The Dysfunctional Mechanisms Throwing Tics: Structural and Functional Changes in Tourette Syndrome
Abstract
:1. Introduction
2. Symptomatology and Etiopathology of Tourette Syndrome
3. Evidence from Animal Models of Tourette Syndrome
4. Structural and Functional Changes in Tourette Patients
4.1. Cortical-Striatal-Thalamus-Cortical Circuit and Basal Ganglia
4.2. Dopamine System
4.3. Cortical and Subcortical Motor Areas
5. Functional Plasticity Alterations in Patients with Tourette Syndrome
6. Striatal Synaptic Plasticity as a Possible Pathophysiological Mechanism
Immunological Bases of Tourette Syndrome and Striatal Plasticity
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Como, P.G. Neuropsychological Function in Tourette Syndrome. Adv. Neurol. 2001, 85, 103–111. [Google Scholar] [CrossRef]
- Robertson, M.M. Tourette Syndrome, Associated Conditions and the Complexities of Treatment. Brain 2000, 123, 425–462. [Google Scholar] [CrossRef] [Green Version]
- Robertson, M.M. The Prevalence and Epidemiology of Gilles de La Tourette Syndrome. Part 1: The Epidemiological and Prevalence Studies. J. Psychosom. Res. 2008, 65, 461–472. [Google Scholar] [CrossRef]
- Robertson, M.M. Tourette Syndrome in Children and Adolescents: Aetiology, Presentation and Treatment. BJPsych Adv. 2016, 22, 165–175. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5), 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013; Volume 280. [Google Scholar] [CrossRef]
- Khalifa, N.; Knorring, A.-L. Tourette Syndrome and Other Tic Disorders in a Total Population of Children: Clinical Assessment and Background. Acta Paediatr. 2005, 94, 1608–1614. [Google Scholar] [CrossRef]
- Robertson, M.M. Mood Disorders and Gilles de La Tourette’s Syndrome: An Update on Prevalence, Etiology, Comorbidity, Clinical Associations, and Implications. J. Psychosom. Res. 2006, 61, 349–358. [Google Scholar] [CrossRef]
- Leckman, J.F. Phenomenology of Tics and Natural History of Tic Disorders. Brain Dev. 2003, 25 (Suppl. 1), S24–S28. [Google Scholar] [CrossRef]
- Cavanna, A.E.; Servo, S.; Monaco, F.; Robertson, M.M. The Behavioral Spectrum of Gilles de La Tourette Syndrome. J. Neuropsychiatry Clin. Neurosci. 2009, 21, 13–23. [Google Scholar] [CrossRef]
- Jankovic, J. Tourette Syndrome. Phenomenology and Classification of Tics. Neurol. Clin. 1997, 15, 267–275. [Google Scholar] [CrossRef]
- Sambrani, T.; Jakubovski, E.; Müller-Vahl, K.R. New Insights into Clinical Characteristics of Gilles de La Tourette Syndrome: Findings in 1032 Patients from a Single German Center. Front. Neurosci. 2016, 10, 415. [Google Scholar] [CrossRef] [Green Version]
- Leckman, J.F.; Walker, D.E.; Cohen, D.J. Premonitory Urges in Tourette’s Syndrome. Am. J. Psychiatry 1993, 150, 98–102. [Google Scholar] [CrossRef]
- Robertson, M.M. A Personal 35 Year Perspective on Gilles de La Tourette Syndrome: Prevalence, Phenomenology, Comorbidities, and Coexistent Psychopathologies. Lancet Psychiatry 2015, 2, 68–87. [Google Scholar] [CrossRef]
- Frick, L.; Pittenger, C. Microglial Dysregulation in OCD, Tourette Syndrome, and PANDAS. J. Immunol. Res. 2016, 2016, 8606057. [Google Scholar] [CrossRef] [Green Version]
- Hickman, S.; Izzy, S.; Sen, P.; Morsett, L.; El Khoury, J. Microglia in Neurodegeneration. Nat. Neurosci. 2018, 21, 1359–1369. [Google Scholar] [CrossRef] [PubMed]
- Ohbayashi, M. The Roles of the Cortical Motor Areas in Sequential Movements. Front. Behav. Neurosci. 2021, 15, 97. [Google Scholar] [CrossRef] [PubMed]
- Lang, A. Patient Perception of Tics and Other Movement Disorders. Neurology 1991, 41, 223–228. [Google Scholar] [CrossRef]
- Frey, K.A.; Albin, R.L. Neuroimaging of Tourette Syndrome. J. Child Neurol. 2006, 21, 672–677. [Google Scholar] [CrossRef]
- Macrì, S.; Onori, M.P.; Roessner, V.; Laviola, G. Animal Models Recapitulating the Multifactorial Origin of Tourette Syndrome, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2013; Volume 112, ISBN 9780124115460. [Google Scholar]
- Hornig, M.; Lipkin, W.I. Immune-Mediated Animal Models of Tourette Syndrome. Neurosci. Biobehav. Rev. 2013, 37, 1120–1138. [Google Scholar] [CrossRef] [Green Version]
- Bronfeld, M.; Israelashvili, M.; Bar-Gad, I. Pharmacological Animal Models of Tourette Syndrome. Neurosci. Biobehav. Rev. 2013, 37, 1101–1119. [Google Scholar] [CrossRef]
- Worbe, Y.; Malherbe, C.; Hartmann, A.; Pélégrini-Issac, M.; Messé, A.; Vidailhet, M.; Lehéricy, S.; Benali, H. Functional Immaturity of Cortico-Basal Ganglia Networks in Gilles de La Tourette Syndrome. Brain 2012, 135, 1937–1946. [Google Scholar] [CrossRef] [Green Version]
- McCairn, K.W.; Nagai, Y.; Hori, Y.; Ninomiya, T.; Kikuchi, E.; Lee, J.Y.; Suhara, T.; Iriki, A.; Minamimoto, T.; Takada, M.; et al. A Primary Role for Nucleus Accumbens and Related Limbic Network in Vocal Tics. Neuron 2016, 89, 300–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCairn, K.W.; Bronfeld, M.; Belelovsky, K.; Bar-Gad, I. The Neurophysiological Correlates of Motor Tics Following Focal Striatal Disinhibition. Brain 2009, 132, 2125–2138. [Google Scholar] [CrossRef] [Green Version]
- Worbe, Y.; Sgambato-Faure, V.; Epinat, J.; Chaigneau, M.; Tandé, D.; François, C.; Féger, J.; Tremblay, L. Towards a Primate Model of Gilles de La Tourette Syndrome: Anatomo-Behavioural Correlation of Disorders Induced by Striatal Dysfunction. Cortex 2013, 49, 1126–1140. [Google Scholar] [CrossRef] [PubMed]
- Bronfeld, M.; Yael, D.; Belelovsky, K.; Bar-Gad, I. Motor Tics Evoked by Striatal Disinhibition in the Rat. Front. Syst. Neurosci. 2013, 7, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Israelashvili, M.; Bar-Gad, I. Corticostriatal Divergent Function in Determining the Temporal and Spatial Properties of Motor Tics. J. Neurosci. 2015, 35, 16340–16351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pogorelov, V.; Xu, M.; Smith, H.R.; Buchanan, G.F.; Pittenger, C. Corticostriatal Interactions in the Generation of Tic-like Behaviors after Local Striatal Disinhibition. Exp. Neurol. 2015, 265, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.L.; Rajbhandari, A.K.; Berridge, K.C.; Aldridge, J.W. Dopamine Receptor Modulation of Repetitive Grooming Actions in the Rat: Potential Relevance for Tourette Syndrome. Brain Res. 2010, 1322, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Nespoli, E.; Rizzo, F.; Boeckers, T.; Schulze, U.; Hengerer, B. Altered Dopaminergic Regulation of the Dorsal Striatum Is Able to Induce Tic-like Movements in Juvenile Rats. PLoS ONE 2018, 13, e0196515. [Google Scholar] [CrossRef] [Green Version]
- Godar, S.C.; Mosher, L.J.; Strathman, H.J.; Gochi, A.M.; Jones, C.M.; Fowler, S.C.; Bortolato, M. The D1CT-7 Mouse Model of Tourette Syndrome Displays Sensorimotor Gating Deficits in Response to Spatial Confinement. Br. J. Pharmacol. 2016, 173, 2111–2121. [Google Scholar] [CrossRef] [Green Version]
- Nordstrom, E.J.; Burton, F.H. A Transgenic Model of Comorbid Tourette’s Syndrome and Obsessive-Compulsive Disorder Circuitry. Mol. Psychiatry 2002, 7, 617–625. [Google Scholar] [CrossRef] [Green Version]
- Campbell, K.M.; De Lecea, L.; Severynse, D.M.; Caron, M.G.; McGrath, M.J.; Sparber, S.B.; Sun, L.Y.; Burton, F.H. OCD-like Behaviors Caused by a Neuropotentiating Transgene Targeted to Cortical and Limbic D1+ Neurons. J. Neurosci. 1999, 19, 5044–5053. [Google Scholar] [CrossRef] [Green Version]
- Berridge, K.C.; Aldridge, J.W.; Houchard, K.R.; Zhuang, X. Sequential Super-Stereotypy of an Instinctive Fixed Action Pattern in Hyper-Dopaminergic Mutant Mice: A Model of Obsessive Compulsive Disorder and Tourette’s. BMC Biol. 2005, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Lan, Y.; Zhu, H.; Yu, L.; Wu, S.; Wan, W.; Shu, Y.; Xiang, H.; Hou, T.; Zhang, H.; et al. Effects of Chemogenetic Inhibition of D1 or D2 Receptor-Containing Neurons of the Substantia Nigra and Striatum in Mice With Tourette Syndrome. Front. Mol. Neurosci. 2021, 14, 779436. [Google Scholar] [CrossRef]
- Rapanelli, M.; Frick, L.; Bito, H.; Pittenger, C. Histamine Modulation of the Basal Ganglia Circuitry in the Development of Pathological Grooming. Proc. Natl. Acad. Sci. USA 2017, 114, 6599–6604. [Google Scholar] [CrossRef]
- Ahmari, S.E.; Spellman, T.; Douglass, N.L.; Kheirbek, M.A.; Simpson, H.B.; Deisseroth, K.; Gordon, J.A.; Hen, R. Repeated Cortico-Striatal Stimulation Generates Persistent OCD-like Behavior. Science 2013, 340, 1234–1239. [Google Scholar] [CrossRef] [Green Version]
- Bouchekioua, Y.; Tsutsui-Kimura, I.; Sano, H.; Koizumi, M.; Tanaka, K.F.; Yoshida, K.; Kosaki, Y.; Watanabe, S.; Mimura, M. Striatonigral Direct Pathway Activation Is Sufficient to Induce Repetitive Behaviors. Neurosci. Res. 2017, 132, 53–57. [Google Scholar] [CrossRef]
- Burguière, E.; Monteiro, P.; Feng, G.; Graybiel, A.M. Optogenetic Stimulation of Lateral Orbitofronto-Striatal Pathway Suppresses Compulsive Behaviors. Science 2013, 340, 1243–1246. [Google Scholar] [CrossRef] [Green Version]
- Lennington, J.B.; Coppola, G.; Kataoka-Sasaki, Y.; Fernandez, T.V.; Palejev, D.; Li, Y.; Huttner, A.; Pletikos, M.; Sestan, N.; Leckman, J.F.; et al. Transcriptome Analysis of the Human Striatum in Tourette Syndrome. Biol. Psychiatry 2016, 79, 372–382. [Google Scholar] [CrossRef]
- Liao, C.; Vuokila, V.; Catoire, H.; Akçimen, F.; Ross, J.P.; Bourassa, C.V.; Dion, P.A.; Meijer, I.A.; Rouleau, G.A. Transcriptome-Wide Association Study Reveals Increased Neuronal FLT3 Expression Is Associated with Tourette’s Syndrome. Commun. Biol. 2022, 5, 289. [Google Scholar] [CrossRef]
- Bhikram, T.; Arnold, P.; Crawley, A.; Abi-jaoude, E.; Sandor, P. The Functional Connectivity Profile of Tics and Obsessive-Compulsive Symptoms in Tourette Syndrome. J. Psychiatr. Res. 2020, 123, 128–135. [Google Scholar] [CrossRef]
- Leckman, J.F. Tourette’s Syndrome. Lancet 2002, 360, 1577–1586. [Google Scholar] [CrossRef] [PubMed]
- Naro, A.; Billeri, L.; Colucci, V.P.; Le Cause, M.; De Domenico, C.; Ciatto, L.; Bramanti, P.; Bramanti, A.; Calabrò, R.S. Brain Functional Connectivity in Chronic Tic Disorders and Gilles de La Tourette Syndrome. Prog. Neurobiol. 2020, 194, 101884. [Google Scholar] [CrossRef] [PubMed]
- Graybiel, A.M.; Aosaki, T.; Flaherty, A.W.; Kimura, M. The Basal Ganglia and Adaptive Motor Control. Science 1994, 265, 1826–1831. [Google Scholar] [CrossRef]
- Alexander, G.E.; DeLong, M.R.; Strick, P.L. Parallel Organization of Functionally Segregated Circuits Linking Basal Ganglia and Cortex. Annu. Rev. Neurosci. 1986, 9, 357–381. [Google Scholar] [CrossRef] [PubMed]
- Eidelberg, D.; Moeller, J.R.; Antonini, A.; Kazumata, K.; Dhawan, V.; Budman, C.; Feigin, A. The Metabolic Anatomy of Tourette’s Syndrome. Neurology 1997, 48, 927–934. [Google Scholar] [CrossRef]
- Bar-Gad, I.; Bergman, H. Stepping out of the Box: Information Processing in the Neural Networks of the Basal Ganglia. Curr. Opin. Neurobiol. 2001, 11, 689–695. [Google Scholar] [CrossRef]
- Aouizerate, B.; Guehl, D.; Cuny, E.; Rougier, A.; Bioulac, B.; Tignol, J.; Burbaud, P. Pathophysiology of Obsessive-Compulsive Disorder: A Necessary Link between Phenomenology, Neuropsychology, Imagery and Physiology. Prog. Neurobiol. 2004, 72, 195–221. [Google Scholar] [CrossRef]
- Felling, R.J.; Singer, H.S. Neurobiology of Tourette Syndrome: Current Status and Need for Further Investigation. J. Neurosci. 2011, 31, 12387–12395. [Google Scholar] [CrossRef] [Green Version]
- Peterson, B.S.; Thomas, P.; Kane, M.J.; Scahill, L.; Zhang, H.; Bronen, R.; King, R.A.; Leckman, J.F.; Staib, L. Basal Ganglia Volumes in Patients with Gilles de La Tourette Syndrome. Arch. Gen. Psychiatry 2003, 60, 415–424. [Google Scholar] [CrossRef] [Green Version]
- Bloch, M.H.; Leckman, J.F.; Zhu, H.; Peterson, B.S. Caudate Volumes in Childhood Predict Symptom Severity in Adults with Tourette Syndrome. Neurology 2005, 65, 1253–1258. [Google Scholar] [CrossRef] [Green Version]
- Hyde, T.M.; Stacey, M.E.; Coppola, R.; Handel, S.F.; Rickler, K.C.; Weinberger, D.R. Cerebral Morphometric Abnormalities in Tourette’s Syndrome: A Quantitative MRI Study of Monozygotic Twins. Neurology 1995, 45, 1176–1182. [Google Scholar] [CrossRef] [PubMed]
- Bonelli, R.M.; Cummings, J.L. Frontal-Subcortical Circuitry and Behavior. Dialogues Clin. Neurosci. 2007, 9, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Albin, R.L.; Mink, J.W. Recent Advances in Tourette Syndrome Research. Trends Neurosci. 2006, 29, 175–182. [Google Scholar] [CrossRef]
- Leckman, J.F.; Michael, M.H.; Smith, M.E.; Larabi, D.; Hampson, M. Neurobiological Substrates of Tourette’s Disorder. J. Child Adolesc. Psychopharmacol. 2010, 20, 237–247. [Google Scholar] [CrossRef]
- Gerard, E.; Peterson, B.S. Developmental Processes and Brain Imaging Studies in Tourette Syndrome. J. Psychosom. Res. 2003, 55, 13–22. [Google Scholar] [CrossRef]
- Peterson, B.S.; Staib, L.; Scahill, L.; Zhang, H.; Anderson, C.; Leckman, J.F.; Cohen, D.J.; Gore, J.C.; Albert, J.; Webster, R. Regional Brain and Ventricular Volumes in Tourette Syndrome. Arch. Gen. Psychiatry 2001, 58, 427–440. [Google Scholar] [CrossRef] [Green Version]
- Denys, D.; de Vries, F.; Cath, D.; Figee, M.; Vulink, N.; Veltman, D.J.; van der Doef, T.F.; Boellaard, R.; Westenberg, H.; van Balkom, A.; et al. Dopaminergic Activity in Tourette Syndrome and Obsessive-Compulsive Disorder. Eur. Neuropsychopharmacol. 2013, 23, 1423–1431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keeler, J.F.; Pretsell, D.O.; Robbins, T.W. Functional Implications of Dopamine D1 vs. D2 Receptors: A “prepare and Select” Model of the Striatal Direct vs. Indirect Pathways. Neuroscience 2014, 282, 156–175. [Google Scholar] [CrossRef] [Green Version]
- Lanciego, J.L.; Luquin, N.; Obeso, J.A. Functional Neuroanatomy of the Basal Ganglia. Cold Spring Harb. Perspect. Med. 2012, 2, 21. [Google Scholar] [CrossRef]
- DeLong, M.R.; Wichmann, T. Circuits and Circuit Disorders of the Basal Ganglia. Arch. Neurol. 2007, 64, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Masellis, M.; Collinson, S.; Freeman, N.; Tampakeras, M.; Levy, J.; Tchelet, A.; Eyal, E.; Berkovich, E.; Eliaz, R.E.; Abler, V.; et al. Dopamine D2 Receptor Gene Variants and Response to Rasagiline in Early Parkinson’s Disease: A Pharmacogenetic Study. Brain 2016, 139, 2050–2062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanwald, S.; Montag, C.; Kiefer, M. Cumulative Genetic Score of DRD2 Polymorphisms Is Associated with Impulsivity and Masked Semantic Priming. J. Mol. Neurosci. 2022, 72, 1682–1694. [Google Scholar] [CrossRef]
- Yip, S.W.; Potenza, M.N. Application of Research Domain Criteria to Childhood and Adolescent Impulsive and Addictive Disorders: Implications for Treatment. Clin. Psychol. Rev. 2018, 64, 41–56. [Google Scholar] [CrossRef]
- Pruessner, J.C.; Champagne, F.; Meaney, M.J.; Dagher, A. Dopamine Release in Response to a Psychological Stress in Humans and Its Relationship to Early Life Maternal Care: A Positron Emission Tomography Study Using [11C]Raclopride. J. Neurosci. 2004, 24, 2825. [Google Scholar] [CrossRef] [Green Version]
- Lamanna, J.; Isotti, F.; Ferro, M.; Racchetti, G.; Anchora, L.; Rucco, D.; Malgaroli, A. Facilitation of Dopamine-Dependent Long-Term Potentiation in the Medial Prefrontal Cortex of Male Rats Follows the Behavioral Effects of Stress. J. Neurosci. Res. 2021, 99, 662–678. [Google Scholar] [CrossRef] [PubMed]
- Pani, L.; Porcella, A.; Gessa, G.L. The Role of Stress in the Pathophysiology of the Dopaminergic System. Mol. Psychiatry 2000, 5, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Lataster, J.; Collip, D.; Ceccarini, J.; Haas, D.; Booij, L.; van Os, J.; Pruessner, J.; Van Laere, K.; Myin-Germeys, I. Psychosocial Stress Is Associated with in Vivo Dopamine Release in Human Ventromedial Prefrontal Cortex: A Positron Emission Tomography Study Using [18F]Fallypride. Neuroimage 2011, 58, 1081–1089. [Google Scholar] [CrossRef]
- Rice, M.E.; Patel, J.C.; Cragg, S.J. Dopamine Release in the Basal Ganglia. Neuroscience 2011, 198, 112–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roessner, V.; Plessen, K.J.; Rothenberger, A.; Ludolph, A.G.; Rizzo, R.; Skov, L.; Strand, G.; Stern, J.S.; Termine, C.; Hoekstra, P.J.; et al. European Clinical Guidelines for Tourette Syndrome and Other Tic Disorders. Part II: Pharmacological Treatment. Eur. Child Adolesc. Psychiatry 2011, 20, 173–196. [Google Scholar] [CrossRef] [Green Version]
- Müller-Vahl, K.R.; Grosskreutz, J.; Prell, T.; Kaufmann, J.; Bodammer, N.; Peschel, T. Tics Are Caused by Alterations in Prefrontal Areas, Thalamus and Putamen, While Changes in the Cingulate Gyrus Reflect Secondary Compensatory Mechanisms. BMC Neurosci. 2014, 15, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeffries, K.J.; Schooler, C.; Schoenbach, C.; Herscovitch, P.; Chase, T.N.; Braun, A.R. The Functional Neuroanatomy of Tourette’s Syndrome: An FDG PET Study III: Functional Coupling of Regional Cerebral Metabolic Rates. Neuropsychopharmacology 2002, 27, 92–104. [Google Scholar] [CrossRef] [Green Version]
- Polyanska, L.; Critchley, H.D.; Rae, C.L. Centrality of Prefrontal and Motor Preparation Cortices to Tourette Syndrome Revealed by Meta-Analysis of Task-Based Neuroimaging Studies. NeuroImage Clin. 2017, 16, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Prado, H.D.S.; Do Rosário, M.C.; Lee, J.; Hounie, A.G.; Shavitt, R.G.; Miguel, E.C. Sensory Phenomena in Obsessive-Compulsive Disorder and Tic Disorders: A Review of the Literature. CNS Spectr. 2008, 13, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Bohlhalter, S.; Goldfine, A.; Matteson, S.; Garraux, G.; Hanakawa, T.; Kansaku, K.; Wurzman, R.; Hallett, M. Neural Correlates of Tic Generation in Tourette Syndrome: An Event-Related Functional MRI Study. Brain 2006, 129, 2029–2037. [Google Scholar] [CrossRef] [Green Version]
- Heise, K.F.; Steven, B.; Liuzzi, G.; Thomalla, G.; Jonas, M.; Müller-Vahl, K.; Sauseng, P.; Münchau, A.; Gerloff, C.; Hummel, F.C. Altered Modulation of Intracortical Excitability during Movement Preparation in Gilles de La Tourette Syndrome. Brain 2010, 133, 580–590. [Google Scholar] [CrossRef] [Green Version]
- Zapparoli, L.; Tettamanti, M.; Porta, M.; Zerbi, A.; Servello, D.; Banfi, G.; Paulesu, E. A Tug of War: Antagonistic Effective Connectivity Patterns over the Motor Cortex and the Severity of Motor Symptoms in Gilles de La Tourette Syndrome. Eur. J. Neurosci. 2017, 46, 2203–2213. [Google Scholar] [CrossRef]
- Chappell, P.; Riddle, M.; Anderson, G.; Scahill, L.; Hardin, M.; Walker, D.; Cohen, D.; Leckman, J. Enhanced Stress Responsivity of Tourette Syndrome Patients Undergoing Lumbar Puncture. Biol. Psychiatry 1994, 36, 35–43. [Google Scholar] [CrossRef]
- Pourfar, M.; Feigin, A.; Tang, C.C.; Carbon-Correll, M.; Bussa, M.; Budman, C.; Dhawan, V.; Eidelberg, D. Abnormal Metabolic Brain Networks in Tourette Syndrome. Neurology 2011, 76, 944–952. [Google Scholar] [CrossRef] [Green Version]
- Rotge, J.Y.; Guehl, D.; Dilharreguy, B.; Cuny, E.; Tignol, J.; Bioulac, B.; Allard, M.; Burbaud, P.; Aouizerate, B. Provocation of Obsessive–Compulsive Symptoms: A Quantitative Voxel-Based Meta-Analysis of Functional Neuroimaging Studies. J. Psychiatry Neurosci. 2008, 33, 405. [Google Scholar]
- Wang, Z.; Maia, T.V.; Marsh, R.; Colibazzi, T.; Gerber, A.; Peterson, B.S. The Neural Circuits That Generate Tics in Tourette’s Syndrome. Am. J. Psychiatry 2011, 168, 1326–1337. [Google Scholar] [CrossRef] [PubMed]
- Sigurdsson, H.P.; Jackson, S.R.; Jolley, L.; Mitchell, E.; Jackson, G.M. Alterations in Cerebellar Grey Matter Structure and Covariance Networks in Young People with Tourette Syndrome. Cortex 2020, 126, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Bostan, A.C.; Strick, P.L. The Cerebellum and Basal Ganglia Are Interconnected. Neuropsychol. Rev. 2010, 20, 261–270. [Google Scholar] [CrossRef]
- Jackson, S.R.; Parkinson, A.; Kim, S.Y.; Schüermann, M.; Eickhoff, S.B. On the Functional Anatomy of the Urge-for-Action. Cogn. Neurosci. 2011, 2, 227–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, K.P.; Nedivi, E. Spine Dynamics: Are They All the Same? Neuron 2017, 96, 43–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suppa, A.; Marsili, L.; Di Stasio, F.; Berardelli, I.; Roselli, V.; Pasquini, M.; Cardona, F.; Berardelli, A. Cortical and Brainstem Plasticity in Tourette Syndrome and Obsessive-Compulsive Disorder. Mov. Disord. 2014, 29, 1523–1531. [Google Scholar] [CrossRef]
- Tübing, J.; Gigla, B.; Brandt, V.C.; Verrel, J.; Weissbach, A.; Beste, C.; Münchau, A.; Bäumer, T. Associative Plasticity in Supplementary Motor Area—Motor Cortex Pathways in Tourette Syndrome. Sci. Rep. 2018, 8, 11984. [Google Scholar] [CrossRef] [Green Version]
- Ferro, M.; Lamanna, J.; Spadini, S.; Nespoli, A.; Sulpizio, S.; Malgaroli, A. Synaptic Plasticity Mechanisms behind TMS Efficacy: Insights from Its Application to Animal Models. J. Neural Transm. 2022, 129, 25–36. [Google Scholar] [CrossRef]
- Suppa, A.; Huang, Y.Z.; Funke, K.; Ridding, M.C.; Cheeran, B.; Di Lazzaro, V.; Ziemann, U.; Rothwell, J.C. Ten Years of Theta Burst Stimulation in Humans: Established Knowledge, Unknowns and Prospects. Brain Stimul. 2016, 9, 323–335. [Google Scholar] [CrossRef]
- Wu, S.W.; Gilbert, D.L. Altered Neurophysiologic Response to Intermittent Theta Burst Stimulation in Tourette Syndrome. Brain Stimul. 2012, 5, 315–319. [Google Scholar] [CrossRef]
- Brandt, V.C.; Niessen, E.; Ganos, C.; Kahl, U.; Bäumer, T.; Münchau, A. Altered Synaptic Plasticity in Tourette’s Syndrome and Its Relationship to Motor Skill Learning. PLoS ONE 2014, 9, e98417. [Google Scholar] [CrossRef] [Green Version]
- Suppa, A.; Belvisi, D.; Bologna, M.; Marsili, L.; Berardelli, I.; Moretti, G.; Pasquini, M.; Fabbrini, G.; Berardelli, A. Abnormal Cortical and Brain Stem Plasticity in Gilles de La Tourette Syndrome. Mov. Disord. 2011, 26, 1703–1710. [Google Scholar] [CrossRef]
- Martín-Rodríguez, J.F.; Ruiz-Rodríguez, M.A.; Palomar, F.J.; Cáceres-Redondo, M.T.; Vargas, L.; Porcacchia, P.; Gómez-Crespo, M.; Huertas-Fernández, I.; Carrillo, F.; Madruga-Garrido, M.; et al. Aberrant Cortical Associative Plasticity Associated with Severe Adult Tourette Syndrome. Mov. Disord. 2015, 30, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Stefan, K. Induction of Plasticity in the Human Motor Cortex by Paired Associative Stimulation. Brain 2000, 123, 572–584. [Google Scholar] [CrossRef] [Green Version]
- Piacentini, J.; Woods, D.W.; Scahill, L.; Wilhelm, S.; Peterson, A.L.; Chang, S.; Ginsburg, G.S.; Deckersbach, T.; Dziura, J.; Levi-Pearl, S.; et al. Behavior Therapy for Children With Tourette Disorder. JAMA 2010, 303, 1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eichele, H.; Plessen, K.J. Neural Plasticity in Functional and Anatomical MRI Studies of Children with Tourette Syndrome. Behav. Neurol. 2013, 27, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Marsili, L.; Suppa, A.; Di Stasio, F.; Belvisi, D.; Upadhyay, N.; Berardelli, I.; Pasquini, M.; Petrucci, S.; Ginevrino, M.; Fabbrini, G.; et al. BDNF and LTP-/LTD-like Plasticity of the Primary Motor Cortex in Gilles de La Tourette Syndrome. Exp. Brain Res. 2017, 235, 841–850. [Google Scholar] [CrossRef]
- Galea, J.M.; Jayaram, G.; Ajagbe, L.; Celnik, P. Modulation of Cerebellar Excitability by Polarity-Specific Noninvasive Direct Current Stimulation. J. Neurosci. 2009, 29, 9115–9122. [Google Scholar] [CrossRef]
- Cooper, I.S.; Upton, A.R.M.; Amin, I. Chronic Cerebellar Stimulation (CCS) and Deep Brain Stimulation (DBS) in Involuntary Movement Disorders. Appl. Neurophysiol. 1982, 45, 209–217. [Google Scholar] [CrossRef]
- Cooper, I.S.; Upton, A.R.M.; Amin, I. Reversibility of Chronic Neurologic Deficits. Some Effects of Electrical Stimulation of the Thalamus and Internal Capsule in Man. Appl. Neurophysiol. 1980, 43, 244–258. [Google Scholar] [CrossRef]
- Cannon, E.; Silburn, P.; Coyne, T.; O’Maley, K.; Crawford, J.D.; Sachdev, P.S. Deep Brain Stimulation of Anteromedial Globus Pallidus Interna for Severe Tourette’s Syndrome. Am. J. Psychiatry 2012, 169, 860–866. [Google Scholar] [CrossRef]
- Houeto, J.L.; Karachi, C.; Mallet, L.; Pillon, B.; Yelnik, J.; Mesnage, V.; Welter, M.L.; Navarro, S.; Pelissolo, A.; Damier, P.; et al. Tourette’s Syndrome and Deep Brain Stimulation. J. Neurol. Neurosurg. Psychiatry 2005, 76, 992–995. [Google Scholar] [CrossRef] [Green Version]
- Dow-Edwards, D.; MacMaster, F.P.; Peterson, B.S.; Niesink, R.; Andersen, S.; Braams, B.R. Experience during Adolescence Shapes Brain Development: From Synapses and Networks to Normal and Pathological Behavior. Neurotoxicol. Teratol. 2019, 76, 106834. [Google Scholar] [CrossRef]
- Johnson, K.A.; Duffley, G.; Foltynie, T.; Hariz, M.; Zrinzo, L.; Joyce, E.M.; Akram, H.; Servello, D.; Galbiati, T.F.; Bona, A.; et al. Basal Ganglia Pathways Associated With Therapeutic Pallidal Deep Brain Stimulation for Tourette Syndrome. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 961–972. [Google Scholar] [CrossRef]
- McNaught, K.S.P.; Mink, J.W. Advances in Understanding and Treatment of Tourette Syndrome. Nat. Rev. Neurol. 2011, 7, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Kalanithi, P.S.A.; Zheng, W.; Kataoka, Y.; DiFiglia, M.; Grantz, H.; Saper, C.B.; Schwartz, M.L.; Leckman, J.F.; Vaccarino, F.M. Altered Parvalbumin-Positive Neuron Distribution in Basal Ganglia of Individuals with Tourette Syndrome. Proc. Natl. Acad. Sci. USA 2005, 102, 13307–13312. [Google Scholar] [CrossRef]
- Kataoka, Y.; Kalanithi, P.S.A.; Grantz, H.; Schwartz, M.L.; Saper, C.; Leckman, J.F.; Vaccarino, F.M. Decreased Number of Parvalbumin and Cholinergic Interneurons in the Striatum of Individuals with Tourette Syndrome. J. Comp. Neurol. 2010, 518, 277–291. [Google Scholar] [CrossRef]
- Owen, S.F.; Berke, J.D.; Kreitzer, A.C. Fast-Spiking Interneurons Supply Feedforward Control of Bursting, Calcium, and Plasticity for Efficient Learning. Cell 2018, 172, 683–695.e15. [Google Scholar] [CrossRef] [Green Version]
- Kreitzer, A.C.; Malenka, R.C. Striatal Plasticity and Basal Ganglia Circuit Function. Neuron 2008, 60, 543–554. [Google Scholar]
- Calabresi, P.; Saiardi, A.; Pisani, A.; Baik, J.H.; Centonze, D.; Mercuri, N.B.; Bernardi, G.; Borrelli, E.; Vergata, T.; Sanita, D.; et al. Abnormal Synaptic Plasticity in the Striatum of Mice Lacking Dopamine D2 Receptors. J. Neurosci. 1997, 17, 4536–4544. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Flajolet, M.; Greengard, P.; Surmeier, D.J. Dichotomous Control Dopaminergic of Striatal Synaptic Plasticity. Science 2008, 321, 848–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreitzer, A.C.; Malenka, R.C. Endocannabinoid-Mediated Rescue of Striatal LTD and Motor Deficits in Parkinson’s Disease Models. Nature 2007, 445, 643–647. [Google Scholar] [CrossRef] [PubMed]
- Augustin, S.M.; Chancey, J.H.; Lovinger, D.M. Dual Dopaminergic Regulation of Corticostriatal Plasticity by Cholinergic Interneurons and Indirect Pathway Medium Spiny Neurons. Cell Rep. 2018, 24, 2883–2893. [Google Scholar] [CrossRef] [Green Version]
- Tang, K.-C. Dopamine-Dependent Synaptic Plasticity in Striatum during in Vivo Development. Proc. Natl. Acad. Sci. USA 2001, 98, 1255–1260. [Google Scholar] [CrossRef] [PubMed]
- Partridge, J.G.; Tang, K.C.; Lovinger, D.M. Regional and Postnatal Heterogeneity of Activity-Dependent Long-Term Changes in Synaptic Efficacy in the Dorsal Striatum. J. Neurophysiol. 2000, 84, 1422–1429. [Google Scholar] [CrossRef]
- Shindou, T.; Shindou, M.; Watanabe, S.; Wickens, J. A Silent Eligibility Trace Enables Dopamine-Dependent Synaptic Plasticity for Reinforcement Learning in the Mouse Striatum. Eur. J. Neurosci. 2018, 49, 726–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giordano, N.; Iemolo, A.; Mancini, M.; Cacace, F.; De Risi, M.; Latagliata, E.C.; Ghiglieri, V.; Bellenchi, G.C.; Puglisi-Allegra, S.; Calabresi, P.; et al. Motor Learning and Metaplasticity in Striatal Neurons: Relevance for Parkinson’s Disease. Brain 2018, 141, 505–520. [Google Scholar] [CrossRef] [Green Version]
- Gremel, C.M.; Chancey, J.H.; Atwood, B.K.; Luo, G.; Neve, R.; Ramakrishnan, C.; Deisseroth, K.; Lovinger, D.M.; Costa, R.M. Endocannabinoid Modulation of Orbitostriatal Circuits Gates Habit Formation. Neuron 2016, 90, 1312–1324. [Google Scholar] [CrossRef] [Green Version]
- Lim, K.; See, Y.M.; Lee, J. A Systematic Review of the Effectiveness of Medical Cannabis for Psychiatric, Movement and Neurodegenerative Disorders. Clin. Psychopharmacol. Neurosci. 2017, 15, 301. [Google Scholar] [CrossRef] [Green Version]
- Scholl, C.; Baladron, J.; Vitay, J.; Hamker, F.H. Enhanced Habit Formation in Tourette Patients Explained by Shortcut Modulation in a Hierarchical Cortico-Basal Ganglia Model. Brain Struct. Funct. 2022, 227, 1031–1050. [Google Scholar] [CrossRef]
- Kozorovitskiy, Y.; Saunders, A.; Johnson, C.A.; Lowell, B.B.; Sabatini, B.L. Recurrent Network Activity Drives Striatal Synaptogenesis. Nature 2012, 485, 646–650. [Google Scholar] [CrossRef] [Green Version]
- Martino, D.; Dale, R.C.; Gilbert, D.L.; Giovannoni, G.; Leckamn, J.F. Immunopathogenic Mechanismsin Tourette Syndrome: A Critical Review. Mov. Disord. 2009, 24, 1267–1279. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, X.; Yang, H.; Li, Y.; Gui, J.; Cui, Y. Profiles of Proinflammatory Cytokines and T Cells in Patients With Tourette Syndrome: A Meta-Analysis. Front. Immunol. 2022, 13, 843247. [Google Scholar] [CrossRef]
- Hoffman, K.L.; Hornig, M.; Yaddanapudi, K.; Jabado, O.; Lipkin, W.I. A Murine Model for Neuropsychiatric Disorders Associated with Group A β-Hemolytic Streptococcal Infection. J. Neurosci. 2004, 24, 1780–1791. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Patel, A.; Zhu, Y.; Siegel, A.; Zalcman, S.S. Anti-Streptococcus IgM Antibodies Induce Repetitive Stereotyped Movements: Cell Activation and Co-Localization with Fcα/μ Receptors in the Striatum and Motor Cortex. Brain Behav. Immun. 2012, 26, 521–533. [Google Scholar] [CrossRef] [Green Version]
- Hallett, J.J.; Harling-Berg, C.J.; Knopf, P.M.; Stopa, E.G.; Kiessling, L.S. Anti-Striatal Antibodies in Tourette Syndrome Cause Neuronal Dysfunction. J. Neuroimmunol. 2000, 111, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, Y.; Li, D.; Ju, X. Transplantation of Rat Neural Stem Cells Reduces Stereotypic Behaviors in Rats after Intrastriatal Microinfusion of Tourette Syndrome Sera. Behav. Brain Res. 2008, 186, 84–90. [Google Scholar] [CrossRef]
- Loiselle, C.R.; Lee, O.; Moran, T.H.; Singer, H.S. Striatal Microinfusion of Tourette Syndrome and PANDAS Sera: Failure to Induce Behavioral Changes. Mov. Disord. 2004, 19, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Yaddanapudi, K.; Hornig, M.; Serge, R.; De Miranda, J.; Baghban, A.; Villar, G.; Lipkin, W.I. Passive Transfer of Streptococcus-Induced Antibodies Reproduces Behavioral Disturbances in a Mouse Model of Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infection. Mol. Psychiatry 2010, 15, 712–726. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Liu, R.J.; Fahey, S.; Frick, L.; Leckman, J.; Vaccarino, F.; Duman, R.S.; Williams, K.; Swedo, S.; Pittenger, C. Antibodies from Children with PANDAS Bind Specifically to Striatal Cholinergic Interneurons and Alter Their Activity. Am. J. Psychiatry 2021, 178, 48–64. [Google Scholar] [CrossRef]
- Yeh, C.B.; Shui, H.A.; Chu, T.H.; Chen, Y.A.; Tsung, H.C.; Shyu, J.F. Hyperpolarisation-Activated Cyclic Nucleotide Channel 4 (HCN4) Involvement in Tourette’s Syndrome Autoimmunity. J. Neuroimmunol. 2012, 250, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.J.; Ma, T.C.; Ding, Y.; Cheung, T.; Joshi, N.; Sulzer, D.; Mosharov, E.V.; Kang, U.J. Alterations in the Intrinsic Properties of Striatal Cholinergic Interneurons after Dopamine Lesion and Chronic L-Dopa. eLife 2020, 9, e56920. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, K.; Liu, X.; Yan, H.; Ma, X.; Zhang, S.; Zheng, J.; Wang, L.; Wei, X. Involvement of HCN Channel in Muscarinic Inhibitory Action on Tonic Firing of Dorsolateral Striatal Cholinergic Interneurons. Front. Cell. Neurosci. 2016, 10, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalmau, J.; Gleichman, A.J.; Hughes, E.G.; Rossi, J.E.; Peng, X.; Lai, M.; Dessain, S.K.; Rosenfeld, M.R.; Balice-Gordon, R.; Lynch, D.R. Anti-NMDA-Receptor Encephalitis: Case Series and Analysis of the Effects of Antibodies. Lancet Neurol. 2008, 7, 1091–1098. [Google Scholar] [CrossRef] [Green Version]
- Masdeu, J.C.; Dalmau, J.; Berman, K.F. NMDA Receptor Internalization by Autoantibodies: A Reversible Mechanism Underlying Psychosis? Trends Neurosci. 2016, 39, 300–310. [Google Scholar] [CrossRef] [Green Version]
- Boulanger, L.M.; Shatz, C.J. Immune Signalling in Neural Development, Synaptic Plasticity and Disease. Nat. Rev. Neurosci. 2004, 5, 521–531. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Dissing-Olesen, L.; MacVicar, B.A.; Stevens, B. Microglia: Dynamic Mediators of Synapse Development and Plasticity. Trends Immunol. 2015, 36, 605–613. [Google Scholar] [CrossRef] [Green Version]
- Mancini, A.; Ghiglieri, V.; Parnetti, L.; Calabresi, P.; Di Filippo, M. Neuro-Immune Cross-Talk in the Striatum: From Basal Ganglia Physiology to Circuit Dysfunction. Front. Immunol. 2021, 12, 644294. [Google Scholar] [CrossRef]
- Baym, C.L.; Corbett, B.A.; Wright, S.B.; Bunge, S.A. Neural Correlates of Tic Severity and Cognitive Control in Children with Tourette Syndrome. Brain 2008, 131, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Tikoo, S.; Cardona, F.; Tommasin, S.; Giannì, C.; Conte, G.; Upadhyay, N.; Mirabella, G.; Suppa, A.; Pantano, P. Resting-State Functional Connectivity in Drug-Naive Pediatric Patients with Tourette Syndrome and Obsessive-Compulsive Disorder. J. Psychiatr. Res. 2020, 129, 129–140. [Google Scholar] [CrossRef]
- Openneer, T.J.C.; Marsman, J.B.C.; van der Meer, D.; Forde, N.J.; Akkermans, S.E.A.; Naaijen, J.; Buitelaar, J.K.; Dietrich, A.; Hoekstra, P.J. A Graph Theory Study of Resting-State Functional Connectivity in Children with Tourette Syndrome. Cortex 2020, 126, 63–72. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamanna, J.; Ferro, M.; Spadini, S.; Racchetti, G.; Malgaroli, A. The Dysfunctional Mechanisms Throwing Tics: Structural and Functional Changes in Tourette Syndrome. Behav. Sci. 2023, 13, 668. https://doi.org/10.3390/bs13080668
Lamanna J, Ferro M, Spadini S, Racchetti G, Malgaroli A. The Dysfunctional Mechanisms Throwing Tics: Structural and Functional Changes in Tourette Syndrome. Behavioral Sciences. 2023; 13(8):668. https://doi.org/10.3390/bs13080668
Chicago/Turabian StyleLamanna, Jacopo, Mattia Ferro, Sara Spadini, Gabriella Racchetti, and Antonio Malgaroli. 2023. "The Dysfunctional Mechanisms Throwing Tics: Structural and Functional Changes in Tourette Syndrome" Behavioral Sciences 13, no. 8: 668. https://doi.org/10.3390/bs13080668
APA StyleLamanna, J., Ferro, M., Spadini, S., Racchetti, G., & Malgaroli, A. (2023). The Dysfunctional Mechanisms Throwing Tics: Structural and Functional Changes in Tourette Syndrome. Behavioral Sciences, 13(8), 668. https://doi.org/10.3390/bs13080668