Behavioral Characteristics of China’s NEET-Prone University Students and Graduates: A Survey from Southwest China
Abstract
1. Introduction
2. Literature Review
3. Methodology
3.1. Method
3.2. Sample
3.3. Method
3.3.1. Variable
3.3.2. Model
4. Result and Discussion
4.1. Distribution of Chinese NEET-Prone Students
4.2. Key Factors in Chinese Students Falling into NEET
4.2.1. Results of the Individual-Level Factors
4.2.2. Results of the Family-Level Factors
4.2.3. Results of the Social-Level Factors
5. Conclusions and Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Social Exclusion Unit. Bridging the Gap: New Opportunities for 16–18 Year Olds Not in Education, Employment or Training; HMSO: London, UK, 1999. [Google Scholar]
- Norasakkunkit, V.; Uchida, Y.; Takemura, K. Evaluating distal and proximal explanations for withdrawal: A rejoinder to Varnum and Kwon’s “the ecology of withdrawal”. Front. Psychol. 2017, 8, 2085. [Google Scholar] [CrossRef]
- Barbosa, L.; Portilho, F.; Wilkinson, J.; Dubeux, V. Trust, Participation and Political Consumerism among Brazilian Youth. J. Clean. Prod. 2014, 63, 93–101. [Google Scholar] [CrossRef]
- Hubatková, B.; Doseděl, T. The Expansion of Higher Education and Post-Materialistic Attitudes to Work in Europe: Evidence from the European Values Study. Czech Sociol. Rev. 2020, 56, 767–790. [Google Scholar] [CrossRef]
- Kyriaki, I.K.; Pantelis, C.K. Post-Materialism and Economic Growth: Cultural Backlash, 1981–2019. J. Comp. Econ. 2021, 49, 901–917. [Google Scholar]
- Wang, T.; Li, S. Relationship between Employment Values and College Students’ Choice Intention of Slow Employment: A Moderated Mediation Model. Front. Psychol. 2022, 13, 940556. [Google Scholar] [CrossRef]
- Rahmani, H.; Groot, W. Risk Factors of Being a Youth Not in Education, Employment or Training (NEET): A Scoping Review. Int. J. Educ. Res. 2023, 120, 102198. [Google Scholar] [CrossRef]
- Liu, I.; Uchida, Y.; Norasakkunkit, V. Socio-Economic Marginalization and Compliance Motivation among Students and Freeters in Japan. Front. Psychol. 2019, 10, 312. [Google Scholar] [CrossRef] [PubMed]
- Contini, D.; Filandri, M.; Pacelli, L. Persistency in the NEET State: A Longitudinal Analysis. J. Youth Stud. 2019, 22, 959–980. [Google Scholar] [CrossRef]
- Caroleo, F.E.; Rocca, A.; Mazzocchi, P.; Quintano, C. Being NEET in Europe before and after the Economic Crisis: An Analysis of the Micro and Macro Determinants. Soc. Indic. Res. 2020, 149, 991–1024. [Google Scholar] [CrossRef]
- Youn, M.; Kang, C. The role of the welfare state for NEETs: Exploring the association between public social spending and NEET in European countries. Sage Open 2023, 13, 21582440231193864. [Google Scholar] [CrossRef]
- Pennoni, F.; Bal-Domanska, B. NEETs and Youth Unemployment: A Longitudinal Comparison across European Countries. Soc. Indic. Res. 2022, 162, 739–761. [Google Scholar] [CrossRef]
- Tayfur, S.N.; Prior, S.; Roy, A.S.; Maciver, D.; Forsyth, K.; Fitzpatrick, L.I. Associations between Adolescent Psychosocial Factors and Disengagement from Education and Employment in Young Adulthood among Individuals with Common Mental Health Problems. J. Youth Adolesc. 2022, 51, 1397–1408. [Google Scholar] [CrossRef]
- Yang, Y. China’s Youth in NEET (not in Education, Employment, or Training): Evidence from a National Survey. Ann. Am. Acad. Polit. Soc. Sci. 2020, 688, 171–189. [Google Scholar] [CrossRef]
- Mussida, C.; Sciulli, D. Being poor and being NEET in Europe: Are these two sides of the same coin? J. Econ. Inequal. 2023, 21, 463–482. [Google Scholar] [CrossRef] [PubMed]
- Chandler, R.F.; Lozada, A.R.S. Health Status among NEET Adolescents and Young Adults in the United States, 2016-2018. SSM- Popul. Health 2021, 14, 100814. [Google Scholar] [CrossRef]
- Ayala, L.; Cantó, O.; Rodríguez, J.G. Poverty and the Business Cycle: A Regional Panel Data Analysis for Spain using Alternative Measures of Unemployment. J. Econ. Inequal. 2017, 15, 47–73. [Google Scholar] [CrossRef]
- Saunders, P. The Direct and Indirect Effects of Unemployment on Poverty and Inequality. Aust. J. Labour Econ. 2002, 5, 507–530. [Google Scholar]
- Haugland, S.H.; Stea, T.H. Risky Lives? Self-Directed Violence and Violence from Others among Young People Not in Education, Employment, or Training (NEET). Front. Public Health 2022, 10, 904458. [Google Scholar] [CrossRef] [PubMed]
- Iyer, S.; Mustafa, S.; Gariépy, G.; Shah, J.; Joober, R.; Lepage, M.; Malla, A. A NEET Distinction: Youths Not in Employment, Education or Training follow Different Pathways to Illness and Care in Psychosis. Soc. Psychiatry Psychiatr. Epidemiol. 2018, 53, 1401–1411. [Google Scholar] [CrossRef] [PubMed]
- Ralston, K.; Everington, D.; Feng, Z.; Dibben, C. Economic inactivity, Not in Employment, Education or Training (NEET) and Scarring: The Importance of NEET as a Marker of Long-Term Disadvantage. Work Employ. Soc. 2022, 36, 59–79. [Google Scholar] [CrossRef]
- Rodriguez-Modroño, P. Youth Unemployment, NEETs and Structural Inequality in Spain. Int. J. Manpow. 2019, 40, 433–448. [Google Scholar] [CrossRef]
- Papadakis, N.; Amanaki, E.; Drakaki, M.; Saridaki, S. Employment/unemployment, education and poverty in the Greek Youth, within the EU context. Int. J. Educ. Res. 2020, 99, 101503. [Google Scholar] [CrossRef]
- Aina, C.; Brunetti, I.; Mussida, C.; Scicchitano, S. Who Lost the Most? Distributive Effects of COVID-19 Pandemic. GLO Disc. Pap. 2021, 829, 1–12. [Google Scholar]
- Lőrinc, M.; Ryan, L.; D’Angelo, A.; Kaye, N. De-individualising the ‘NEET Problem’: An Ecological Systems Analysis. Eur. Educ. Res. J. 2020, 19, 412–427. [Google Scholar] [CrossRef]
- Lallukka, T.; Kerkelä, M.; Ristikari, T.; Merikukka, M.; Hiilamo, H.; Virtanen, M.; Overland, S.; Gissler, M.; Halonen, J.I. Determinants of Long-Term Unemployment in Early Adulthood: A Finnish Birth Cohort Study. SSM—Popul. Health 2019, 8, 100410. [Google Scholar] [CrossRef] [PubMed]
- Salvà-Mut, F.; Tugores-Ques, M.; Quintana-Murci, E. NEETs in Spain: An Analysis in A Context of Economic Crisis. Int. J. Lifelong Educ. 2018, 37, 168–183. [Google Scholar] [CrossRef]
- Vallejo, C.; Dooly, M. Early School Leavers and Social Disadvantage in Spain: From Books to Bricks and Vice-Versa. Eur. J. Educ. 2013, 48, 391–404. [Google Scholar] [CrossRef]
- Lynn, V.V.; Mark, L.; Rolf, V.D.V. The Low Skills Trap: The Failure of Education and Social Policies in Preventing Low-Literate Young People from Being Long-Term NEET. J. Youth Stud. 2022, 25, 1–35. [Google Scholar]
- Ringbom, I.; Suvisaari, J.; Kääriälä, A.; Sourander, A.; Gissler, M.; Kelleher, I.; Gyllenberg, D. Psychotic Disorders in Adolescence and Later Long-Term Exclusion from Education and Employment. Schizophr. Bull. 2023, 49, 90–98. [Google Scholar] [CrossRef]
- Lin, W.H.; Chiao, C. The Relationship between Adverse Childhood Experience and Heavy Smoking in Emerging Adulthood: The Role of Not in Education, Employment, or Training Status. J. Adolesc. Health 2022, 70, 155–162. [Google Scholar] [CrossRef]
- Berlin, M.; Kril, A.; Lausten, M.; Andersson, G.; Brnnstrm, L. Long-term NEET among young adults with experience of out-of-home care: A comparative study of three Nordic countries. Int. J. Soc. Welf. 2021, 30, 266–279. [Google Scholar] [CrossRef]
- Rodwell, L.; Romaniuk, H.; Nilsen, W.; Carlin, J.; Lee, K.; Patton, G. Adolescent Mental Health and Behavioural Predictors of Being NEET: A Prospective Study of Young Adults Not in Employment, Education, or Training. Psychol. Med. 2018, 48, 861–871. [Google Scholar] [CrossRef]
- Fakih, A.; Haimoun, N.; Kassem, M. Youth Unemployment, Gender and Institutions during Transition: Evidence from the Arab Spring. Soc. Indic. Res. 2020, 150, 311–336. [Google Scholar] [CrossRef]
- Hegelund, E.R.; Flensborg-Madsen, T.; Dammeyer, J.; Mortensen, E.L. Low IQ as A Predictor of Unsuccessful Educational and Occupational Achievement: A Register-Based Study of 1,098,742 Men in Denmark 1968–2016. Intelligence 2018, 71, 46–53. [Google Scholar] [CrossRef]
- Lüküslü, D.; Çelik, K. Gendering the NEET Category: Young NEET Women in Turkey. Turk. Stud. 2022, 23, 200–222. [Google Scholar] [CrossRef]
- Zudina, A. What Makes Youth Become NEET? Evidence from Russia. J. Youth Stud. 2022, 25, 636–649. [Google Scholar] [CrossRef]
- Holte, B.H.; Swart, I.; Hiilamo, H. The NEET Concept in Comparative Youth Research: The Nordic Countries and South Africa. J. Youth Stud. 2019, 22, 256–272. [Google Scholar] [CrossRef]
- To, S.; Victor, C.W.; Daniel, D.L.; Lau, C.D.; Su, X.B. Navigating Risk Discourses: A Narrative Analysis of Parental Experiences in the Career and Life Development of Youth Not in Education, Employment, or Training. Appl. Res. Qual. Life 2021, 16, 2039–2058. [Google Scholar] [CrossRef]
- Li, T.M.; Liu, L.; Wong, P.W. Withdrawal Experience and Possible Way-Outs from Withdrawal Behavior in Young People. Qual. Soc. Work. 2018, 17, 537–555. [Google Scholar] [CrossRef]
Type | Variable | N | Mean | S.D. | Min | Max |
---|---|---|---|---|---|---|
Dependent variable | NEET-prone | 12,616 | 0.219 | 0.414 | 0 | 1 |
Independent variable | Ability | 12,616 | 24.950 | 6.007 | 7 | 35 |
Confidence | 12,616 | 2.704 | 0.970 | 1 | 5 | |
Attitude | 12,616 | 4.708 | 1.843 | 1 | 6 | |
Only-child | 12,616 | 0.265 | 0.441 | 0 | 1 | |
Consumption | 12,616 | 2.143 | 1.080 | 1 | 6 | |
Dependence | 12,616 | 0.627 | 0.484 | 0 | 1 | |
Relative-NEET | 12,616 | 0.215 | 0.411 | 0 | 1 | |
Service | 12,616 | 0.935 | 0.246 | 0 | 1 | |
Num-service | 12,616 | 3.049 | 1.911 | 0 | 6 | |
Loan | 12,616 | 0.226 | 0.418 | 0 | 1 | |
Control variable | Gender | 12,616 | 0.395 | 0.489 | 0 | 1 |
Age | 12,616 | 19.720 | 1.534 | 15 | 45 | |
Nationality | 12,616 | 0.181 | 0.385 | 0 | 1 | |
Marriage | 12,616 | 0.007 | 0.083 | 0 | 1 | |
Registration | 12,616 | 0.275 | 0.447 | 0 | 1 | |
Family-income | 12,616 | 2.300 | 1.518 | 1 | 5 |
Type (1) | Samples N (%) (2) | NEET-Prone Students N (%) (3) |
---|---|---|
(1) Gender | ||
Male | 4980 (39.47%) | 1573 (56.91%) |
Female | 7636 (60.53%) | 1191 (43.09%) |
(2) Age | ||
18 and below | 2005 (15.89%) | 415 (15.01%) |
19 | 4221 (33.46%) | 1025 (37.08%) |
20 | 3791 (30.05%) | 875 (31.66%) |
21 | 1564 (12.40%) | 318 (11.51%) |
22 and above | 1035 (8.20%) | 131 (4.74%) |
(3) Nationality | ||
The Han nationality | 10,331 (81.89%) | 2362 (85.46%) |
Others | 2285 (18.11%) | 402 (14.54%) |
(4) Household registration | ||
Rural | 9143 (72.47%) | 2274 (82.27%) |
Urban | 3473 (27.53%) | 490 (17.73%) |
(5) Educational background | ||
Associate degree | 9558 (75.76%) | 2450 (88.64%) |
Bachelor degree | 2793 (22.14%) | 301 (10.89%) |
Master’s degree | 208 (1.65%) | 11 (0.40%) |
Doctor’s degree | 57 (0.45%) | 2 (0.07%) |
(6) Level of school | ||
College or vocational college | 9252 (73.34%) | 2393 (86.58%) |
General undergraduate universities | 497 (3.94%) | 80 (2.89%) |
Double first-class universities | 2867 (22.73%) | 293 (10.60%) |
Personal Ability | Confidence in Job Hunting | Attitude towards NEET | ||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
Ability | −0.050 *** | −0.048 *** | ||||
(0.004) | (0.004) | |||||
Confidence | −0.229 *** | −0.221 *** | ||||
(0.023) | (0.023) | |||||
Attitude | −0.107 *** | −0.101 *** | ||||
(0.011) | (0.011) | |||||
Gender | 0.255 *** | 0.254 *** | 0.168 *** | |||
(0.045) | (0.045) | (0.045) | ||||
Age | −0.090 *** | −0.098 *** | −0.091 *** | |||
(0.017) | (0.017) | (0.017) | ||||
Nationality | −0.392 *** | −0.394 *** | −0.380 *** | |||
(0.062) | (0.062) | (0.062) | ||||
Marriage | −0.509 | −0.475 | −0.664 * | |||
(0.362) | (0.362) | (0.361) | ||||
Registration | −0.645 *** | −0.644 *** | −0.680 *** | |||
(0.057) | (0.057) | (0.056) | ||||
Family-income | −0.077 *** | −0.077 *** | −0.076 *** | |||
(0.016) | (0.016) | (0.016) | ||||
_cons | −0.051 | 1.973 *** | −0.667 *** | 1.533 *** | −0.777 *** | 1.312 *** |
(0.089) | (0.341) | (0.063) | (0.340) | (0.054) | (0.333) | |
N | 12,616 | 12,616 | 12,616 | 12,616 | 12,616 | 12,616 |
Log likelihood | −6534.94 | −6385.24 | −6581.60 | −6428.30 | −6587.34 | −6434.42 |
LR chi2 | 195.85 | 495.24 | 102.53 | 409.12 | 91.05 | 396.89 |
Prob > chi2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Pearson chi2 | 130.48 | 3045.30 | 77.76 | 1374.33 | 25.01 | 1381.07 |
Prob > chi2 | 0.000 | 0.295 | 0.000 | 0.001 | 0.000 | 0.011 |
Pseudo R2 | 0.015 | 0.037 | 0.008 | 0.031 | 0.007 | 0.030 |
Only Child? | Consumption Level | Economic Dependence on Family Members | Any NEET Relatives ? | |||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
Only-child | −0.326 *** | −0.135 ** | ||||||
(0.051) | (0.056) | |||||||
Consumption | −0.159 *** | −0.076 *** | ||||||
(0.022) | (0.023) | |||||||
Dependence | 0.349 *** | 0.347 *** | ||||||
(0.007) | (0.007) | |||||||
Relative-NEET | −0.261 *** | −0.234 *** | ||||||
(0.055) | (0.056) | |||||||
Gender | 0.223 *** | 0.204 *** | 0.046 *** | 0.211 *** | ||||
(0.044) | (0.044) | (0.007) | (0.044) | |||||
Age | −0.091 *** | −0.091 *** | −0.002 | −0.090 *** | ||||
(0.017) | (0.017) | (0.002) | (0.017) | |||||
Nationality | −0.385 *** | −0.348 *** | −0.069 *** | −0.371 *** | ||||
(0.062) | (0.062) | (0.009) | (0.062) | |||||
Marriage | −0.544 | −0.540 | 0.044 | −0.532 | ||||
(0.360) | (0.359) | (0.041) | (0.360) | |||||
Registration | −0.633 *** | −0.686 *** | −0.082 *** | −0.670 *** | ||||
(0.059) | (0.058) | (0.008) | (0.056) | |||||
Family-income | −0.082 *** | −0.015 *** | −0.085 *** | |||||
(0.016) | (0.002) | (0.016) | ||||||
_cons | −1.190 *** | 0.861 *** | −0.938 *** | 0.808 ** | 0.000 | 0.088 * | −1.218 *** | 0.881 *** |
(0.025) | (0.330) | (0.049) | (0.330) | (0.006) | (0.045) | (0.024) | (0.330) | |
N | 12,616 | 12,616 | 12,616 | 12,616 | 12,616 | 12,616 | 12,616 | 12,616 |
Log likelihood | −6600.21 | −6447.13 | −6569.20 | −6423.67 | −6612.60 | −6448.62 | ||
LR chi2 | 65.29 | 371.46 | 127.32 | 418.39 | 40.52 | 368.48 | ||
Prob > chi2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Pearson chi2 | 0.00 | 671.32 | 23.83 | 1638.49 | 0.00 | 736.95 | ||
Prob > chi2 | 0.000 | 0.030 | 0.000 | 0.130 | 0.000 | 0.100 | ||
Pseudo R2 | 0.003 | 0.024 | 0.004 | 0.023 | 0.002 | 0.025 | ||
Adj R2 | 0.167 | 0.185 |
Do Schools Provide Employment Services? | Number of Employment Services Provided by Schools | Any Loans from Society? | ||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
Service | −0.647 *** | −0.591 *** | ||||
(0.077) | (0.079) | |||||
Num-service | −0.130 *** | −0.117 *** | ||||
(0.012) | (0.012) | |||||
Loan | −0.340 *** | −0.397 *** | ||||
(0.055) | (0.057) | |||||
Gender | 0.196 *** | 0.198 *** | 0.216 *** | |||
(0.044) | (0.044) | (0.044) | ||||
Age | −0.093 *** | −0.095 *** | −0.086 *** | |||
(0.017) | (0.017) | (0.017) | ||||
Nationality | −0.369 *** | −0.381 *** | −0.279 *** | |||
(0.062) | (0.062) | (0.063) | ||||
Marriage | −0.587 | −0.604 * | −0.478 | |||
(0.360) | (0.361) | (0.360) | ||||
Registration | −0.670 *** | −0.651 *** | −0.707 *** | |||
(0.056) | (0.056) | (0.056) | ||||
Family-income | −0.079 *** | −0.072 *** | −0.096 *** | |||
(0.016) | (0.016) | (0.016) | ||||
_cons | −0.673 *** | 1.423 *** | −0.893 *** | 1.239 *** | −1.200 *** | 0.850 ** |
(0.074) | (0.339) | (0.039) | (0.335) | (0.024) | (0.330) | |
N | 12,616 | 12,616 | 12,616 | 12,616 | 12,616 | 12,616 |
Log likelihood | −6600.21 | −6447.13 | −6569.20 | −6423.67 | −6612.60 | −6448.61 |
LR chi2 | 65.29 | 371.46 | 127.32 | 418.39 | 40.52 | 368.48 |
Prob > chi2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Pearson chi2 | 0.00 | 671.32 | 23.83 | 1638.49 | 0.00 | 736.95 |
Prob > chi2 | 0.000 | 0.030 | 0.000 | 0.130 | 0.000 | 0.100 |
Pseudo R2 | 0.005 | 0.028 | 0.010 | 0.032 | 0.003 | 0.028 |
Individual-Level Factors | Family-Level Factors | Social-Level Factors | All Factors | |
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Ability | −0.040 *** | −0.040 *** | ||
(0.004) | (0.004) | |||
Confidence | −0.158 *** | −0.159 *** | ||
(0.024) | (0.024) | |||
Attitude | −0.090 *** | −0.078 *** | ||
(0.011) | (0.012) | |||
Only-child | −0.133 ** | −0.136 ** | ||
(0.056) | (0.057) | |||
Consumption | −0.068 *** | −0.057 ** | ||
(0.023) | (0.024) | |||
Relative-NEET | −0.225 *** | −0.199 *** | ||
(0.056) | (0.057) | |||
Service | −0.302 *** | −0.207 ** | ||
(0.089) | (0.091) | |||
Num-service | −0.100 *** | −0.089 *** | ||
(0.013) | (0.013) | |||
Loan | −0.417 *** | −0.458 *** | ||
(0.057) | (0.058) | |||
Gender | 0.237 *** | 0.212 *** | 0.196 *** | 0.232 *** |
(0.045) | (0.044) | (0.045) | (0.046) | |
Age | −0.095 *** | −0.088 *** | −0.090 *** | −0.089 *** |
(0.017) | (0.017) | (0.017) | (0.017) | |
Nationality | −0.413 *** | −0.365 *** | −0.285 *** | −0.313 *** |
(0.063) | (0.062) | (0.063) | (0.064) | |
Marriage | −0.570 | −0.509 | −0.522 | −0.461 |
(0.368) | (0.359) | (0.361) | (0.367) | |
Registration | −0.631 *** | −0.641 *** | −0.681 *** | −0.597 *** |
(0.057) | (0.060) | (0.057) | (0.061) | |
Family-income | −0.066 *** | −0.083 *** | ||
(0.016) | (0.016) | |||
_cons | 2.675 *** | 0.818 ** | 1.464 *** | 3.081 *** |
(0.350) | (0.330) | (0.341) | (0.360) | |
N | 12,616 | 12,616 | 12,616 | 12,616 |
Log likelihood | −6333.36 | −6471.80 | −6391.03 | −6261.01 |
LR chi2 | 598.99 | 322.12 | 483.67 | 743.69 |
Prob > chi2 | 0.000 | 0.000 | 0.000 | 0.000 |
Pearson chi2 | 7951.05 | 1151.71 | 2189.01 | 11,715.70 |
Prob > chi2 | 0.8212 | 0.041 | 0.654 | 0.630 |
Pseudo R2 | 0.045 | 0.024 | 0.036 | 0.056 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Li, Y.; Yu, A.; Zhang, W. Behavioral Characteristics of China’s NEET-Prone University Students and Graduates: A Survey from Southwest China. Behav. Sci. 2024, 14, 98. https://doi.org/10.3390/bs14020098
Zhao L, Li Y, Yu A, Zhang W. Behavioral Characteristics of China’s NEET-Prone University Students and Graduates: A Survey from Southwest China. Behavioral Sciences. 2024; 14(2):98. https://doi.org/10.3390/bs14020098
Chicago/Turabian StyleZhao, Lu, Yang Li, Ao Yu, and Weike Zhang. 2024. "Behavioral Characteristics of China’s NEET-Prone University Students and Graduates: A Survey from Southwest China" Behavioral Sciences 14, no. 2: 98. https://doi.org/10.3390/bs14020098
APA StyleZhao, L., Li, Y., Yu, A., & Zhang, W. (2024). Behavioral Characteristics of China’s NEET-Prone University Students and Graduates: A Survey from Southwest China. Behavioral Sciences, 14(2), 98. https://doi.org/10.3390/bs14020098