The Moderating Role of Sensory Processing Sensitivity in Social Skills Enhancement and Bullying Prevention Among Adolescents
Abstract
1. Introduction
Current Study
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Measures
2.3.1. The Highly Sensitive Child Scale
2.3.2. Skills Knowledge
2.3.3. Data Analysis
3. Results
3.1. Descriptive Statistics
3.2. Bivariate Correlations
3.3. Main and Interaction Effect Models
4. Discussion
4.1. Strengths and Limitations
4.2. Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Acevedo, B. P., Aron, E., Pospos, S., & Jessen, D. (2018). The functional highly sensitive brain: A review of the brain circuits underlying sensory processing sensitivity and seemingly related disorders. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1744), 20170161. [Google Scholar] [CrossRef]
- Acevedo, B. P., Aron, E. N., Aron, A., Sangster, M.-D., Collins, N., & Brown, L. L. (2014). The highly sensitive brain: An fMRI study of sensory processing sensitivity and response to others’ emotions. Brain and Behavior, 4(4), 580–594. [Google Scholar] [CrossRef]
- Acevedo, B. P., Dattatri, N., & Marhenke, R. (2023). Sensory processing sensitivity, memory and cognitive training with neurofeedback. Behavioural Brain Research, 452, 114601. [Google Scholar] [CrossRef]
- Acevedo, B. P., Jagiellowicz, J., Aron, E., Marhenke, R., & Aron, A. (2017). Sensory processing sensitivity and childhood quality’s effects on neural responses to emotional stimuli. Clinical Neuropsychiatry, 6, 359–373. [Google Scholar]
- Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. [Google Scholar] [CrossRef]
- American Psychological Association (APA). (n.d.). Bullying. In APA dictionary of psychology. American Psychological Association. Available online: https://dictionary.apa.org/bullying (accessed on 23 August 2025).
- Aron, E. N. (2002). The highly sensitive child: Helping our children thrive when the world overwhelms them. Broadway Books. [Google Scholar]
- Aron, E. N., & Aron, A. (1997). Sensory-processing sensitivity and its relation to introversion and emotionality. Journal of Personality and Social Psychology, 73(2), 345–368. [Google Scholar] [CrossRef]
- Arseneault, L. (2018). Annual research review: The persistent and pervasive impact of being bullied in childhood and adolescence: Implications for policy and practice. Journal of Child Psychology and Psychiatry, 59(4), 405–421. [Google Scholar] [CrossRef]
- Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135(6), 885–908. [Google Scholar] [CrossRef]
- Botvin, G. J., & Griffin, K. W. (2015). Life skills training: A competence enhancement approach to tobacco, alcohol, and drug abuse prevention. In L. M. Scheier (Ed.), Handbook of adolescent drug use prevention: Research, intervention strategies, and practice (pp. 177–196). American Psychological Association. [Google Scholar] [CrossRef]
- Botvin, G. J., Griffin, K. W., & Nichols, T. D. (2006). Preventing youth violence and delinquency through a universal school-based prevention approach. Prevention Science: The Official Journal of the Society for Prevention Research, 7(4), 403–408. [Google Scholar] [CrossRef]
- Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary-developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17(2), 271–301. [Google Scholar] [CrossRef]
- Burnham, K. P., & Anderson, D. R. (Eds.). (2002). Model selection and multimodel inference. Springer. [Google Scholar] [CrossRef]
- Davies, P. T., Hentges, R. F., Coe, J. L., Parry, L. Q., & Sturge-Apple, M. L. (2021). Children’s dove temperament as a differential susceptibility factor in child rearing contexts. Developmental Psychology, 57(8), 1274–1290. [Google Scholar] [CrossRef]
- Epstein, J. A., Botvin, G. J., Diaz, T., Baker, E., & Botvin, E. M. (1997). Reliability of social and personal competence measures for adolescents. Psychological Reports, 81(2), 449–450. [Google Scholar] [CrossRef]
- Evans, C. B. R., Fraser, M. W., & Cotter, K. L. (2014). The effectiveness of school-based bullying prevention programs: A systematic review. Aggression and Violent Behavior, 19(5), 532–544. [Google Scholar] [CrossRef]
- Farrington, D. P., & Ttofi, M. M. (2009). School-based programs to reduce bullying and victimization. Campbell Systematic Reviews, 5(1), i-148. [Google Scholar] [CrossRef]
- Gaffney, H., Ttofi, M. M., & Farrington, D. P. (2019). Evaluating the effectiveness of school-bullying prevention programs: An updated meta-analytical review. Aggression and Violent Behavior, 45, 111–133. [Google Scholar] [CrossRef]
- Greven, C. U., Lionetti, F., Booth, C., Aron, E. N., Fox, E., Schendan, H. E., Pluess, M., Bruining, H., Acevedo, B., Bijttebier, P., & Homberg, J. (2019). Sensory processing sensitivity in the context of environmental sensitivity: A critical review and development of research agenda. Neuroscience and Biobehavioral Reviews, 98, 287–305. [Google Scholar] [CrossRef]
- Haile, G., Arockiaraj, B., Zablotsky, B., & Ng, A. (2024). Bullying victimization among teenagers: United States, July 2021–December 2023. National Center for Health Statistics (U.S.). [Google Scholar] [CrossRef]
- Halliday, S., Gregory, T., Taylor, A., Digenis, C., & Turnbull, D. (2021). The impact of bullying victimization in early adolescence on subsequent psychosocial and academic outcomes across the adolescent period: A systematic review. Journal of School Violence, 20(3), 351–373. [Google Scholar] [CrossRef]
- Hartman, S., Freeman, S. M., Bales, K. L., & Belsky, J. (2018). Prenatal stress as a risk-and an opportunity-factor. Psychological Science, 29(4), 572–580. [Google Scholar] [CrossRef]
- Healy, K. L. (2020). Hypotheses for possible iatrogenic impacts of school bullying prevention programs. Child Development Perspectives, 14(4), 221–228. [Google Scholar] [CrossRef]
- Kärnä, A., Voeten, M., Little, T. D., Poskiparta, E., Kaljonen, A., & Salmivalli, C. (2011). A large-scale evaluation of the KiVa antibullying program: Grades 4–6. Child Development, 82(1), 311–330. [Google Scholar] [CrossRef]
- Lionetti, F., Aron, A., Aron, E. N., Burns, G. L., Jagiellowicz, J., & Pluess, M. (2018). Dandelions, tulips and orchids: Evidence for the existence of low-sensitive, medium-sensitive and high-sensitive individuals. Translational Psychiatry, 8(1), 24. [Google Scholar] [CrossRef] [PubMed]
- Macaulay, A. P., Griffin, K. W., & Botvin, G. J. (2002). Initial internal reliability and descriptive statistics for a brief assessment tool for the Life Skills Training drug-abuse prevention program. Psychological Reports, 91(2), 459–462. [Google Scholar] [CrossRef]
- Marhenke, R., Acevedo, B. P., Sachse, P., & Martini, M. (2023). Individual differences in sensory processing sensitivity amplify effects of post-learning activity for better and for worse. Scientific Reports, 13(1), 4451. [Google Scholar] [CrossRef]
- McElreath, R. (2018). Statistical rethinking: A Bayesian course with examples in R and Stan. Chapman and Hall/CRC. [Google Scholar]
- Nocentini, A., Menesini, E., & Pluess, M. (2018). The personality trait of environmental sensitivity predicts children’s positive response to school-based antibullying intervention. Clinical Psychological Science, 6(6), 848–859. [Google Scholar] [CrossRef]
- Nocentini, A., Palladino, B. E., & Menesini, E. (2019). For whom is anti-bullying intervention most effective? The role of temperament. International Journal of Environmental Research and Public Health, 16(3), 388. [Google Scholar] [CrossRef]
- Pluess, M. (2015). Individual differences in environmental sensitivity. Child Development Perspectives, 9(3), 138–143. [Google Scholar] [CrossRef]
- Pluess, M., Assary, E., Lionetti, F., Lester, K. J., Krapohl, E., Aron, E. N., & Aron, A. (2018). Environmental sensitivity in children: Development of the highly sensitive child scale and identification of sensitivity groups. Developmental Psychology, 54(1), 51–70. [Google Scholar] [CrossRef] [PubMed]
- Pluess, M., & Boniwell, I. (2015). Sensory-processing sensitivity predicts treatment response to a school-based depression prevention program: Evidence of vantage sensitivity. Personality and Individual Differences, 82, 40–45. [Google Scholar] [CrossRef]
- Pluess, M., Lionetti, F., Aron, E. N., & Aron, A. (2023). People differ in their sensitivity to the environment: An integrated theory, measurement and empirical evidence. Journal of Research in Personality, 104, 104377. [Google Scholar] [CrossRef]
- R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 1 September 2025).
- Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464. [Google Scholar] [CrossRef]
- Sperati, A., Acevedo, B. P., Dellagiulia, A., Fasolo, M., Spinelli, M., D’Urso, G., & Lionetti, F. (2024). The contribution of sensory processing sensitivity and internalized attachment representations on emotion regulation competencies in school-age children. Frontiers in Psychology, 15, 1357808. [Google Scholar] [CrossRef]
- Thibodeau, E. L., August, G. J., Cicchetti, D., & Symons, F. J. (2016). Application of environmental sensitivity theories in personalized prevention for youth substance abuse: A transdisciplinary translational perspective. Translational Behavioral Medicine, 6(1), 81–89. [Google Scholar] [CrossRef]
- Vandekerckhove, J., Matzke, D., & Wagenmakers, E.-J. (2015). Model comparison and the principle of parsimony. In J. R. Busemeyer, Z. Wang, J. T. Townsend, & A. Eidels (Eds.), The Oxford handbook of computational and mathematical psychology (pp. 300–319). Oxford University Press. [Google Scholar]
- Wagenmakers, E.-J., & Farrell, S. (2004). AIC model selection using Akaike weights. Psychonomic Bulletin & Review, 11(1), 192–196. [Google Scholar] [CrossRef] [PubMed]
- Wang, J., Iannotti, R. J., & Nansel, T. R. (2009). School bullying among adolescents in the United States: Physical, verbal, relational, and cyber. Journal of Adolescent Health, 45(4), 368–375. [Google Scholar] [CrossRef] [PubMed]
- Williams, C., Griffin, K. W., Botvin, C., Sousa, S., & Botvin, G. J. (2023). Effectiveness of digital health tools to prevent bullying among middle school students. Adolescents, 3(1), 110–130. [Google Scholar] [CrossRef]
- Wolf, M., van Doorn, G. S., & Weissing, F. J. (2008). Evolutionary emergence of responsive and unresponsive personalities. Proceedings of the National Academy of Sciences of the United States of America, 105(41), 15825–15830. [Google Scholar] [CrossRef] [PubMed]
- Yeager, D. S., Fong, C. J., Lee, H. Y., & Espelage, D. L. (2015). Declines in efficacy of anti-bullying programs among older adolescents: Theory and a three-level meta-analysis. Journal of Applied Developmental Psychology, 37, 36–51. [Google Scholar] [CrossRef]
- Zych, I., Farrington, D. P., & Ttofi, M. M. (2019). Protective factors against bullying and cyberbullying: A systematic review of meta-analyses. Aggression and Violent Behavior, 45, 4–19. [Google Scholar] [CrossRef]
Pre-Intervention | Post-Intervention | ||
---|---|---|---|
Mean (SD) | Mean (SD) | Cohen’s d | |
Decision-making skills | 3.7 (0.7) | 3.8 (0.7) | 0.08 |
Media resistance skills | 3.8 (0.9) | 3.9 (0.9) | 0.13 |
Social skills | 3.3 (0.9) | 3.4 (0.8) | 0.12 |
Bystander intervention skills | 3.4 (0.8) | 3.5 (0.7) | 0.004 |
Bullying resistance skills | 4.4 (1.1) | 4.4 (1.0) | 0.02 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1. SPS | ||||||||||||
2. DMSk1 | 0.16 * | |||||||||||
3. MediaSk1 | 0.12 | 0.20 ** | ||||||||||
4. SocSk1 | 0.00 | 0.31 *** | −0.17 * | |||||||||
5. BystSk1 | −0.03 | 0.22 ** | −0.16 * | 0.44 *** | ||||||||
6. BulResSk1 | 0.25 *** | 0.20 ** | 0.29 *** | 0.10 | 0.20 ** | |||||||
7. DMSk2 | 0.21 ** | 0.46 *** | 0.15 * | 0.15 * | 0.10 | 0.27 *** | ||||||
8. MediaSk2 | 0.16 * | 0.28 *** | 0.50 *** | −0.08 | 0.01 | 0.25 *** | 0.32 *** | |||||
9. SocSk2 | 0.21 ** | 0.16 * | −0.08 | 0.45 *** | 0.33 *** | 0.18 ** | 0.31 *** | −0.12 | ||||
10. BystSk2 | 0.15 * | 0.20 ** | −0.08 | 0.25 *** | 0.34 *** | 0.23 *** | 0.43 *** | −0.01 | 0.46 *** | |||
11. BulResSk2 | 0.23 *** | 0.16 * | 0.16 * | 0.18 ** | 0.22 ** | 0.45 *** | 0.34 *** | 0.27 *** | 0.34 *** | 0.44 *** | ||
12. Gender | 0.19 ** | 0.08 | 0.07 | −0.02 | 0.04 | 0.16 * | 0.09 | 0.00 | 0.09 | 0.17 * | 0.15 * | |
13. Age | 0.00 | −0.11 | −0.06 | −0.08 | −0.04 | −0.15 * | −0.06 | −0.00 | −0.01 | 0.07 | 0.04 | −0.07 |
Models | R2 | AIC | Delta | Akaike Weights | LogLik |
---|---|---|---|---|---|
Model 3 (SPS × decision-making at T1) | 0.20 | 522 | 0.00 | 0.78 | −255 |
Model 2 (SPS + decision-making at T1) | 0.18 | 524 | 2.56 | 0.22 | −257 |
Models | R2 | AIC | Delta | Akaike Weights | LogLik |
---|---|---|---|---|---|
Model 3 (SPS × media skills at T1) | 0.23 | 629 | 0.00 | 0.96 | −308 |
Model 2 (SPS + media skills at T1) | 0.20 | 636 | 6.57 | 0.04 | −312 |
Models | R2 | AIC | Delta | Akaike Weights | LogLik |
---|---|---|---|---|---|
Model 3 (SPS × social skills at T1) | 0.28 | 524 | 0.00 | 0.78 | −256 |
Model 2 (SPS + social skills at T1) | 0.26 | 526 | 2.53 | 0.22 | −259 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acevedo, B.P.; Sperati, A.; Williams, C.; Griffin, K.W.; Tork, A.; Botvin, G.J. The Moderating Role of Sensory Processing Sensitivity in Social Skills Enhancement and Bullying Prevention Among Adolescents. Behav. Sci. 2025, 15, 1344. https://doi.org/10.3390/bs15101344
Acevedo BP, Sperati A, Williams C, Griffin KW, Tork A, Botvin GJ. The Moderating Role of Sensory Processing Sensitivity in Social Skills Enhancement and Bullying Prevention Among Adolescents. Behavioral Sciences. 2025; 15(10):1344. https://doi.org/10.3390/bs15101344
Chicago/Turabian StyleAcevedo, Bianca P., Alessandra Sperati, Christopher Williams, Kenneth W. Griffin, Atena Tork, and Gilbert J. Botvin. 2025. "The Moderating Role of Sensory Processing Sensitivity in Social Skills Enhancement and Bullying Prevention Among Adolescents" Behavioral Sciences 15, no. 10: 1344. https://doi.org/10.3390/bs15101344
APA StyleAcevedo, B. P., Sperati, A., Williams, C., Griffin, K. W., Tork, A., & Botvin, G. J. (2025). The Moderating Role of Sensory Processing Sensitivity in Social Skills Enhancement and Bullying Prevention Among Adolescents. Behavioral Sciences, 15(10), 1344. https://doi.org/10.3390/bs15101344