Neural Mechanisms of the Impact of Rotated Terrain Symbols on Spatial Representation in Orienteers: Evidence from Eye-Tracking and Whole-Brain fNIRS Synchronization
Abstract
1. Introduction
2. Materials and Methods
2.1. Participant
2.2. Experimental Materials
2.3. Experimental Apparatus
2.3.1. Eye-Tracking Equipment
2.3.2. fNIRS Equipment
2.3.3. Synchronization Protocol
2.4. Experimental Design and Procedure
2.5. Data Processing and Analysis
3. Results
3.1. Behavioral Performance
3.2. Eye Movement Results
3.2.1. Saccade Amplitude and Pupil Diameter
3.2.2. Fixation Hotspot Map
3.3. fNIRS Results
3.3.1. Brain Activation Analysis Across Map Orientations
3.3.2. Brain Activation Differences Across Map Orientations
3.3.3. Functional Connectivity Analysis Across Map Orientations
3.4. Correlation Analysis Between Behavioral and Eye-Tracking Metrics
3.5. Correlation Analysis Between Behavioral Performance and fNIRS Data
3.6. Correlation Analysis Between Eye-Tracking Metrics and fNIRS Data
4. Discussion
5. Limitations and Future Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
L-DLPFC | Left Dorsolateral Prefrontal Cortex |
R-DLPFC | Right Dorsolateral Prefrontal Cortex |
L-FPC | Left Frontal Pole Area |
R-FPC | Right Frontal Pole Area |
OFC | Orbitofrontal Cortex |
L-TL | Left Temporal Lobe |
R-TL | Right Temporal Lobe |
L-PL | Left Parietal Lobe |
R-PL | Right Parietal Lobe |
VC | Visual Cortex |
FC | Functional Connectivity |
fNIRS | Functional Near-Infrared Spectroscopy |
HbO2 | Oxyhemoglobin |
References
- Asadi, A., Saeedpour-Parizi, M. R., Aiken, C. A., Jahanbani, Z., Houminiyan Sharif Abadi, D., Simpson, T., & Marchant, D. (2022). Effects of attentional focus and cognitive load on novice dart throwing: Evidence from quiet eye duration and pupillary responses. Human Movement Science, 86, 103015. [Google Scholar] [CrossRef]
- Atit, K., Weisberg, S. M., Newcombe, N. S., & Shipley, T. F. (2016). Learning to interpret topographic maps: Understanding layered spatial information. Cognitive Research-Principles and Implications, 1(1), 2. [Google Scholar] [CrossRef]
- Bai, X., Zhang, Q., Zhang, P., Zhou, S., Liu, Y., Song, X., & Peng, G. (2016). Comparison of motor execution and motor imagery brain activation patterns: A fNIRS study. Acta Psychologica Sinica, 48(5), 495–508. [Google Scholar] [CrossRef]
- Barr, W. B. (1997). Examining the right temporal lobe’s role in nonverbal memory. Brain and Cognition, 35(1), 26–41. [Google Scholar] [CrossRef] [PubMed]
- Bilalic, M. (2018). The double take of expertise: Neural expansion is associated with outstanding performance. Current Directions in Psychological Science, 27(6), 462–469. [Google Scholar] [CrossRef]
- Brunye, T. T., & Gardony, A. L. (2017). Eye tracking measures of uncertainty during perceptual decision making. International Journal of Psychophysiology, 120, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Burge, W. K., Ross, L. A., Amthor, F. R., Mitchell, W. G., Zotov, A., & Visscher, K. M. (2013). Processing speed training increases the efficiency of attentional resource allocation in young adults. Frontiers in Human Neuroscience, 7, 684. [Google Scholar] [CrossRef]
- Cardona, G., & Quevedo, N. (2014). Blinking and driving: The influence of saccades and cognitive workload. Current Eye Research, 39(3), 239–244. [Google Scholar] [CrossRef]
- Carrieri, M., Lancia, S., Bocchi, A., Ferrari, M., Piccardi, L., & Quaresima, V. (2018). Does ventrolateral prefrontal cortex help in searching for the lost key? Evidence from an fNIRS study. Brain Imaging and Behavior, 12(3), 785–797. [Google Scholar] [CrossRef]
- Clark, D., Reynolds, S., Lemanowski, V., Stiles, T., Yasar, S., Proctor, S., Lewis, E., Stromfors, C., & And Corkins, J. (2008). University students’ conceptualization and interpretation of topographic maps. International Journal of Science Education, 30(3), 377–408. [Google Scholar] [CrossRef]
- Cortes, R. A., Colaizzi, G. A., Dyke, E. L., Peterson, E. G., Walker, D. L., Kolvoord, R. A., Uttal, D. H., & Green, A. E. (2023). Individual differences in parietal and premotor activity during spatial cognition predict figural creativity. Creativity Research Journal, 35(1), 23–32. [Google Scholar] [CrossRef]
- Dalmaso, M., Castelli, L., Scatturin, P., & Galfano, G. (2017). Working memory load modulates microsaccadic rate. Journal of Vision, 17(3), 6. [Google Scholar] [CrossRef]
- Ebert, W. M., Jost, L., Jansen, P., Stevanovski, B., & Voyer, D. (2024). Visual working memory as the substrate for mental rotation: A replication. Psychonomic Bulletin & Review, 32, 1204–1216. [Google Scholar] [CrossRef] [PubMed]
- Ecker, C., Brammer, M. J., & Williams, S. C. (2008). Combining path analysis with time-resolved functional magnetic resonance imaging: The neurocognitive network underlying mental rotation. Journal of Cognitive Neuroscience, 20(6), 1003–1020. [Google Scholar] [CrossRef]
- Epstein, R. A., Patai, E. Z., Julian, J. B., & Spiers, H. J. (2017). The cognitive map in humans: Spatial navigation and beyond. Nature Neuroscience, 20(11), 1504–1513. [Google Scholar] [CrossRef]
- Faul, F., Erdfelder, E., Buchner, A., & Lang, A. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Mendez, L. M., Jose Contreras, M., & Rosa Elosua, M. (2018). From what age is mental rotation training effective? Differences in preschool age but not in sex. Frontiers in Psychology, 9, 753. [Google Scholar] [CrossRef]
- Fishburn, F. A., Norr, M. E., Medvedev, A. V., & Vaidya, C. J. (2014). Sensitivity of fNIRS to cognitive state and load. Frontiers in Human Neuroscience, 8, 2014. [Google Scholar] [CrossRef] [PubMed]
- Gath-Morad, M., Thrash, T., Schicker, J., Hölscher, C., Helbing, D., & Aguilar Melgar, L. E. (2021). Visibility matters during wayfinding in the vertical. Scientific Reports, 11(1), 18980. [Google Scholar] [CrossRef]
- Guo, L., Liu, Y., & Kan, C. (2024). The effect of sports expertise on the performance of orienteering athletes’ real scene image recognition and their visual search characteristics. Scientific Reports, 14(1), 21498. [Google Scholar] [CrossRef]
- Habacha, H., Moreau, D., Jarraya, M., Lejeune-Poutrain, L., & Molinaro, C. (2018). Dissociating object-based from egocentric transformations in mental body rotation: Effect of stimuli size. Experimental Brain Research, 236(1), 275–284. [Google Scholar] [CrossRef]
- Hepworth, S., & Smith, M. L. (2002). Learning and recall of story content and spatial location after unilateral temporal-lobe excision in children and adolescents. Child Neuropsychology, 8(1), 16–26. [Google Scholar] [CrossRef]
- Hiew, S., Roothans, J., Eldebakey, H., Volkmann, J., Zeller, D., & Reich, M. M. (2023). Imaging the spin: Disentangling the core processes underlying mental rotation by network mapping of data from meta-analysis. Neuroscience and Biobehavioral Reviews, 150, 105187. [Google Scholar] [CrossRef]
- Ibrayev, T., Mukherjee, A., Aketi, S. A., & Roy, K. (2024). Toward two-stream foveation-based active vision learning. IEEE Transactions on Cognitive and Developmental Systems, 16(5), 1843–1860. [Google Scholar] [CrossRef]
- Ileri, C. I., Ersan, M., Kalaca, D., Coskun, A., Goksun, T., & Kuntay, A. C. (2023). Malleability of spatial skills: Bridging developmental psychology and toy design for joyful STEAM development. Frontiers in Psychology, 14, 1137003. [Google Scholar] [CrossRef]
- Klingner, J., Tversky, B., & Hanrahan, P. (2011). Effects of visual and verbal presentation on cognitive load in vigilance, memory, and arithmetic tasks. Psychophysiology, 48(3), 323–332. [Google Scholar] [CrossRef] [PubMed]
- Koshino, H., Carpenter, P. A., Keller, T. A., & Just, M. A. (2005). Interactions between the dorsal and the ventral pathways in mental rotation: An fMRI study. Cognitive, Affective and Behavioral Neuroscience, 5(1), 54–66. [Google Scholar] [CrossRef] [PubMed]
- Laeng, B., Ørbo, M., Holmlund, T., & Miozzo, M. (2011). Pupillary stroop effects. Cognitive Processing, 12(1), 13–21. [Google Scholar] [CrossRef]
- Limin, G., Wanlan, Y., & Yang, L. (2023). Study on visual search features of picture recognition of orienteers in realistic scenes. China Sport Science and Technology, 59(11), 24–31, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Liu, J., Liu, Y., & Wu, L. (2024). Exploring the dynamics of prefrontal cortex in the interaction between orienteering experience and cognitive performance by fNIRS. Scientific Reports, 14(1), 14918. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y. (2019). Visual search characteristics of precise map reading by orienteers. PeerJ, 7, e7592. [Google Scholar] [CrossRef]
- Long, H., Fan, M., Yang, X., Guan, Q., Huang, Y., Xu, X., Xiao, J., & Jiang, T. (2021). Sex-related difference in mental rotation performance is mediated by the special functional connectivity between the default mode and salience networks. Neuroscience, 478, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Long, W., Mingsheng, Z., & Yang, L. (2025). Brain cognitive characteristics of map representation in orienteering athletes affected by spatial orientation—Evidence from behavior and fNIRS. China Sport Science and Technology, 61(01), 17–24, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Macaluso, E. (2019). Functional imaging of visuospatial attention in complex and naturalistic conditions. Current Topics in Behavioral Neurosciences, 41, 279–302. [Google Scholar] [CrossRef]
- Malinowski, J. C. (2001). Mental rotation and real-world wayfinding. Perceptual and Motor Skills, 92(1), 19–30. [Google Scholar] [CrossRef]
- Mutlu, M. C., Erdoğan, S. B., Öztürk, O. C., Canbeyli, R., & Saybaşιlι, H. (2020). Functional near-infrared spectroscopy indicates that asymmetric right hemispheric activation in mental rotation of a Jigsaw puzzle decreases with task difficulty. Frontiers in Human Neuroscience, 14, 252. [Google Scholar] [CrossRef] [PubMed]
- Pannebakker, M. M., Jolicœur, P., van Dam, W. O., Band, G. P. H., Richard Ridderinkhof, K., & Hommel, B. (2011). Mental rotation impairs attention shifting and short-term memory encoding: Neurophysiological evidence against the response-selection bottleneck model of dual-task performance. Neuropsychologia, 49(11), 2985–2993. [Google Scholar] [CrossRef]
- Patai, E. Z., & Spiers, H. J. (2021). The versatile Wayfinder: Prefrontal contributions to spatial navigation. Trends in Cognitive Sciences, 25(6), 520–533. [Google Scholar] [CrossRef]
- Peng, W., Xuqun, Y., & Yongfang, L. (2005). The development of mental rotation research. Psychological Science, (05), 1164–1166, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Pillon, B., Bazin, B., Deweer, B., Ehrlé, N., Baulac, M., & Dubois, B. (1999). Specificity of memory deficits after right or left temporal lobectomy. Cortex, 35(4), 561–571. [Google Scholar] [CrossRef]
- Podzebenko, K., Egan, G. F., & Watson, J. D. G. (2002). Widespread dorsal stream activation during a parametric mental rotation task, revealed with functional magnetic resonance imaging. Neuroimage, 15(3), 547–558. [Google Scholar] [CrossRef]
- Pollen, D. A. (2008). Fundamental requirements for primary visual perception. Cerebral Cortex, 18(9), 1991–1998. [Google Scholar] [CrossRef]
- Pollmann, S., & Manginelli, A. A. (2009). Anterior prefrontal involvement in implicit contextual change detection. Frontiers in Human Neuroscience, 3, 703. [Google Scholar] [CrossRef]
- Randall, J. G., Oswald, F. L., & Beier, M. E. (2014). Mind-wandering, cognition, and performance: A theory-driven meta-analysis of attention regulation. Psychological Bulletin, 140(6), 1411–1431. [Google Scholar] [CrossRef]
- Rolls, E. T., Deco, G., Huang, C. C., & Feng, J. (2023). Human amygdala compared to orbitofrontal cortex connectivity, and emotion. Progress in Neurobiology, 220, 102385. [Google Scholar] [CrossRef] [PubMed]
- Sani, I., Stemmann, H., Caron, B., Bullock, D., Stemmler, T., Fahle, M., Pestilli, F., & Freiwald, W. A. (2021). The human endogenous attentional control network includes a ventro-temporal cortical node. Nature Communications, 12(1), 360. [Google Scholar] [CrossRef]
- Schmidt, M., Egger, F., Kieliger, M., Rubeli, B., & Schüler, J. (2016). Gymnasts and orienteers display better mental rotation performance than nonathletes. Journal of Individual Differences, 37, 1–7. [Google Scholar] [CrossRef]
- Schöning, S., Engelien, A., Kugel, H., Schäfer, S., Schiffbauer, H., Zwitserlood, P., Pletziger, E., Beizai, P., Kersting, A., Ohrmann, P., Greb, R. R., Lehmann, W., Heindel, W., Arolt, V., & Konrad, C. (2007). Functional anatomy of visuo-spatial working memory during mental rotation is influenced by sex, menstrual cycle, and sex steroid hormones. Neuropsychologia, 45(14), 3203–3214. [Google Scholar] [CrossRef] [PubMed]
- Schultz, S. R., & Gava, G. P. (2019). Neural codes—Necessary but not sufficient for understanding brain function. Behavioral and Brain Sciences, 42, e241. [Google Scholar] [CrossRef]
- Schyns, P. G., Gosselin, F., & Smith, M. L. (2009). Information processing algorithms in the brain. Trends in Cognitive Sciences, 13(1), 20–26. [Google Scholar] [CrossRef] [PubMed]
- Seo, J., Kim, Y., Song, H., Lee, H. J., Lee, J., Jung, T., Lee, G., Kwon, E., Kim, J. G., & Chang, Y. (2012). Stronger activation and deactivation in archery experts for differential cognitive strategy in visuospatial working memory processing. Behavioural Brain Research, 229(1), 185–193. [Google Scholar] [CrossRef]
- Shelton, A. L., & Pippitt, H. A. (2006). Motion in the mind’s eye: Comparing mental and visual rotation. Cognitive Affective & Behavioral Neuroscience, 6(4), 323–332. [Google Scholar] [CrossRef]
- Shirzadi, S., Dadgostar, M., Hosseinzadeh, H., & Einalou, Z. (2025). Dynamics of frontal cortex functional connectivity during cognitive tasks: Insights from fNIRS analysis in the Dual n-back Paradigm. Cognitive Processing, 26(3), 555–566. [Google Scholar] [CrossRef] [PubMed]
- Silk, T. J., Bellgrove, M. A., Wrafter, P., Mattingley, J. B., & Cunnington, R. (2010). Spatial working memory and spatial attention rely on common neural processes in the intraparietal sulcus. Neuroimage, 53(2), 718–724. [Google Scholar] [CrossRef] [PubMed]
- Silson, E. H., Reynolds, R. C., Kravitz, D. J., & Baker, C. I. (2018). Differential sampling of visual space in ventral and dorsal early visual cortex. The Journal of Neuroscience, 38(9), 2294. [Google Scholar] [CrossRef] [PubMed]
- Smigasiewicz, K., Wondany, K., & Verleger, R. (2019). Left-hemisphere delay of EEG potentials evoked by standard letter stimuli during rapid serial visual presentation: Indicating right-hemisphere advantage or left-hemisphere load? Frontiers in Psychology, 10, 171. [Google Scholar] [CrossRef]
- Smillie, L. D., Varsavsky, V., Avery, R. E., & Perry, R. (2016). Trait intellect predicts cognitive engagement: Evidence from a resource allocation perspective. European Journal of Personality, 30(3), 215–226. [Google Scholar] [CrossRef]
- Spiers, H. J. (2008). Keeping the goal in mind: Prefrontal contributions to spatial navigation. Neuropsychologia, 46(7), 2106–2108. [Google Scholar] [CrossRef]
- Spiers, H. J., & Barry, C. (2015). Neural systems supporting navigation. Current Opinion in Behavioral Sciences, 1, 47–55. [Google Scholar] [CrossRef]
- Spiers, H. J., & Maguire, E. A. (2007). A navigational guidance system in the human brain. Hippocampus, 17(8), 618–626. [Google Scholar] [CrossRef]
- Stangl, M., Maoz, S. L., & Suthana, N. (2023). Mobile cognition: Imaging the human brain in the ‘real world’. Nature Reviews Neuroscience, 24(6), 347–362. [Google Scholar] [CrossRef]
- Tomasino, B., & Gremese, M. (2016). Effects of stimulus type and strategy on mental rotation network: An activation likelihood estimation meta-analysis. Frontiers in Human Neuroscience, 9, 693. [Google Scholar] [CrossRef]
- Valdois, S., Lassus-Sangosse, D., Lallier, M., Moreaud, O., & Pisella, L. (2019). What bilateral damage of the superior parietal lobes tells us about visual attention disorders in developmental dyslexia. Neuropsychologia, 130, 78–91. [Google Scholar] [CrossRef]
- Vossel, S., Geng, J. J., & Fink, G. R. (2014). Dorsal and ventral attention systems: Distinct neural circuits but collaborative roles. Neuroscientist, 20(2), 150–159. [Google Scholar] [CrossRef] [PubMed]
- Waddington, E. E., & Heisz, J. J. (2024). Orienteering as a tool for cognitive research: An implementation guide. Jove-Journal of Visualized Experiments, 213, e66833. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z., Chao, K., Limin, G., Zhihe, L., & Yang, L. (2024). A study on the cognitive processing characteristics of perceptual anticipation in volleyball players’ reception of smashes: Correlated evidence from eye movements and fNIRS. Studies of Psychology and Behavior, 22(04), 562–569, (In Chinese with English Abstract). [Google Scholar]
- Yan, Y., Jingru, L., Yan, Z., Sijie, T., & Yang, L. (2022). Behavioral performance and brain processing characteristics of orienteering athletes’ mental rotation ability under different cognitive load conditions. Journal of Physical Education, 29(02), 136–144, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Yang, W., Liu, H., Chen, N., Xu, P., & Lin, X. (2020). Is early spatial skills training effective? A meta-analysis. Frontiers in Psychology, 11, 1938. [Google Scholar] [CrossRef]
- Yesiltepe, D., Conroy Dalton, R., & Ozbil Torun, A. (2021). Landmarks in wayfinding: A review of the existing literature. Cognitive Processing, 22(3), 369–410. [Google Scholar] [CrossRef]
- Young, M. S., & Stanton, N. A. (2002). Malleable attentional resources theory: A new explanation for the effects of mental underload on performance. Human Factors, 44(3), 365–375. [Google Scholar] [CrossRef]
- Yu, K., Chen, J., Ding, X., & Zhang, D. (2025). Exploring cognitive load through neuropsychological features: An analysis using fNIRS-eye tracking. Medical & Biological Engineering & Computing, 63(1), 45–57. [Google Scholar] [CrossRef]
- Zacks, J. M. (2008). Neuroimaging studies of mental rotation: A meta-analysis and review. Journal of Cognitive Neuroscience, 20(1), 1–19. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M., Liu, J., Liu, Y., & Kang, P. (2023). Effects of mental rotation on map representation in orienteers-behavioral and fNIRS evidence. PeerJ, 11, e16299. [Google Scholar] [CrossRef] [PubMed]
Indicator | Male | Female |
---|---|---|
Sample size (N) | 36 | 31 |
Athlete level | Level 1 or above | Level 1 or above |
Mean age (years) | 21.94 ± 1.12 | 21.13 ± 0.49 |
Mean training history (years) | 4.94 ± 0.75 | 5.03 ± 0.48 |
Training frequency (hours/week) | 9.61 ± 1.44 | 9.77 ± 0.43 |
Group | Saccade Amplitude | Pupil Diameter | ||
---|---|---|---|---|
r | p | r | p | |
standard orientation | 0.520 * | <0.001 | 0.443 * | <0.001 |
rotated orientation | 0.298 * | 0.018 | 0.359 * | 0.003 |
Group | Indicator | Correct Rate | ||
---|---|---|---|---|
r | p | PFDR | ||
standard orientation | R-DLPFC | 0.372 * | 0.002 | 0.010 |
L-PL | −0.011 | 0.933 | 0.965 | |
R-PL | 0.279 | 0.029 | 0.073 | |
R-TL | −0.006 | 0.965 | 0.965 | |
VC | 0.061 | 0.648 | 0.965 | |
rotated orientation | R-DLPFC | −0.217 | 0.099 | 0.352 |
L-PL | 0.166 | 0.209 | 0.352 | |
R-PL | −0.165 | 0.211 | 0.352 | |
R-TL | −0.145 | 0.305 | 0.381 | |
VC | 0.063 | 0.626 | 0.626 |
Group | Indicator | Saccade Amplitude | Pupil Diameter | ||||
---|---|---|---|---|---|---|---|
r | p | PFDR | r | p | PFDR | ||
standard orientation | R-DLPFC | 0.568 * | <0.001 | <0.001 | 0.383 * | 0.002 | 0.010 |
L-PL | −0.036 | 0.781 | 0.781 | −0.121 | 0.342 | 0.465 | |
R-PL | 0.363 * | 0.004 | 0.010 | 0.230 | 0.074 | 0.185 | |
R-TL | 0.117 | 0.373 | 0.466 | 0.115 | 0.372 | 0.465 | |
VC | 0.274 | 0.037 | 0.061 | 0.094 | 0.479 | 0.479 | |
rotated orientation | R-DLPFC | 0.276 | 0.038 | 0.190 | −0.038 | 0.770 | 0.936 |
L-PL | 0.103 | 0.445 | 0.686 | 0.322 * | 0.012 | 0.030 | |
R-PL | 0.049 | 0.720 | 0.720 | 0.393 * | 0.002 | 0.010 | |
R-TL | −0.142 | 0.324 | 0.686 | 0.011 | 0.936 | 0.936 | |
VC | 0.080 | 0.549 | 0.686 | 0.050 | 0.701 | 0.936 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, S.; Liu, T.; Liu, Y. Neural Mechanisms of the Impact of Rotated Terrain Symbols on Spatial Representation in Orienteers: Evidence from Eye-Tracking and Whole-Brain fNIRS Synchronization. Behav. Sci. 2025, 15, 1314. https://doi.org/10.3390/bs15101314
Ou S, Liu T, Liu Y. Neural Mechanisms of the Impact of Rotated Terrain Symbols on Spatial Representation in Orienteers: Evidence from Eye-Tracking and Whole-Brain fNIRS Synchronization. Behavioral Sciences. 2025; 15(10):1314. https://doi.org/10.3390/bs15101314
Chicago/Turabian StyleOu, Shijia, Tianyu Liu, and Yang Liu. 2025. "Neural Mechanisms of the Impact of Rotated Terrain Symbols on Spatial Representation in Orienteers: Evidence from Eye-Tracking and Whole-Brain fNIRS Synchronization" Behavioral Sciences 15, no. 10: 1314. https://doi.org/10.3390/bs15101314
APA StyleOu, S., Liu, T., & Liu, Y. (2025). Neural Mechanisms of the Impact of Rotated Terrain Symbols on Spatial Representation in Orienteers: Evidence from Eye-Tracking and Whole-Brain fNIRS Synchronization. Behavioral Sciences, 15(10), 1314. https://doi.org/10.3390/bs15101314