Temporal and Spatial Analysis of Negative Emotions in China during the COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Data Processing
2.2.1. Standardization and Time-Slice Processing
2.2.2. Moran’s Index Analysis
3. Results
3.1. The Spatial Clustering of the Negative Emotion Index at Each Stage
3.2. Radiation Effect of Negative Emotions
3.3. Spatial Correlation Analysis of Factors Influencing Negative Emotions
3.3.1. The Spatial Correlation Analysis between the GBI and the TNE
3.3.2. Spatial Correlation Analysis between NABI and TNE
3.3.3. Spatial Correlation Analysis of the PBI and TNE
4. Conclusions and Discussion
5. Limitations and Policy Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Categories | Emotions | Words |
---|---|---|
1 | Sadness | Sadness, Sorrow, Grief, Unhappiness, Melancholy, Heartache, Pain, Mourning, Gloominess, Dejection, Despondency [37] |
2 | Anger | Anger, Rage, Fury, Indignation, Resentment, Exasperation, Wrath, Ire [37] |
3 | Lonely | Loneliness, Solitude, Isolation, Lonesomeness, Autism, Solitary, Misunderstood, Desolate, 52 Hertz, Alone [37] |
4 | Fear | Fear, Anxiety, Confusion, Nervousness, Terror, Panic, Worry, Unease, Dread [37] |
5 | Anxiousness | Anxiety, Heartburn, Anxiety, Hair Loss, Anxiety Disorder, Distress, Irritation, Restlessness, Agitation, Vexation, Haggard, Distress, Headache, Very Annoyed [38] |
6 | Disappointment | Disappointment, Disillusionment, Despair, Frustration, Hopelessness, Defeated [37] |
7 | Disgust | Disgust, Dislike, Hatred, Loathing, Resentment [37] |
8 | Helplessness | Helplessness, Wry Smile, Heartbreak, Powerlessness, Speechless, At A Loss, Bewildered, Powerless [37] |
9 | Depression | Depression, Melancholy, Depression, Insomnia [36,39] |
10 | Confusion | Doubt, skepticism, Perplexity, Confusion, Bewilderment, Uncertainty, Ignorance, What, Where, How, What Is, How About Curiosity, Wonder, Confusion, Puzzlement, Strange [37] |
Appendix B
Categories | Influencing Factors | Words |
---|---|---|
1 | Government | Government, Department, Ministry of Health, Health Bureau, National Health and Family Planning Commission, National Health Commission, Ministry of Health of the People’s Republic of China [41] |
2 | Pandemic | COVID-19, Virus, COVID-19 Pandemic, Epidemic, COVID, Novel Coronavirus, Pneumonia, Novel Pneumonia, Novel Coronavirus Pneumonia [35] |
3 | Nucleic Acid | Nucleic Acid, Nucleic Acid Testing [10] |
Appendix C
Year | Provinces | Unemployment Rate (%) | Sources |
---|---|---|---|
2019 | Chongqing | 2.62 | The China Statistical Yearbook of 2020 https://www.stats.gov.cn/sj/ndsj/2020/indexch.htm (accessed on 15 December 2023) |
Sichuan | 3.31 | ||
Hubei | 2.24 | ||
Hunan | 2.73 | ||
Guizhou | 3.11 | ||
Shaanxi | 3.23 | ||
2020 | Chongqing | 4.49 | The China Statistical Yearbook of 2021 https://www.stats.gov.cn/sj/ndsj/2021/indexch.htm (accessed on 15 December 2023) |
Sichuan | 3.63 | ||
Hubei | 3.35 | ||
Hunan | 2.74 | ||
Guizhou | 3.75 | ||
Shaanxi | 3.63 | ||
2021 | Chongqing | 2.92 | The China Statistical Yearbook of 2022 https://www.stats.gov.cn/sj/ndsj/2022/indexch.htm (accessed on 15 December 2023) |
Sichuan | 3.6 | ||
Hubei | 2.99 | ||
Hunan | 2.29 | ||
Guizhou | 4.45 | ||
Shaanxi | 3.47 |
References
- Xiong, J.; Lipsitz, O.; Nasri, F.; Lui, L.M.W.; Gill, H.; Phan, L.; Chen-Li, D.; Iacobucci, M.; Ho, R.; Majeed, A.; et al. Impact of COVID-19 Pandemic on Mental Health in the General Population: A Systematic Review. J. Affect. Disord. 2020, 277, 55–64. [Google Scholar] [CrossRef]
- Donizzetti, A.R. The Relationship between Physical Activity and Psychosocial Well-Being during and after COVID-19 Lockdown. Behav. Sci. 2023, 13, 986. [Google Scholar] [CrossRef]
- Giusti, L.; Mammarella, S.; Del Vecchio, S.; Salza, A.; Casacchia, M.; Roncone, R. Deepening Depression in Women Balancing Work–Life Responsibilities and Caregiving during the COVID-19 Pandemic: Findings from Gender-Specific Face-to-Face Street Interviews Conducted in Italy. Behav. Sci. 2023, 13, 892. [Google Scholar] [CrossRef]
- Tillman, G.; March, E.; Lavender, A.P.; Braund, T.A.; Mesagno, C. Disordered Social Media Use during COVID-19 Predicts Perceived Stress and Depression through Indirect Effects via Fear of COVID-19. Behav. Sci. 2023, 13, 698. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Guan, Y.; Ding, W.; Meng, Y.; Hu, H.; Liu, Z.; Zeng, X.; Wang, M. A Nationwide Evalua-tion of the Prevalence of and Risk Factors Associated with Anxiety, Depression and Insomnia Symptoms during the Return-to-Work Period of Coronavirus Disease 2019 in China. Soc. Psychiatry Psychiatr. Epidemiol. 2021, 56, 2275–2286. [Google Scholar] [CrossRef]
- Hoang, C. Negative Emotions and Coping Behaviors of Passenger in the Airline Industry, Vietnam. J. Asian Financ. Econ. Bus. 2020, 7, 865–874. [Google Scholar] [CrossRef]
- Dai, D.; Wang, R. Space-Time Surveillance of Negative Emotions after Consecutive Terrorist Attacks in London. Int. J. Environ. Res. Public Health 2020, 17, 4000. [Google Scholar] [CrossRef]
- Israelashvili, J. More Positive Emotions During the COVID-19 Pandemic Are Associated with Better Resilience, Especially for Those Experiencing More Negative Emotions. Front. Psychol. 2021, 12, 648112. [Google Scholar] [CrossRef]
- Ho, C.S.; Chee, C.Y.; Ho, R.C. Mental Health Strategies to Combat the Psychological Impact of COVID-19 Beyond Paranoia and Panic. Ann. Acad. Med. Singapore 2020, 49, 1–3. [Google Scholar]
- Ruan, Y.; Huang, T.; Zhou, W.; Zhu, J.; Liang, Q.; Zhong, L.; Tang, X.; Liu, L.; Chen, S.; Xie, Y. The Lead Time and Geographical Variations of Baidu Search Index in the Early Warning of COVID-19. Sci. Rep. 2023, 13, 14705. [Google Scholar] [CrossRef]
- Mingxing, X.; Rui, Z.; Lilin, R.A.O.; Yi, K.; Shuwen, Y.; Yang, D.; Jianglong, L.I.; Shu, L.I. Suggestions on properly coping with the “psychological typhoon eye effect” in the current COVID-19 epidemic. Proc. Chin. Acad. Sci. USA 2020, 35, 273–282. [Google Scholar]
- Deng, S.; Wang, W.; Xie, P.; Chao, Y.; Zhu, J. Perceived Severity of COVID-19 and Post-Pandemic Consumption Willingness: The Roles of Boredom and Sensation-Seeking. Front. Psychol. 2020, 11, 567784. [Google Scholar] [CrossRef] [PubMed]
- Rossell, S.L.; Neill, E.; Phillipou, A.; Tan, E.J.; Toh, W.L.; Van Rheenen, T.E.; Meyer, D. An Overview of Current Mental Health in the General Population of Australia during the COVID-19 Pandemic: Results from the COLLATE Project. Psychiatry Res. 2021, 296, 113660. [Google Scholar] [CrossRef] [PubMed]
- Henderson, A.S.; Montgomery, I.M.; Williams, C.L. PSYCHOLOGICAL IMMUNISATION: A Proposal for Preventive Psychiatry. Lancet 1972, 299, 1111–1113. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Chen, X.; Zou, Y. Bull’s Eye or Typhoon Eye? Psychological Distress and Associated Factors in Wuhan and Surrounding Areas during the COVID-19 Pandemic. Glob. Ment. Health 2022, 9, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Morality and Media in the 21st Century—A Panel in Celebration of the Work of Professor Roger Silverstone—LSE Research Online. Available online: https://eprints.lse.ac.uk/21507/ (accessed on 13 December 2023).
- Besser, A.; Flett, G.L.; Nepon, T.; Zeigler-Hill, V. Personality, Cognition, and Adaptability to the COVID-19 Pandemic: Associations with Loneliness, Distress, and Positive and Negative Mood States. Int. J. Ment. Health Addict. 2022, 20, 971–995. [Google Scholar] [CrossRef] [PubMed]
- Ning, L.; Niu, J.; Bi, X.; Yang, C.; Liu, Z.; Wu, Q.; Ning, N.; Liang, L.; Liu, A.; Hao, Y.; et al. The Impacts of Knowledge, Risk Perception, Emotion and Information on Citizens’ Protective Behaviors during the Outbreak of COVID-19: A Cross-Sectional Study in China. BMC Public Health 2020, 20, 1751. [Google Scholar] [CrossRef] [PubMed]
- Han, P.K.J.; Scharnetzki, E.; Scherer, A.M.; Thorpe, A.; Lary, C.; Waterston, L.B.; Fagerlin, A.; Dieckmann, N.F. Communicating Scientific Uncertainty About the COVID-19 Pandemic: Online Experimental Study of an Uncertainty-Normalizing Strategy. J. Med. Internet Res. 2021, 23, e27832. [Google Scholar] [CrossRef]
- Wang, F.; Pan, F.; Tang, Y.-Y.; Huang, J.H. Editorial: Uncertainty Induced Emotional Disorders during the COVID-19. Front. Psychol. 2022, 13, 943966. [Google Scholar] [CrossRef]
- Oldeweme, A.; Märtins, J.; Westmattelmann, D.; Schewe, G. The Role of Transparency, Trust, and Social Influence on Uncertainty Reduction in Times of Pandemics: Empirical Study on the Adoption of COVID-19 Tracing Apps. J. Med. Internet Res. 2021, 23, e25893. [Google Scholar] [CrossRef]
- Afifi, W.A.; Afifi, T.D. Uncertainty and Coping during COVID-19. In Communicating COVID-19: Interdisciplinary Perspectives; Lewis, M., Govender, E., Holland, K., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 325–344. ISBN 978-3-030-79735-5. [Google Scholar]
- Kramer, M.W. Motivation to Reduce Uncertainty: A Reconceptualization of Uncertainty Reduction Theory. Manag. Commun. Q. 1999, 13, 305–316. [Google Scholar] [CrossRef]
- Dillard, J.P.; Yang, C.; Huang, Y. Feeling COVID-19: Intensity, Clusters, and Correlates of Emotional Responses to the Pandemic. J. Risk Res. 2022, 25, 1288–1305. [Google Scholar] [CrossRef]
- Zarocostas, J. How to Fight an Infodemic. Lancet 2020, 395, 676. [Google Scholar] [CrossRef]
- Mourad, A.; Srour, A.; Harmanani, H.; Jenainati, C.; Arafeh, M. Critical Impact of Social Networks Infodemic on Defeating Coronavirus COVID-19 Pandemic: Twitter-Based Study and Research Directions. IEEE Trans. Netw. Serv. Manag. 2020, 17, 2145–2155. [Google Scholar] [CrossRef]
- Liu, J.C.J.; Tong, E.M.W. The Relation Between Official WhatsApp-Distributed COVID-19 News Exposure and Psychological Symptoms: Cross-Sectional Survey Study. J. Med. Internet Res. 2020, 22, e22142. [Google Scholar] [CrossRef]
- Lin, D.; Friedman, D.B.; Qiao, S.; Tam, C.C.; Li, X.; Li, X. Information Uncertainty: A Correlate for Acute Stress Disorder during the COVID-19 Outbreak in China. BMC Public Health 2020, 20, 1867. [Google Scholar] [CrossRef]
- Shi, W.; Zeng, F.; Zhang, A.; Tong, C.; Shen, X.; Liu, Z.; Shi, Z. Online Public Opinion during the First Epidemic Wave of COVID-19 in China Based on Weibo Data. Humanit. Soc. Sci. Commun. 2022, 9, 1–10. [Google Scholar] [CrossRef]
- Sun, M.; Li, X.; Yao, J.; Huang, X.; Kang, Y.; Li, Z. Psychological Status of Medical Staff Dedicated to Nucleic Acid Collection in COVID-19 Epidemic during Closed-Loop Management: A Cross-Sectional Study. Front. Public Health 2023, 11, 1131971. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, K.; Li, H.; Li, M.; Li, S. Trends in Online Searching toward Suicide Pre-, during, and Post the First Wave of COVID-19 Outbreak in China. Front. Psychiatry 2022, 13, 947765. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhang, L.; Ding, Y. The Baidu Index: Uses in Predicting Tourism Flows—A Case Study of the Forbidden City. Tour. Manag. 2017, 58, 301–306. [Google Scholar] [CrossRef]
- Yu, H.-Z.; Fu, T.; Zhou, J.-N.; Ke, P.; Wang, Y.-X. More Depression-Related Public Concern after the Suicide of a Pop Star in China: Evidence from the Online Big Data Platform. Front. Psychiatry 2021, 12, 629904. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Gozgor, G.; Lau, C.-K.M.; Lu, Z. The Impact of Baidu Index Sentiment on the Volatility of China’s Stock Markets. Financ. Res. Lett. 2020, 32, 101099. [Google Scholar] [CrossRef]
- Fang, J.; Zhang, X.; Tong, Y.; Xia, Y.; Liu, H.; Wu, K. Baidu Index and COVID-19 Epidemic Forecast: Evidence from China. Front. Public Health 2021, 9, 685141. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, K. Insight into the Psychological Problems on the Epidemic of COVID-19 in China by Online Searching Behaviors. J. Affect Disord. 2020, 276, 1093–1094. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Lin, H.; Zhao, J. Construction and analysis of emotional corpus. J. Chin. Inf. Sci. 2008, 22, 116–122. [Google Scholar]
- Zung, W.W.K. Self-Rating Anxiety Scale. APA PsycTest Cit. Descr. 2013. [Google Scholar]
- Zung, W.W.K. A Self-Rating Depression Scale. Arch. Gen. Psychiatry 1965, 12, 63–70. [Google Scholar] [CrossRef]
- Derogatis, L.R. Symptom Checklist-90-Revised, Brief Symptom Inventory, and BSI-18. In Handbook of Psychological Assessment in Primary Care Settings; Routledge: London, UK, 2017; ISBN 978-1-315-65840-7. [Google Scholar]
- Gong, X.; Han, Y.; Hou, M.; Guo, R. Online Public Attention during the Early Days of the COVID-19 Pandemic: Infoveillance Study Based on Baidu Index. JMIR Public Health Surveill 2020, 6, e23098. [Google Scholar] [CrossRef]
- Gong, W.; Zhu, M.; Chen, H. The evolution mechanism of social emotions under major epidemics—Analysis based on big data such as Twitter and GDELT. Soc. Res. 2023, 38, 203–225+230. [Google Scholar]
- Wubben, M.J.J.; Cremer, D.D.; van Dijk, E. How Emotion Communication Guides Reciprocity: Establishing Cooperation through Disappointment and Anger. J. Exp. Soc. Psychol. 2009, 45, 987–990. [Google Scholar] [CrossRef]
- Pretus, C.; Ray, J.L.; Granot, Y.; Cunningham, W.A.; Van Bavel, J.J. The Psychology of Hate: Moral Concerns Differentiate Hate from Dislike. Eur. J. Soc. Psychol. 2023, 53, 336–353. [Google Scholar] [CrossRef]
- Figueredo, A.J.; Sefcek, J.A.; Vasquez, G.; Brumbach, B.H.; King, J.E.; Jacobs, W.J. Evolutionary Personality Psychology. In The Handbook of Evolutionary Psychology; John Wiley & Sons, Ltd.: New York, NY, USA, 2015; pp. 851–877. ISBN 978-0-470-93937-6. [Google Scholar]
- Wang, G.-Y.; Tang, S.-F. Perceived Psychosocial Health and Its Sociodemographic Correlates in Times of the COVID-19 Pandemic: A Community-Based Online Study in China. Infect. Dis. Poverty 2020, 9, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Zang, W. Research on the Unemployment Risk of Migrant Population in China’s Megacities during the COVID-19 Epidemic. Urban Dev. Res. 2022, 29, 116–123+132. [Google Scholar]
- Schraff, D. Political Trust during the Covid-19 Pandemic: Rally around the Flag or Lockdown Effects? Eur. J. Political Res. 2021, 60, 1007–1017. [Google Scholar] [CrossRef] [PubMed]
Pre-Pandemic | Phase I | Phase II | Phase III | Phase IV | Phase V | ||
---|---|---|---|---|---|---|---|
TNE | Moran’s I | 0.049 | 0.170 ** | 0.183 * | 0.150 ** | 0.151 | 0.148 ** |
Z-Value | 0.783 | 3.635 | 2.047 | 3.575 | 1.068 | 3.365 | |
Sadness | Moran’s I | 0.076 | 0.209 ** | 0.174 * | 0.154 | 0.164 * | 0.111 ** |
Z-Value | 1.139 | 3.895 | 2.033 | 3.705 | 1.979 | 3.182 | |
Anger | Moran’s I | 0.045 | 0.124 ** | 0.193 * | 0.088 * | 0.152 | 0.088 * |
Z-Value | 0.750 | 2.776 | 2.012 | 2.512 | 1.090 | 2.381 | |
Loneliness | Moran’s I | 0.092 | 0.182 ** | 0.204 * | 0.159 ** | 0.179 * | 0.144 ** |
Z-Value | 1.147 | 3.721 | 2.275 | 3.582 | 2.070 | 3.300 | |
Fear | Moran’s I | 0.122 | 0.101 ** | 0.123 ** | 0.116 * | 0.193 * | 0.148 ** |
Z-Value | 1.382 | 2.704 | 2.610 | 3.150 | 2.045 | 3.641 | |
Anxiousness | Moran’s I | −0.030 | 0.133 ** | 0.173 * | 0.125 ** | 0.126 | 0.232 *** |
Z-Value | 0.003 | 3.068 | 1.970 | 3.100 | 1.407 | 4.547 | |
Disappointment | Moran’s I | 0.108 | 0.257 ** | 0.180 * | 0.207 ** | 0.196 * | 0.160 ** |
Z-Value | 1.512 | 4.237 | 2.071 | 4.001 | 2.211 | 3.854 | |
Disgust | Moran’s I | 0.076 | 0.112 ** | 0.222 * | 0.110 ** | 0.210 * | 0.212 ** |
Z-Value | 0.997 | 2.699 | 2.217 | 3.001 | 2.146 | 4.400 | |
Helplessness | Moran’s I | 0.074 | 0.145 ** | 0.199 * | 0.148 ** | 0.182 | 0.143 ** |
Z-Value | 0.980 | 3.347 | 2.176 | 3.551 | 2.049 | 3.478 | |
Depression | Moran’s I | −0.011 | 0.133 ** | 0.159 * | 0.105 ** | 0.145 | 0.231 ** |
Z-Value | 0.226 | 4.136 | 1.963 | 3.973 | 1.890 | 4.523 | |
Confusion | Moran’s I | 0.019 | 0.168 ** | 0.138 | 0.149 | 0.085 | 0.088 * |
Z-Value | 0.531 | 3.534 | 1.691 | 3.380 | 1.164 | 1.972 |
Influencing Factors of TNE | Moran’s I | Z-Value | |
---|---|---|---|
Pre-pandemic | GBI | 0.034 | 0.733 |
Phase I | GBI | 0.049 | 0.672 |
NABI | 0.031 | 0.325 | |
PBI | 0.240 ** | 3.230 | |
Phase II | GBI | 0.088 * | 1.965 |
NABI | 0.141 * | 2.144 | |
PBI | 0.047 | 1.303 | |
Phase III | GBI | 0.253 ** | 3.345 |
NABI | 0.166 * | 1.988 | |
PBI | 0.240 ** | 3.350 | |
Phase IV | GBI | 0.075 | 1.264 |
NABI | 0.131 * | 1.393 | |
PBI | 0.024 | 0.860 | |
Phase V | GBI | 0.119 ** | 4.114 |
NABI | 0.202 ** | 2.538 | |
PBI | 0.221 ** | 2.770 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Y.; Wu, L.; Peng, Z.; Liu, B. Temporal and Spatial Analysis of Negative Emotions in China during the COVID-19 Pandemic. Behav. Sci. 2024, 14, 113. https://doi.org/10.3390/bs14020113
Ding Y, Wu L, Peng Z, Liu B. Temporal and Spatial Analysis of Negative Emotions in China during the COVID-19 Pandemic. Behavioral Sciences. 2024; 14(2):113. https://doi.org/10.3390/bs14020113
Chicago/Turabian StyleDing, Yating, Lin Wu, Zijian Peng, and Bo Liu. 2024. "Temporal and Spatial Analysis of Negative Emotions in China during the COVID-19 Pandemic" Behavioral Sciences 14, no. 2: 113. https://doi.org/10.3390/bs14020113
APA StyleDing, Y., Wu, L., Peng, Z., & Liu, B. (2024). Temporal and Spatial Analysis of Negative Emotions in China during the COVID-19 Pandemic. Behavioral Sciences, 14(2), 113. https://doi.org/10.3390/bs14020113