Perinatal Depression and the Role of Synaptic Plasticity in Its Pathogenesis and Treatment
Abstract
:1. Introduction
2. Synaptic Plasticity in Pregnancy
3. Synaptic Plasticity in Perinatal Depression
4. Treatment Effects on Synaptic Plasticity
4.1. Anti-Depressants
4.2. Newer Agents for Perinatal Depression
4.3. Neuromodulation and Synaptic Plasticity
4.3.1. Electroconvulsive Therapy (ECT)
4.3.2. Transcranial Magnetic Stimulation(TMS)/Repetitive Transcranial Magnetic Stimulation (rTMS)
4.3.3. Transcranial Direct Current Stimulation (tDCS)
4.4. Non-Pharmacological Interventions for Depression
4.4.1. Psychotherapy
4.4.2. Physical Exercise
4.4.3. Yoga
4.4.4. Bright-Light Therapy (BLT)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Citri, A.; Malenka, R.C. Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms. Neuropsychopharmacology 2008, 33, 18–41. [Google Scholar] [CrossRef] [PubMed]
- Zucker, R.S.; Regehr, W.G. Short-Term Synaptic Plasticity. Annu. Rev. Physiol. 2002, 64, 355–405. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Calakos, N. Presynaptic Long-Term Plasticity. Front. Synaptic Neurosci. 2013, 5, 8. [Google Scholar] [CrossRef]
- Barba-Müller, E.; Craddock, S.; Carmona, S.; Hoekzema, E. Brain Plasticity in Pregnancy and the Postpartum Period: Links to Maternal Caregiving and Mental Health. Arch. Womens Ment. Health 2018, 22, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Oatridge, A.; Holdcroft, A.; Saeed, N.; Hajnal, J.V.; Puri, B.K.; Fusi, L.; Bydder, G.M. Change in Brain Size during and after Pregnancy: Study in Healthy Women and Women with Preeclampsia. AJNR Am. J. Neuroradiol. 2002, 23, 19–26. [Google Scholar]
- Hoekzema, E.; Barba-Müller, E.; Pozzobon, C.; Picado, M.; Lucco, F.; García-García, D.; Soliva, J.C.; Tobeña, A.; Desco, M.; Crone, E.A.; et al. Pregnancy Leads to Long-Lasting Changes in Human Brain Structure. Nat. Neurosci. 2017, 20, 287–296. [Google Scholar] [CrossRef]
- Elster, A.D.; Sanders, T.G.; Vines, F.S.; Chen, M.Y. Size and Shape of the Pituitary Gland during Pregnancy and Post Partum: Measurement with MR Imaging. Radiology 1991, 181, 531–535. [Google Scholar] [CrossRef]
- Kim, P.; Strathearn, L.; Swain, J.E. The Maternal Brain and Its Plasticity in Humans. Horm. Behav. 2016, 77, 113–123. [Google Scholar] [CrossRef]
- Haim, A.; Albin-Brooks, C.; Sherer, M.; Mills, E.; Leuner, B. The Effects of Gestational Stress and Selective Serotonin Reuptake Inhibitor Antidepressant Treatment on Structural Plasticity in the Postpartum Brain—A Translational Model for Postpartum Depression. Horm. Behav. 2016, 77, 124–131. [Google Scholar] [CrossRef]
- Qiu, W.; Hodges, T.E.; Clark, E.L.; Blankers, S.A.; Galea, L.A.M. Perinatal Depression: Heterogeneity of Disease and in Animal Models. Front. Neuroendocrinol. 2020, 59, 100854. [Google Scholar] [CrossRef]
- Shingo, T.; Gregg, C.; Enwere, E.; Fujikawa, H.; Hassam, R.; Geary, C.; Cross, J.C.; Weiss, S. Pregnancy-Stimulated Neurogenesis in the Adult Female Forebrain Mediated by Prolactin. Science 2003, 299, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.; Leckman, J.F.; Mayes, L.C.; Feldman, R.; Wang, X.; Swain, J.E. The Plasticity of Human Maternal Brain: Longitudinal Changes in Brain Anatomy during the Early Postpartum Period. Behav. Neurosci. 2010, 124, 695–700. [Google Scholar] [CrossRef] [PubMed]
- O’hara, M.W.; Swain, A.M. Rates and Risk of Postpartum Depression—A Meta-Analysis. Int. Rev. Psychiatry 1996, 8, 37–54. [Google Scholar] [CrossRef]
- Abou-Saleh, M.T.; Ghubash, R.; Karim, L.; Krymski, M.; Bhai, I. Hormonal Aspects of Postpartum Depression. Psychoneuroendocrinology 1998, 23, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Mir, F.R.; Pollano, A.; Rivarola, M.A. Animal Models of Postpartum Depression Revisited. Psychoneuroendocrinology 2022, 136, 105590. [Google Scholar] [CrossRef] [PubMed]
- Green, A.D.; Galea, L.A.M. Adult Hippocampal Cell Proliferation Is Suppressed with Estrogen Withdrawal after a Hormone-Simulated Pregnancy. Horm. Behav. 2008, 54, 203–211. [Google Scholar] [CrossRef]
- Galea, L.A.M.; Wide, J.K.; Barr, A.M. Estradiol Alleviates Depressive-like Symptoms in a Novel Animal Model of Post-Partum Depression. Behav. Brain Res. 2001, 122, 1–9. [Google Scholar] [CrossRef]
- Wainwright, S.R.; Galea, L.A.M. The Neural Plasticity Theory of Depression: Assessing the Roles of Adult Neurogenesis and PSA-NCAM within the Hippocampus. Neural Plast. 2013, 2013, 805497. [Google Scholar] [CrossRef]
- Pawluski, J.L.; van den Hove, D.L.A.; Rayen, I.; Prickaerts, J.; Steinbusch, H.W.M. Stress and the Pregnant Female: Impact on Hippocampal Cell Proliferation, but Not Affective-like Behaviors. Horm. Behav. 2011, 59, 572–580. [Google Scholar] [CrossRef]
- Leuner, B.; Fredericks, P.J.; Nealer, C.; Albin-Brooks, C. Chronic Gestational Stress Leads to Depressive-Like Behavior and Compromises Medial Prefrontal Cortex Structure and Function during the Postpartum Period. PLoS ONE 2014, 9, e89912. [Google Scholar] [CrossRef]
- Vetulani, J. Early Maternal Separation: A Rodent Model of Depression and a Prevailing Human Condition. Pharmacol. Rep. 2013, 65, 1451–1461. [Google Scholar] [CrossRef] [PubMed]
- Ivy, A.S.; Brunson, K.L.; Sandman, C.; Baram, T.Z. Dysfunctional Nurturing Behavior in Rat Dams with Limited Access to Nesting Material: A Clinically Relevant Model for Early-Life Stress. Neuroscience 2008, 154, 1132–1142. [Google Scholar] [CrossRef] [PubMed]
- Sung, Y.-H.; Shin, M.-S.; Cho, S.; Baik, H.-H.; Jin, B.-K.; Chang, H.-K.; Lee, E.-K.; Kim, C.-J. Depression-like State in Maternal Rats Induced by Repeated Separation of Pups Is Accompanied by a Decrease of Cell Proliferation and an Increase of Apoptosis in the Hippocampus. Neurosci. Lett. 2010, 470, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Brummelte, S.; Pawluski, J.L.; Galea, L.A.M. High Post-Partum Levels of Corticosterone given to Dams Influence Postnatal Hippocampal Cell Proliferation and Behavior of Offspring: A Model of Post-Partum Stress and Possible Depression. Horm. Behav. 2006, 50, 370–382. [Google Scholar] [CrossRef]
- Gobinath, A.R.; Richardson, R.J.; Chow, C.; Workman, J.L.; Lieblich, S.E.; Barr, A.M.; Galea, L.A.M. Voluntary Running Influences the Efficacy of Fluoxetine in a Model of Postpartum Depression. Neuropharmacology 2018, 128, 106–118. [Google Scholar] [CrossRef]
- Brummelte, S.; Galea, L.A.M. Chronic Corticosterone during Pregnancy and Postpartum Affects Maternal Care, Cell Proliferation and Depressive-like Behavior in the Dam. Horm. Behav. 2010, 58, 769–779. [Google Scholar] [CrossRef]
- Luscher, B.; Shen, Q.; Sahir, N. The GABAergic Deficit Hypothesis of Major Depressive Disorder. Mol. Psychiatry 2011, 16, 383–406. [Google Scholar] [CrossRef]
- McAllister-Williams, R.H.; Baldwin, D.S.; Cantwell, R.; Easter, A.; Gilvarry, E.; Glover, V.; Green, L.; Gregoire, A.; Howard, L.M.; Jones, I.; et al. British Association for Psychopharmacology Consensus Guidance on the Use of Psychotropic Medication Preconception, in Pregnancy and Postpartum 2017. J. Psychopharmacol. 2017, 31, 519–552. [Google Scholar] [CrossRef] [PubMed]
- Latendresse, G.; Elmore, C.; Deneris, A. Selective Serotonin Reuptake Inhibitors as First-Line Antidepressant Therapy for Perinatal Depression. J. Midwifery Womens Health 2017, 62, 317–328. [Google Scholar] [CrossRef]
- Andrews, P.W.; Bharwani, A.; Lee, K.R.; Fox, M.; Thomson, J.A. Is Serotonin an Upper or a Downer? The Evolution of the Serotonergic System and Its Role in Depression and the Antidepressant Response. Neurosci. Biobehav. Rev. 2015, 51, 164–188. [Google Scholar] [CrossRef]
- Licznerski, P.; Duman, R.S. Remodeling of Axo-Spinous Synapses in the Pathophysiology and Treatment of Depression. Neuroscience 2013, 251, 33–50. [Google Scholar] [CrossRef]
- Nair, A.B.; Jacob, S. A Simple Practice Guide for Dose Conversion between Animals and Human. J. Basic Clin. Pharm. 2016, 7, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Pawluski, J.L.; Brain, U.; Hammond, G.L.; Oberlander, T.F. Selective Serotonin Reuptake Inhibitor Effects on Neural Biomarkers of Perinatal Depression. Arch. Womens Ment. Health 2019, 22, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.M.; LeDoux, J.E.; Sapolsky, R.M. The Influence of Stress Hormones on Fear Circuitry. Annu. Rev. Neurosci. 2009, 32, 289–313. [Google Scholar] [CrossRef]
- Salari, A.-A.; Fatehi-Gharehlar, L.; Motayagheni, N.; Homberg, J.R. Fluoxetine Normalizes the Effects of Prenatal Maternal Stress on Depression- and Anxiety-like Behaviors in Mouse Dams and Male Offspring. Behav. Brain Res. 2016, 311, 354–367. [Google Scholar] [CrossRef] [PubMed]
- Gemmel, M.; Rayen, I.; van Donkelaar, E.; Loftus, T.; Steinbusch, H.W.; Kokras, N.; Dalla, C.; Pawluski, J.L. Gestational Stress and Fluoxetine Treatment Differentially Affect Plasticity, Methylation and Serotonin Levels in the PFC and Hippocampus of Rat Dams. Neuroscience 2016, 327, 32–43. [Google Scholar] [CrossRef]
- Pawluski, J.L.; Charlier, T.D.; Fillet, M.; Houbart, V.; Crispin, H.T.; Steinbusch, H.W.; van den Hove, D.L. Chronic Fluoxetine Treatment and Maternal Adversity Differentially Alter Neurobehavioral Outcomes in the Rat Dam. Behav. Brain Res. 2012, 228, 159–168. [Google Scholar] [CrossRef]
- Workman, J.L.; Gobinath, A.R.; Kitay, N.F.; Chow, C.; Brummelte, S.; Galea, L.A.M. Parity Modifies the Effects of Fluoxetine and Corticosterone on Behavior, Stress Reactivity, and Hippocampal Neurogenesis. Neuropharmacology 2016, 105, 443–453. [Google Scholar] [CrossRef]
- Gemmel, M.; Harmeyer, D.; Bögi, E.; Fillet, M.; Hill, L.A.; Hammond, G.L.; Charlier, T.D.; Pawluski, J.L. Perinatal Fluoxetine Increases Hippocampal Neurogenesis and Reverses the Lasting Effects of Pre-Gestational Stress on Serum Corticosterone, but Not on Maternal Behavior, in the Rat Dam. Behav. Brain Res. 2018, 339, 222–231. [Google Scholar] [CrossRef]
- Kott, J.M.; Mooney-Leber, S.M.; Li, J.; Brummelte, S. Elevated Stress Hormone Levels and Antidepressant Treatment Starting before Pregnancy Affect Maternal Care and Litter Characteristics in an Animal Model of Depression. Behav. Brain Res. 2018, 348, 101–114. [Google Scholar] [CrossRef]
- Pawluski, J.L.; Paravatou, R.; Even, A.; Cobraiville, G.; Fillet, M.; Kokras, N.; Dalla, C.; Charlier, T.D. Effect of Sertraline on Central Serotonin and Hippocampal Plasticity in Pregnant and Non-Pregnant Rats. Neuropharmacology 2020, 166, 107950. [Google Scholar] [CrossRef] [PubMed]
- Belovicova, K.; Bogi, E.; Koprdova, R.; Ujhazy, E.; Mach, M.; Dubovicky, M. Effects of Venlafaxine and Chronic Unpredictable Stress on Behavior and Hippocampal Neurogenesis of Rat Dams. Neuroendocrinol. Lett. 2017, 38, 19–26. [Google Scholar] [PubMed]
- Meltzer-Brody, S.; Kanes, S.J. Allopregnanolone in Postpartum Depression: Role in Pathophysiology and Treatment. Neurobiol. Stress 2020, 12, 100212. [Google Scholar] [CrossRef] [PubMed]
- Deligiannidis, K.M.; Fales, C.L.; Kroll-Desrosiers, A.R.; Shaffer, S.A.; Villamarin, V.; Tan, Y.; Hall, J.E.; Frederick, B.B.; Sikoglu, E.M.; Edden, R.A. Resting-State Functional Connectivity, Cortical GABA, and Neuroactive Steroids in Peripartum and Peripartum Depressed Women: A Functional Magnetic Resonance Imaging and Spectroscopy Study. Neuropsychopharmacology 2019, 44, 546–554. [Google Scholar] [CrossRef]
- Zorumski, C.F.; Paul, S.M.; Covey, D.F.; Mennerick, S. Neurosteroids as Novel Antidepressants and Anxiolytics: GABA-A Receptors and Beyond. Neurobiol. Stress 2019, 11, 100196. [Google Scholar] [CrossRef] [PubMed]
- Treccani, G.; Ardalan, M.; Chen, F.; Musazzi, L.; Popoli, M.; Wegener, G.; Nyengaard, J.R.; Müller, H.K. S-Ketamine Reverses Hippocampal Dendritic Spine Deficits in Flinders Sensitive Line Rats Within 1 h of Administration. Mol. Neurobiol. 2019, 56, 7368–7379. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, M.; Aldhabi, M.; Zhang, R.; Liu, Y.; Liu, S.; Tang, R.; Chen, Z. Low-Dose S-Ketamine Exerts Antidepressant-like Effects via Enhanced Hippocampal Synaptic Plasticity in Postpartum Depression Rats. Neurobiol. Stress 2022, 16, 100422. [Google Scholar] [CrossRef]
- Zhang, X.-L.; Wang, L.; Xiong, L.; Huang, F.-H.; Xue, H. Timosaponin B-III Exhibits Antidepressive Activity in a Mouse Model of Postpartum Depression by the Regulation of Inflammatory Cytokines, BNDF Signaling and Synaptic Plasticity. Exp. Ther. Med. 2017, 14, 3856–3861. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Q.; Cai, Y.; Sun, D.; He, X.; Wang, L.; Yu, D.; Li, X.; Xiong, X.; Xu, H.; et al. Resveratrol Counteracts Lipopolysaccharide-Induced Depressive-like Behaviors via Enhanced Hippocampal Neurogenesis. Oncotarget 2016, 7, 56045–56059. [Google Scholar] [CrossRef]
- Liu, T.; Ma, Y.; Zhang, R.; Zhong, H.; Wang, L.; Zhao, J.; Yang, L.; Fan, X. Resveratrol Ameliorates Estrogen Deficiency-Induced Depression- and Anxiety-like Behaviors and Hippocampal Inflammation in Mice. Psychopharmacology 2019, 236, 1385–1399. [Google Scholar] [CrossRef]
- McClintock, S.M.; Kallioniemi, E.; Martin, D.M.; Kim, J.U.; Weisenbach, S.L.; Abbott, C.C. A Critical Review and Synthesis of Clinical and Neurocognitive Effects of Noninvasive Neuromodulation Antidepressant Therapies. Focus 2019, 17, 18–29. [Google Scholar] [CrossRef]
- Cook, I.A.; Espinoza, R.; Leuchter, A.F. Neuromodulation for Depression: Invasive and Noninvasive (Deep Brain Stimulation, Transcranial Magnetic Stimulation, Trigeminal Nerve Stimulation). Neurosurg. Clin. N. Am. 2014, 25, 103–116. [Google Scholar] [CrossRef]
- Gelenberg, A.J.; Freeman, M.P.; Markowitz, J.C.; Rosenbaum, J.F.; Thase, M.E.; Trivedi, M.H.; Van Rhoads, R.S. American Psychiatric Association practice guidelines for the treatment of patients with major depressive disorder. Am. J. Psychiatry 2010, 167 (Suppl. 10), 9–118. [Google Scholar]
- Ward, H.B.; Fromson, J.A.; Cooper, J.J.; De Oliveira, G.; Almeida, M. Recommendations for the Use of ECT in Pregnancy: Literature Review and Proposed Clinical Protocol. Arch. Womens Ment. Health 2018, 21, 715–722. [Google Scholar] [CrossRef]
- Madsen, T.M.; Treschow, A.; Bengzon, J.; Bolwig, T.G.; Lindvall, O.; Tingström, A. Increased Neurogenesis in a Model of Electroconvulsive Therapy. Biol. Psychiatry 2000, 47, 1043–1049. [Google Scholar] [CrossRef]
- Perera, T.D.; Coplan, J.D.; Lisanby, S.H.; Lipira, C.M.; Arif, M.; Carpio, C.; Spitzer, G.; Santarelli, L.; Scharf, B.; Hen, R. Antidepressant-Induced Neurogenesis in the Hippocampus of Adult Nonhuman Primates. J. Neurosci. 2007, 27, 4894–4901. [Google Scholar] [CrossRef]
- Bouckaert, F.; Sienaert, P.; Obbels, J.; Dols, A.; Vandenbulcke, M.; Stek, M.; Bolwig, T. ECT: Its Brain Enabling Effects: A Review of Electroconvulsive Therapy–Induced Structural Brain Plasticity. J. ECT 2014, 30, 143–151. [Google Scholar] [CrossRef]
- Takamiya, A.; Chung, J.K.; Liang, K.; Graff-Guerrero, A.; Mimura, M.; Kishimoto, T. Effect of Electroconvulsive Therapy on Hippocampal and Amygdala Volumes: Systematic Review and Meta-Analysis. Br. J. Psychiatry 2018, 212, 19–26. [Google Scholar] [CrossRef]
- Takamiya, A.; Plitman, E.; Chung, J.K.; Chakravarty, M.; Graff-Guerrero, A.; Mimura, M.; Kishimoto, T. Acute and Long-Term Effects of Electroconvulsive Therapy on Human Dentate Gyrus. Neuropsychopharmacology 2019, 44, 1805–1811. [Google Scholar] [CrossRef]
- Chervyakov, A.V.; Chernyavsky, A.Y.; Sinitsyn, D.O.; Piradov, M.A. Possible Mechanisms Underlying the Therapeutic Effects of Transcranial Magnetic Stimulation. Front. Hum. Neurosci. 2015, 9, 303. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, S.M.; Kwon, J.Y. Repetitive Transcranial Magnetic Stimulation Treatment for Peripartum Depression: Systematic Review & Meta-Analysis. BMC Pregnancy Childbirth 2021, 21, 118. [Google Scholar] [CrossRef]
- Vlachos, A.; Müller-Dahlhaus, F.; Rosskopp, J.; Lenz, M.; Ziemann, U.; Deller, T. Repetitive Magnetic Stimulation Induces Functional and Structural Plasticity of Excitatory Postsynapses in Mouse Organotypic Hippocampal Slice Cultures. J. Neurosci. 2012, 32, 17514–17523. [Google Scholar] [CrossRef]
- Lenz, M.; Platschek, S.; Priesemann, V.; Becker, D.; Willems, L.M.; Ziemann, U.; Deller, T.; Müller-Dahlhaus, F.; Jedlicka, P.; Vlachos, A. Repetitive Magnetic Stimulation Induces Plasticity of Excitatory Postsynapses on Proximal Dendrites of Cultured Mouse CA1 Pyramidal Neurons. Brain Struct. Funct. 2015, 220, 3323–3337. [Google Scholar] [CrossRef] [PubMed]
- Lenz, M.; Galanis, C.; Müller-Dahlhaus, F.; Opitz, A.; Wierenga, C.J.; Szabó, G.; Ziemann, U.; Deller, T.; Funke, K.; Vlachos, A. Repetitive Magnetic Stimulation Induces Plasticity of Inhibitory Synapses. Nat. Commun. 2016, 7, 10020. [Google Scholar] [CrossRef]
- Stagg, C.J.; Antal, A.; Nitsche, M.A. Physiology of Transcranial Direct Current Stimulation. J. ECT 2018, 34, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Bennabi, D.; Haffen, E. Transcranial Direct Current Stimulation (TDCS): A Promising Treatment for Major Depressive Disorder? Brain Sci. 2018, 8, 81. [Google Scholar] [CrossRef]
- Kurzeck, A.K.; Kirsch, B.; Weidinger, E.; Padberg, F.; Palm, U. Transcranial Direct Current Stimulation (TDCS) for Depression during Pregnancy: Scientific Evidence and What Is Being Said in the Media-A Systematic Review. Brain Sci. 2018, 8, 155. [Google Scholar] [CrossRef] [PubMed]
- Fritsch, B.; Reis, J.; Martinowich, K.; Schambra, H.M.; Ji, Y.; Cohen, L.G.; Lu, B. Direct Current Stimulation Promotes BDNF-Dependent Synaptic Plasticity: Potential Implications for Motor Learning. Neuron 2010, 66, 198–204. [Google Scholar] [CrossRef]
- Chan, M.M.Y.; Yau, S.S.Y.; Han, Y.M.Y. The Neurobiology of Prefrontal Transcranial Direct Current Stimulation (TDCS) in Promoting Brain Plasticity: A Systematic Review and Meta-Analyses of Human and Rodent Studies. Neurosci. Biobehav. Rev. 2021, 125, 392–416. [Google Scholar] [CrossRef]
- Malhotra, S.; Sahoo, S. Rebuilding the Brain with Psychotherapy. Indian J. Psychiatry 2017, 59, 411–419. [Google Scholar] [CrossRef]
- Liggan, D.Y.; Kay, J. Some Neurobiological Aspects of Psychotherapy. A Review. J. Psychother. Pract. Res. 1999, 8, 103–114. [Google Scholar]
- Voss, M.W.; Vivar, C.; Kramer, A.F.; van Praag, H. Bridging Animal and Human Models of Exercise-Induced Brain Plasticity. Trends Cogn. Sci. 2013, 17, 525–544. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.-L.; Jiang, W.-T.; Wang, X.; Cai, Z.-D.; Liu, Z.-H.; Liu, G.-R. Exercise, Brain Plasticity, and Depression. CNS Neurosci. Ther. 2020, 26, 885–895. [Google Scholar] [CrossRef]
- Subbanna, M.; Talukdar, P.M.; Abdul, F.; Debnath, M.; Reddy, P.V.; Arasappa, R.; Venkatasubramanian, G.; Muralidharan, K.; Gangadhar, B.N.; Bhargav, P.H.; et al. Long-Term Add-on Yoga Therapy Offers Clinical Benefits in Major Depressive Disorder by Modulating the Complement Pathway: A Randomized Controlled Trial. Asian J. Psychiatr. 2021, 66, 102876. [Google Scholar] [CrossRef] [PubMed]
- Tolahunase, M.R.; Sagar, R.; Faiq, M.; Dada, R. Yoga- and Meditation-Based Lifestyle Intervention Increases Neuroplasticity and Reduces Severity of Major Depressive Disorder: A Randomized Controlled Trial. Restor. Neurol. Neurosci. 2018, 36, 423–442. [Google Scholar] [CrossRef]
- Tolahunase, M.R.; Gautam, S.; Sagar, R.; Kumar, M.; Dada, R. Yoga in Major Depressive Disorder: Molecular Mechanisms and Clinical Utility. FBS 2021, 13, 56–81. [Google Scholar]
- Crowley, S.K.; Youngstedt, S.D. Efficacy of Light Therapy for Perinatal Depression: A Review. J. Physiol. Anthropol. 2012, 31, 15. [Google Scholar] [CrossRef] [PubMed]
- Costello, A.; Linning-Duffy, K.; Vandenbrook, C.; Lonstein, J.S.; Yan, L. Effects of Bright Light Therapy on Neuroinflammatory and Neuroplasticity Markers in a Diurnal Rodent Model of Seasonal Affective Disorder. Ann. Med. 2023, 55, 2249015. [Google Scholar] [CrossRef] [PubMed]
Study | Drug | Method | Results |
---|---|---|---|
Haim et al., 2016 [9] | Citalopram | Pregnant rats exposed to gestational stress paradigm. Postpartum rats were randomly assigned to receive citalopram 10 mg/kg (HED = 97.2 mg) or saline. A forced swim test was carried out (FST), following which Golgi staining (post 24 h) and microscopic analysis of brains were performed. | Citalopram reduced depressive-like behavior and also reversed gestational stress-induced structural plasticity-related changes in the postpartum nucleus accumbens shell and mPFC, but not in the BLA. |
Salari et al., 2016 [35] | Fluoxetine | Gestationally stressed and non-stressed mouse dams were treated with oral fluoxetine 5 mg/kg (HED = 38.88 mg) from gestational day 10 to lactation day 20. Sucrose preference, a forced swim test, zero maze, and light–dark box tests were employed. Stress-induced corticosterone levels were collected. | Depressive-like behavior and HPA overactivity were reversed by fluoxetine. |
Gemmel et al., 2016 [36] | Fluoxetine | Gestationally stressed and non-stressed rat dams were treated with fluoxetine 5 mg/kg (HED = 48.6 mg). At weaning, the maternal brains were analyzed. | Fluoxetine reduced methylation as well as serotonergic functioning in the maternal hippocampus. Fluoxetine reversed the effect of stress by restoring neuronal activity and serotonergic functioning in the PFC of the maternal brain. |
Pawluski et al., 2012 [37] | Fluoxetine | Gestationally stressed and non-stressed rat dams were treated with fluoxetine 5 mg/kg (HED = 48.6 mg) or vehicle for 28 days (PD1 to PD28). The maternal care, anxiety-like behavior, depressive-like behavior, corticosterone levels, corticosterone binding capacity and histology of maternal rat brains (after PD28) were assessed. | Fluoxetine reduced the morning levels of corticosterone and CBG in dams and increased hippocampal neurogenesis in gestationally stressed dams. |
Workman et al., 2016 [38] | Fluoxetine | Nulliparous and postpartum female rats were divided into four groups that received 21 d of injections of CORT or oil plus FLX 10 mg/kg (HED = 97.2 mg) or saline. FST, radioimmunoassay, maternal behavior assessment, immunohistochemistry, and microscopic analysis of brains were carried out. | Fluoxetine increased neurogenesis in the ventral hippocampus in the nulliparous rat group but not in the postpartum dam group. |
Gobinath et al., 2018 [25] | Fluoxetine | Corticosterone-stressed postpartum female rats were assigned to four groups: FLX 10 mg/kg (HED = 97.2 mg) + exercise, Only FLX, Saline + Exercise, and Only Saline. FST, radioimmunoassay, maternal behavior assessment, immunohistochemistry, serum CORT assay, and microscopic analysis of brains were carried out. | Fluoxetine reduced hippocampal neurogenesis. Only exercise and a combination of FLX + exercise increased neurogenesis in postpartum dams. |
Gemmel et al., 2018 [39] | Fluoxetine | Female rats were put under chronic unpredictable stress paradigms for 3 weeks before breeding. They were later given oral fluoxetine 10 mg/kg (HED = 97.2 mg) or vehicle. Maternal behavior, serum cortisone, serum CBG, and histology of dam brains were carried out. | Fluoxetine significantly increased the number of immature neurons in the dorsal hippocampus of the dams, more in non-gestationally stressed dams. |
Kott et al., 2018 [40] | Sertraline | Gestationally stressed (CORT paradigm) dams were randomly assigned to receive sertraline 20 mg/kg (HED = 194.4 mg) or vehicle for either up to GD16 or till parturition. CORT assay, FST, OFT, maternal care observation, immunohistochemistry, and microscopy were carried out. | Sertraline had no impact on hippocampal neurogenesis in the dams. |
Pawluski et al., 2020 [41] | Sertraline | Pregnant and non-pregnant female rats were given sertraline 2.5 mg/kg/day (HED = 24.3 mg) or 10 mg/kg/day (HED 97.2 mg) or vehicle for the last half of pregnancy (10 days). Immunohistochemistry was performed. | There was a negative association between the serum sertraline levels and the measures of hippocampal neurogenesis (cell proliferation and immature neurons), which were specifically pronounced in non-pregnant females. |
Belovicova et al., 2017 [42] | Venlafaxine | Gestationally stressed rats were treated with oral venlafaxine 5 mg/kg(HED = 48.6 mg) twice a day. Maternal behavior was evaluated within 5 min observations twice a day and again after 8 weeks in a single 15 min session. Immunohistochemistry and microscopy were performed. | Venlafaxine reversed the reduction in hippocampal neurogenesis induced by gestational stress in dams. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shenoy, S.; Ibrahim, S. Perinatal Depression and the Role of Synaptic Plasticity in Its Pathogenesis and Treatment. Behav. Sci. 2023, 13, 942. https://doi.org/10.3390/bs13110942
Shenoy S, Ibrahim S. Perinatal Depression and the Role of Synaptic Plasticity in Its Pathogenesis and Treatment. Behavioral Sciences. 2023; 13(11):942. https://doi.org/10.3390/bs13110942
Chicago/Turabian StyleShenoy, Sonia, and Sufyan Ibrahim. 2023. "Perinatal Depression and the Role of Synaptic Plasticity in Its Pathogenesis and Treatment" Behavioral Sciences 13, no. 11: 942. https://doi.org/10.3390/bs13110942
APA StyleShenoy, S., & Ibrahim, S. (2023). Perinatal Depression and the Role of Synaptic Plasticity in Its Pathogenesis and Treatment. Behavioral Sciences, 13(11), 942. https://doi.org/10.3390/bs13110942