Exercise Psychology, 36(2), 157–165. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, R. E. (2021). Multi-process action control in physical activity: A primer. Frontiers in Psychology, 12, 797484. [Google Scholar] [CrossRef]
- Ryan, R. M., Donald, J. N., & Bradshaw, E. L. (2021). Mindfulness and motivation: A process view using self-determination theory. Current Directions in Psychological Science, 30(4), 300–306. [Google Scholar] [CrossRef]
- Saeed, S. A., Cunningham, K., & Bloch, R. M. (2019). Depression and anxiety disorders: Benefits of exercise, yoga, and meditation. American Family Physician, 99(10), 620–627. [Google Scholar]
- Schumacher, L. M., Thomas, J. G., Raynor, H. A., Rhodes, R. E., O’Leary, K. C., Wing, R. R., & Bond, D. S. (2019). Relationship of Consistency in Timing of Exercise Performance and Exercise Levels Among Successful Weight Loss Maintainers. Obesity, 27(8), 1285–1291. [Google Scholar] [CrossRef]
- Schuman-Olivier, Z., Trombka, M., Lovas, D. A., Brewer, J. A., Vago, D. R., Gawande, R., Dunne, J. P., Lazar, S. W., Loucks, E. B., & Fulwiler, C. (2020). Mindfulness and behavior change. Harvard Review of Psychiatry, 28(6), 371. [Google Scholar] [CrossRef]
- Schwarzer, R. (2008). Modeling health behavior change: How to predict and modify the adoption and maintenance of health behaviors. Applied Psychology, 57(1), 1–29. [Google Scholar] [CrossRef]
- Shen, H., Chen, M., & Cui, D. (2020). Biological mechanism study of meditation and its application in mental disorders. General Psychiatry, 33(4), e100214. [Google Scholar] [CrossRef] [PubMed]
- Stecher, C., Berardi, V., Fowers, R., Christ, J., Chung, Y., & Huberty, J. (2021). Identifying app-based meditation habits and the associated mental health benefits: Longitudinal observational study. Journal of Medical Internet Research, 23(11), e27282. [Google Scholar] [CrossRef]
- Stecher, C., Cloonan, S., & Domino, M. E. (2024). The economics of treatment for depression. Annual Review of Public Health, 45, 527–551. [Google Scholar] [CrossRef]
- Tang, Y.-Y., Lu, Q., Fan, M., Yang, Y., & Posner, M. I. (2012). Mechanisms of white matter changes induced by meditation. Proceedings of the National Academy of Sciences, 109(26), 10570–10574. [Google Scholar] [CrossRef]
- Thorneloe, R. J., Griffiths, C. E. M., Emsley, R., Ashcroft, D. M., Cordingley, L., Barker, J., Benham, M., Burden, D., Evans, I., Griffiths, C., Hussain, S., Kirby, B., Lawson, L., Mason, K., McElhone, K., Murphy, R., Ormerod, A., Owen, C., Reynolds, N., … Warren, R. (2018). Intentional and unintentional medication non-adherence in psoriasis: The role of patients’ medication beliefs and habit strength. Journal of Investigative Dermatology, 138(4), 785–794. [Google Scholar] [CrossRef] [PubMed]
- Torous, J., Lipschitz, J., Ng, M., & Firth, J. (2020). Dropout rates in clinical trials of smartphone apps for depressive symptoms: A systematic review and meta-analysis. Journal of Affective Disorders, 263, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Van Cappellen, P., Rice, E. L., Catalino, L. I., & Fredrickson, B. L. (2018). Positive affective processes underlie positive health behaviour change. Psychology & Health, 33(1), 77–97. [Google Scholar] [CrossRef]
- van der Weiden, A., Benjamins, J., Gillebaart, M., Ybema, J. F., & de Ridder, D. (2020). How to form good habits? A longitudinal field study on the role of self-control in habit formation. Frontiers in Psychology, 11, 494700. [Google Scholar] [CrossRef]
- Verplanken, B. (2006). Beyond frequency: Habit as mental construct. British Journal of Social Psychology, 45(3), 639–656. [Google Scholar] [CrossRef]
- Verplanken, B., & Melkevik, O. (2008). Predicting habit: The case of physical exercise. Psychology of Sport and Exercise, 9(1), 15–26. [Google Scholar] [CrossRef]
- Wind, M., Kremers, S., Thijs, C., & Brug, J. (2005). Toothbrushing at school: Effects on toothbrushing behaviour, cognitions and habit strength. Health Education, 105(1), 53–61. [Google Scholar] [CrossRef]
- Wood, W., & Neal, D. T. (2016). Healthy through habit: Interventions for initiating & maintaining health behavior change. Behavioral Science & Policy, 2(1), 71–83. [Google Scholar] [CrossRef]
Variable | Consistent | Inconsistent | Indeterminate | |||
---|---|---|---|---|---|---|
M (SD) | n (%) | M (SD) | n (%) | M (SD) | n (%) | |
Adjusted DTW | −6.845 | 748 | 7.16 | 314 | −0.82 | 87 |
(19.53) | (45.1%) | (12.29) | (13.5%) | (3.44) | (39.6%) | |
Entropy | −13.39 | 415 | 7.57 | 1076 | 1.18 | 73 |
(63.80) | (25.0%) | (10.34) | (46.3%) | (6.69) | (33.2%) | |
Variance of time | −38.23 | 496 | 13.81 | 936 | −0.01 | 60 |
(253.50) | (29.9%) | (38.33) | (40.4%) | (0.70) | (27.3%) | |
Total | 1659 | 2326 | 220 |
Measure | Adjusted DTW | Entropy | Variance of Time |
---|---|---|---|
Adjusted DTW | 1 | ||
Entropy | 0.34 | 1 | |
Variance of time | 0.43 | 0.52 | 1 |
Variable | Consistent (n = 1659) | Inconsistent (n = 2326) | Indeterminate (n = 220) |
---|---|---|---|
b (SE) | b (SE) | b (SE) | |
Adjusted DTW | −0.25 *** | 0.37 *** | −0.02 |
(0.06) | (0.05) | (0.09) | |
Lagged adjusted DTW | −0.13 * | 0.21 *** | −0.03 |
(0.06) | (0.04) | (0.09) | |
Entropy | −0.49 *** | 0.35 *** | 0.18 |
(0.08) | (0.08) | (0.16) | |
Lagged entropy | −0.29 *** | −0.08 | 0.33 |
(0.07) | (0.07) | (0.18) | |
Variance of time | 0.11 | 0.49 *** | 0.01 |
(0.06) | (0.06) | (0.10) | |
Lagged variance of time | 0.04 | 0.28 *** | −0.06 |
(0.05) | (0.05) | (0.10) |
Variable | Consistent | Inconsistent | Indeterminate | Consistent vs. Inconsistent | Difference Across Groups |
---|---|---|---|---|---|
M (SD) | M (SD) | M (SD) | p-Value | p-Value | |
Consecutive Chunks with Any Use | 34.62 | 33.41 | 42.57 | 0.003 | <0.001 |
(11.79) | (12.94) | (5.72) | |||
Days with Any Use per Chunk | 5.57 | 5.67 | 4.02 | 0.034 | <0.001 |
(8.356) | (8.45) | (6.99) | |||
Portion of Use During COVID (2020) | 0.19 | 0.19 | 0.24 | 0.362 | <0.001 |
(0.39) | (0.38) | (0.42) | |||
Number of Meditation Sessions per Chunk | 8.05 | 8.15 | 5.69 | 0.184 | <0.001 |
(13.55) | (13.62) | (10.95) | |||
Variance in Number of Meditation Sessions per Chunk | 0.02 | 0.02 | 0.01 | 0.496 | <0.001 |
(0.04) | (0.04) | (0.04) | |||
Individual Model R2 | 0.84 | 0.85 | 0.47 | 0.021 | <0.001 |
(0.14) | (0.13) | (0.06) | |||
Number of Users | 1659 | 2326 | 220 | ||
Observations | 58,579 | 79,389 | 9555 |
Time of Day | Consistent | Inconsistent |
---|---|---|
Morning | 29.8% | 26.6% |
Midday | 11.9% | 13.7% |
Evening | 16.3% | 18.4% |
Late Night | 41.9% | 41.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fowers, R.; Coza, A.; Chung, Y.; Ghasemzadeh, H.; Cloonan, S.; Huberty, J.; Berardi, V.; Stecher, C. Identifying Common Patterns in the Time of Day of Mindfulness Meditation Associated with Long-Term Maintenance. Behav. Sci. 2025, 15, 381. https://doi.org/10.3390/bs15030381
Fowers R, Coza A, Chung Y, Ghasemzadeh H, Cloonan S, Huberty J, Berardi V, Stecher C. Identifying Common Patterns in the Time of Day of Mindfulness Meditation Associated with Long-Term Maintenance. Behavioral Sciences. 2025; 15(3):381. https://doi.org/10.3390/bs15030381
Chicago/Turabian StyleFowers, Rylan, Aurel Coza, Yunro Chung, Hassan Ghasemzadeh, Sara Cloonan, Jennifer Huberty, Vincent Berardi, and Chad Stecher. 2025. "Identifying Common Patterns in the Time of Day of Mindfulness Meditation Associated with Long-Term Maintenance" Behavioral Sciences 15, no. 3: 381. https://doi.org/10.3390/bs15030381
APA StyleFowers, R., Coza, A., Chung, Y., Ghasemzadeh, H., Cloonan, S., Huberty, J., Berardi, V., & Stecher, C. (2025). Identifying Common Patterns in the Time of Day of Mindfulness Meditation Associated with Long-Term Maintenance. Behavioral Sciences, 15(3), 381. https://doi.org/10.3390/bs15030381