A Bibliometric Analysis of Consumer Neuroscience towards Sustainable Consumption
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Number of Publications
3.2. Country Cooperation Network
3.3. Institutional Cooperation Network
3.4. Keywords
3.5. Buzzwords
4. Implications of Consumer Neuroscience towards Sustainable Consumption
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iqbal, N.; Abbasi, K.R.; Shinwari, R.; Guangcai, W.; Ahmad, M.; Tang, K. Does exports diversification and environmental innovation achieve carbon neutrality target of OECD economies? J. Environ. Manag. 2021, 291, 112648. [Google Scholar] [CrossRef] [PubMed]
- Soewarno, N.; Tjahjadi, B.; Fithrianti, F. Green innovation strategy and green innovation: The roles of green organizational identity and environmental organizational legitimacy. Manag. Decis. 2019, 57, 3061–3078. [Google Scholar] [CrossRef]
- DeBoer, J.; Panwar, R.; Rivera, J. Toward a place-based understanding of business sustainability: The role of green competitors and green locales in firms’ voluntary environmental engagement. Bus. Strateg. Environ. 2017, 26, 940–955. [Google Scholar] [CrossRef]
- Valko, D. Environmental attitudes and contextual stimuli in emerging environmental culture: An empirical study from Russia. Sustain. Prod. Consump. 2021, 27, 2075–2089. [Google Scholar] [CrossRef]
- Abeliotis, K.; Koniari, C.; Sardianou, E. The profile of the green consumer in Greece. Int. J. Consum. Stud. 2010, 34, 153–160. [Google Scholar] [CrossRef]
- Hernandez-Ortega, B. The role of post-use trust in the acceptance of a technology: Drivers and consequences. Technovation 2011, 31, 523–538. [Google Scholar] [CrossRef]
- Trope, Y.; Liberman, N.; Wakslak, C. Construal levels and psychological distance: Effects on representation, prediction, evaluation, and behavior. J. Consum. Psychol. 2007, 17, 83–95. [Google Scholar] [CrossRef] [Green Version]
- Gadema, Z.; Oglethorpe, D. The use and usefulness of carbon labelling food: A policy perspective from a survey of UK supermarket shoppers. Food Policy 2011, 36, 815–822. [Google Scholar] [CrossRef]
- Katt, F.; Meixner, O. A systematic review of drivers influencing consumer willingness to pay for organic food. Trends Food Sci. Technol. 2020, 100, 374–388. [Google Scholar] [CrossRef]
- Upham, P.; Dendler, L.; Bleda, M. Carbon labelling of grocery products: Public perceptions and potential emissions reductions. J. Clean. Prod. 2011, 19, 348–355. [Google Scholar] [CrossRef]
- Wei, Z.; Wu, C.; Wang, X.; Supratak, A.; Wang, P.; Guo, Y. Using support vector machine on EEG for advertisement impact assessment. Front. Neurosci. 2018, 12, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatraman, V.; Clithero, J.A.; Fitzsimons, G.J.; Huettel, S.A. New scanner data for brand marketers: How neuroscience can help better understand differences in brand preferences. J. Consum. Psychol. 2012, 22, 143–153. [Google Scholar] [CrossRef]
- Karmarkar, U.R.; Plassmann, H. Consumer neuroscience: Past, present, and future. Organ. Res. Methods 2019, 22, 174–195. [Google Scholar] [CrossRef]
- Mileti, A.; Guido, G.; Prete, M.I. Nanomarketing: A new frontier for neuromarketing. Psychol. Mark. 2016, 33, 664–674. [Google Scholar] [CrossRef]
- Pickett-Baker, J.; Ozaki, R. Pro-environmental products: Marketing influence on consumer purchase decision. J. Consum. Mark. 2008, 25, 281–293. [Google Scholar] [CrossRef]
- Turaga, R.M.R.; Howarth, R.B.; Borsuk, M.E. Pro-environmental behavior: Rational choice meets moral motivation. Ann. N. Y. Acad. Sci. 2010, 1185, 211–224. [Google Scholar] [CrossRef]
- Venkatraman, V.; Dimoka, A.; Pavlou, P.A.; Vo, K.; Hampton, W.; Bollinger, B.; Hershfield, H.E.; Ishihara, M.; Winer, R.S. Predicting advertising success beyond traditional measures: New insights from neurophysiological methods and market response modeling. J. Mark. Res. 2015, 52, 436–452. [Google Scholar] [CrossRef] [Green Version]
- Donthu, N.; Kumar, S.; Pattnaik, D. Forty-five years of Journal of Business Research: A bibliometric analysis. J. Bus. Res. 2020, 109, 1–14. [Google Scholar] [CrossRef]
- Smith, K.; Dickhaut, J.; McCabe, K.; Pardo, J.V. Neuronal substrates for choice under ambiguity, risk, gains, and losses. Manag. Sci. 2002, 48, 711–718. [Google Scholar] [CrossRef] [Green Version]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Perrachione, T.K.; Perrachione, J.R. Brains and brands: Developing mutually informative research in neuroscience and marketing. J. Consum. Behav. 2008, 7, 303–318. [Google Scholar] [CrossRef]
- Hubert, M. Does neuroeconomics give new impetus to economic and consumer research? J. Econ. Psychol. 2010, 31, 812–817. [Google Scholar] [CrossRef]
- Lin, M.H.J.; Cross, S.N.; Jones, W.J.; Childers, T.L. Applying EEG in consumer neuroscience. Eur. J. Mark. 2018, 52, 66–91. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, L.; Wang, M. “You Win, You Buy”—How Continuous Win Effect Influence Consumers’ Price Perception: An ERP Study. Front. Neurosci. 2018, 12, 691. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Wang, X.; Shu, L.; Dai, S. P300 and categorization in brand extension. Neurosci. Lett. 2008, 431, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ma, Q.; Wang, C. N400 as an index of uncontrolled categorization processing in brand extension. Neurosci. Lett. 2012, 525, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Zhang, W.; Chen, M. How consumers are affected by product descriptions in online shopping: Event-related potentials evidence of the attribute framing effect. Neurosci. Res. 2017, 125, 21–28. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, M.; He, Y.; Tan, Y.; Zhang, L. Does mobile payment change consumers’ perception during payment process?—An ERP study. Neurosci. Lett. 2021, 762, 136138. [Google Scholar] [CrossRef]
- Fu, H.; Ma, H.; Bian, J.; Wang, C.; Zhou, J.; Ma, Q. Don’t trick me: An event-related potentials investigation of how price deception decreases consumer purchase intention. Neurosci. Lett. 2019, 713, 134522. [Google Scholar] [CrossRef]
- Kang, M.J.; Camerer, C.F. fMRI evidence of a hot-cold empathy gap in hypothetical and real aversive choices. Front. Neurosci. 2013, 7, 104. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.J.; Rangel, A.; Camus, M.; Camerer, C.F. Hypothetical and real choice differentially activate common valuation areas. J. Neurosci. 2011, 31, 461–468. [Google Scholar] [CrossRef] [Green Version]
- Plassmann, H.; Weber, B. Individual differences in marketing placebo effects: Evidence from brain imaging and behavioral experiments. J. Mark. Res. 2015, 52, 493–510. [Google Scholar] [CrossRef] [Green Version]
- Couwenberg, L.E.; Boksem, M.A.; Dietvorst, R.C.; Worm, L.; Verbeke, W.J.; Smidts, A. Neural responses to functional and experiential ad appeals: Explaining ad effectiveness. Int. J. Res. Mark. 2017, 34, 355–366. [Google Scholar] [CrossRef]
- Eijlers, E.; Boksem, M.A.; Smidts, A. Measuring neural arousal for advertisements and its relationship with advertising success. Front. Neurosci. 2020, 14, 736. [Google Scholar] [CrossRef]
- Stallen, M.; Smidts, A.; Rijpkema, M.; Smit, G.; Klucharev, V.; Fernández, G. Celebrities and shoes on the female brain: The neural correlates of product evaluation in the context of fame. J. Econ. Psychol. 2010, 31, 802–811. [Google Scholar] [CrossRef] [Green Version]
- Pozharliev, R.; Verbeke, W.J.; Bagozzi, R.P. Social consumer neuroscience: Neurophysiological measures of advertising effectiveness in a social context. J. Adver. 2017, 46, 351–362. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.; Wu, D.; Patti, S. A bibliometric analysis of carbon labeling schemes in the Period 2007–2019. Energies 2020, 13, 4233. [Google Scholar] [CrossRef]
- Reimann, M.; Castaño, R.; Zaichkowsky, J.; Bechara, A. Novel versus familiar brands: An analysis of neurophysiology, response latency, and choice. Mark. Lett. 2012, 23, 745–759. [Google Scholar] [CrossRef]
- Alsharif, A.H.; Salleh, N.Z.M.; Baharun, R.; Hashem, E.A.R.; Mansor, A.A.; Ali, J.; Abbas, A.F. Neuroimaging techniques in advertising research: Main applications, development, and brain regions and processes. Sustainability 2021, 13, 6488. [Google Scholar] [CrossRef]
- Vermaak, M.; de Klerk, H.M. Fitting room or selling room? Millennial female consumers’ dressing room experiences. Int. J. Consum. Stud. 2017, 41, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Mak, A.K.; Hu, Z.G.; Zhang, J.X.; Xiao, Z.W.; Lee, T.M. Neural correlates of regulation of positive and negative emotions: An fMRI study. Neurosci. Lett. 2009, 457, 101–106. [Google Scholar] [CrossRef]
- Guo, F.; Ding, Y.; Wang, T.; Liu, W.; Jin, H. Applying event related potentials to evaluate user preferences toward smartphone form design. Int. J. Ind. Ergonom. 2016, 54, 57–64. [Google Scholar] [CrossRef]
- Jones, W.J.; Childers, T.L.; Jiang, Y. The shopping brain: Math anxiety modulates brain responses to buying decisions. Biol. Psychol. 2012, 89, 201–213. [Google Scholar] [CrossRef]
- Bhukya, R.; Paul, J.; Kastanakis, M.; Robinson, S. Forty years of European Management Journal: A bibliometric overview. Eur. Manag. J. 2022, 40, 10–28. [Google Scholar] [CrossRef]
- Vecchiato, G.; Astolfi, L.; De Vico Fallani, F.; Cincotti, F.; Mattia, D.; Salinari, S.; Soranzo, R.; Babiloni, F. Changes in brain activity during the observation of TV commercials by using EEG, GSR and HR measurements. Brain Topogr. 2010, 23, 165–179. [Google Scholar] [CrossRef] [PubMed]
- Hubert, M.; Hubert, M.; Florack, A.; Linzmajer, M.; Kenning, P. Neural correlates of impulsive buying tendencies during perception of product packaging. Psychol. Mark. 2013, 30, 861–873. [Google Scholar] [CrossRef]
- Casado-Aranda, L.A.; Liébana-Cabanillas, F.; Sánchez-Fernández, J. A neuropsychological study on how consumers process risky and secure E-payments. J. Interact. Mark. 2018, 43, 151–164. [Google Scholar] [CrossRef]
- Falk, E.B.; Berkman, E.T.; Lieberman, M.D. From neural responses to population behavior: Neural focus group predicts population-level media effects. Psychol. Sci. 2012, 23, 439–445. [Google Scholar] [CrossRef]
- Van der Laan, L.N.; De Ridder, D.T.; Viergever, M.A.; Smeets, P.A. Appearance matters: Neural correlates of food choice and packaging aesthetics. PLoS ONE 2012, 7, e41738. [Google Scholar] [CrossRef] [Green Version]
- Golnar-Nik, P.; Farashi, S.; Safari, M.S. The application of EEG power for the prediction and interpretation of consumer decision-making: A neuromarketing study. Physiol. Behav. 2019, 207, 90–98. [Google Scholar] [CrossRef]
- Littel, M.; Euser, A.S.; Munafò, M.R.; Franken, I.H. Electrophysiological indices of biased cognitive processing of substance-related cues: A meta-analysis. Neurosci. Biobehav. Rev. 2012, 36, 1803–1816. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Han, W. The impact of perceived quality on online buying decisions: An event-related potentials perspective. Neuroreport 2014, 25, 1091–1098. [Google Scholar] [CrossRef] [PubMed]
- Luan, J.; Yao, Z.; Bai, Y. How social ties influence consumer: Evidence from event-related potentials. PLoS ONE 2017, 12, e0169508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Q.; Wang, K.; Wang, X.; Wang, C.; Wang, L. The influence of negative emotion on brand extension as reflected by the change of N2: A preliminary study. Neurosci. Lett. 2010, 485, 237–240. [Google Scholar] [CrossRef]
- Hajcak, G.; MacNamara, A.; Olvet, D.M. Event-related potentials, emotion, and emotion regulation: An integrative review. Dev. Neuropsychol. 2010, 35, 129–155. [Google Scholar] [CrossRef] [PubMed]
- Bosshard, S.S.; Bourke, J.D.; Kunaharan, S.; Koller, M.; Walla, P. Established liked versus disliked brands: Brain activity, implicit associations and explicit responses. Cogent Psychol. 2016, 3, 1176691. [Google Scholar] [CrossRef]
- Goto, N.; Mushtaq, F.; Shee, D.; Lim, X.L.; Mortazavi, M.; Watabe, M.; Schaefer, A. Neural signals of selective attention are modulated by subjective preferences and buying decisions in a virtual shopping task. Biol. Psychol. 2017, 128, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Camerer, C.; Loewenstein, G.; Prelec, D. Neuroeconomics: How neuroscience can inform economics. J. Econ. Lit. 2005, 43, 9–64. [Google Scholar] [CrossRef] [Green Version]
- Johansson, P.; Hall, L.; Sikström, S.; Tärning, B.; Lind, A. How something can be said about telling more than we can know: On choice blindness and introspection. Conscious. Cogn. 2006, 15, 673–692. [Google Scholar] [CrossRef]
- Yoon, C.; Gonzalez, R.; Bechara, A.; Berns, G.S.; Dagher, A.A.; Dubé, L.; Huettel, S.A.; Kable, J.W.; Liberzon, I.; Plassmann, H.; et al. Decision neuroscience and consumer decision making. Market. Lett. 2012, 23, 473–485. [Google Scholar] [CrossRef]
- Mishra, D.; Gunasekaran, A.; Papadopoulos, T.; Hazen, B. Green supply chain performance measures: A review and bibliometric analysis. Sust. Prod. Consum. 2017, 10, 85–99. [Google Scholar] [CrossRef]
- Chen, C. Science mapping: A systematic review of the literature. J. Data Info. Sci. 2017, 2, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Heekeren, H.R.; Marrett, S.; Ruff, D.A.; Bandettini, P.A.; Ungerleider, L.G. Involvement of human left dorsolateral prefrontal cortex in perceptual decision making is independent of response modality. Proc. Natl. Acad. Sci. USA 2006, 103, 10023–10028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luu, S.; Chau, T. Decoding subjective preference from single-trial near-infrared spectroscopy signals. J. Neural Eng. 2008, 6, 016003. [Google Scholar] [CrossRef] [PubMed]
- Linder, N.S.; Uhl, G.; Fliessbach, K.; Trautner, P.; Elger, C.E.; Weber, B. Organic labeling influences food valuation and choice. NeuroImage 2010, 53, 215–220. [Google Scholar] [CrossRef]
- Bigne, E.; Chatzipanagiotou, K.; Ruiz, C. Pictorial content, sequence of conflicting online reviews and consumer decision-making: The stimulus-organism-response model revisited. J. Bus. Res. 2020, 115, 403–416. [Google Scholar] [CrossRef]
- Cacioppo, J.T.; Decety, J. Social neuroscience: Challenges and opportunities in the study of complex behavior. Ann. N. Y. Acad. Sci. 2011, 1224, 162–173. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, M.; Da, Q. The effects of brand familiarity and product category in brand extension: An ERP study. Neurosci. Res. 2021, 169, 48–56. [Google Scholar] [CrossRef]
- Meyerding, S.G.; Mehlhose, C.M. Can neuromarketing add value to the traditional marketing research? An exemplary experiment with functional near-infrared spectroscopy (fNIRS). J. Bus. Res. 2020, 107, 172–185. [Google Scholar] [CrossRef]
- Vezich, I.S.; Gunter, B.C.; Lieberman, M.D. The mere green effect: An fMRI study of pro-environmental advertisements. Soc. Neurosci. 2017, 12, 400–408. [Google Scholar] [CrossRef]
- Jing, K.; Qi, M.; Mei, Y.; Chen, L. The impact of empathy with nature on green purchase behavior: An ERP study. Neurosci. Lett. 2022, 784, 136745. [Google Scholar] [CrossRef] [PubMed]
- Alvino, L.; Constantinides, E.; van der Lubbe, R.H. Consumer neuroscience: Attentional preferences for wine labeling reflected in the posterior contralateral negativity. Front. Psychol. 2021, 12, 4490. [Google Scholar] [CrossRef]
- Savelli, E.; Gregory-Smith, D.; Murmura, F.; Pencarelli, T. How to communicate typical—Local foods to improve food tourism attractiveness. Psychol. Mark. 2022, 39, 1350–1369. [Google Scholar] [CrossRef]
- Oliveira, P.M.; Guerreiro, J.; Rita, P. Neuroscience research in consumer behavior: A review and future research agenda. Int. J. Consum. Stud. 2022, 46, 2041–2067. [Google Scholar] [CrossRef]
- Lee, E.J.; Kwon, G.; Shin, H.J.; Yang, S.; Lee, S.; Suh, M. The spell of green: Can frontal EEG activations identify green consumers? J. Bus. Ethics 2014, 122, 511–521. [Google Scholar] [CrossRef]
- Mehlhose, C.; Risius, A. Assessing Label Frames and Emotional Primes in the Context of Animal Rearing—Response of an Explorative fNIRS Study. Sustainability 2021, 13, 5275. [Google Scholar] [CrossRef]
- Herbes, C.; Friege, C.; Baldo, D.; Mueller, K.M. Willingness to pay lip service? Applying a neuroscience-based method to WTP for green electricity. Energy Policy 2015, 87, 562–572. [Google Scholar] [CrossRef]
- Zubair, M.; Iqbal, S.; Usman, S.M.; Awais, M.; Wang, R.; Wang, X. Message framing and self-conscious emotions help to understand pro-environment consumer purchase intention: An ERP study. Sci. Rep. 2020, 10, 18304. [Google Scholar] [CrossRef]
- Liu, X.; Hairston, J.; Schrier, M.; Fan, J. Common and distinct networks underlying reward valence and processing stages: A meta-analysis of functional neuroimaging studies. Neurosci. Biobehav. Rev. 2011, 35, 1219–1236. [Google Scholar] [CrossRef] [Green Version]
- Sul, J.H.; Kim, H.; Huh, N.; Lee, D.; Jung, M.W. Distinct roles of rodent orbitofrontal and medial prefrontal cortex in decision making. Neuron 2010, 66, 449–460. [Google Scholar] [CrossRef] [Green Version]
- Medina, C.A.G.; Martinez-Fiestas, M.; Viedma-del-Jesús, M.I.; Aranda, L.A.C. The processing of price during purchase decision making: Are there neural differences among prosocial and non-prosocial consumers? J. Clean. Prod. 2020, 271, 122648. [Google Scholar] [CrossRef]
- Glaser, J.I.; Benjamin, A.S.; Farhoodi, R.; Kording, K.P. The roles of supervised machine learning in systems neuroscience. Prog. Neurobiol. 2019, 175, 126–137. [Google Scholar] [CrossRef] [Green Version]
- Stanton, S.J.; Sinnott-Armstrong, W.; Huettel, S.A. Neuromarketing: Ethical implications of its use and potential misuse. J. Bus. Ethics 2017, 144, 799–811. [Google Scholar] [CrossRef]
- Guixeres, J.; Bigné, E.; Ausin Azofra, J.M.; Alcaniz Raya, M.; Colomer Granero, A.; Fuentes Hurtado, F.; Naranjo Ornedo, V. Consumer neuroscience-based metrics predict recall, liking and viewing rates in online advertising. Front. Psychol. 2017, 8, 1808. [Google Scholar] [CrossRef] [Green Version]
- Gholami Doborjeh, Z.; Kasabov, N.; Gholami Doborjeh, M.; Sumich, A. Modelling peri-perceptual brain processes in a deep learning spiking neural network architecture. Sci. Rep. 2018, 8, 8912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gholami Doborjeh, Z.; Doborjeh, M.G.; Kasabov, N. Attentional bias pattern recognition in spiking neural networks from spatio-temporal EEG data. Cogn. Comput. 2018, 10, 35–48. [Google Scholar] [CrossRef]
- Solnais, C.; Andreu-Perez, J.; Sánchez-Fernández, J.; Andréu-Abela, J. The contribution of neuroscience to consumer research: A conceptual framework and empirical review. J. Econ. Psychol. 2013, 36, 68–81. [Google Scholar] [CrossRef] [Green Version]
- Wallis, J.D. Orbitofrontal cortex and its contribution to decision-making. Annu. Rev. Neurosci. 2007, 30, 31–56. [Google Scholar] [CrossRef] [Green Version]
- Smidts, A.; Hsu, M.; Sanfey, A.G.; Boksem, M.A.; Ebstein, R.B.; Huettel, S.A.; Kable, J.W.; Karmarkar, U.R.; Kitayama, S.; Knutson, B.; et al. Advancing consumer neuroscience. Mark. Lett. 2014, 25, 257–267. [Google Scholar] [CrossRef]
- Plassmann, H.; Venkatraman, V.; Huettel, S.; Yoon, C. Consumer neuroscience: Applications, challenges, and possible solutions. J. Mark. Res. 2015, 52, 427–435. [Google Scholar] [CrossRef]
- Wearne, T.A. Elucidating the Role of the Ventrolateral Prefrontal Cortex in Economic Decision-Making. J. Neurosci. 2018, 38, 4059–4061. [Google Scholar] [CrossRef] [Green Version]
- Beaver, J.D.; Lawrence, A.D.; Van Ditzhuijzen, J.; Davis, M.H.; Woods, A.; Calder, A.J. Individual differences in reward drive predict neural responses to images of food. J. Neurosci. 2006, 26, 5160–5166. [Google Scholar] [CrossRef] [Green Version]
- Fields, H.L.; Hjelmstad, G.O.; Margolis, E.B.; Nicola, S.M. Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu. Rev. Neurosci. 2007, 30, 289–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harmon-Jones, E.; Gable, P.A.; Peterson, C.K. The role of asymmetric frontal cortical activity in emotion-related phenomena: A review and update. Biol. Psychol. 2010, 84, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Harmon-Jones, E.; Gable, P.A. On the role of asymmetric frontal cortical activity in approach and withdrawal motivation: An updated review of the evidence. Psychophysiology 2018, 55, e12879. [Google Scholar] [CrossRef] [PubMed]
- Reimann, M.; Schilke, O.; Weber, B.; Neuhaus, C.; Zaichkowsky, J. Functional magnetic resonance imaging in consumer research: A review and application. Psychol. Mark. 2011, 28, 608–637. [Google Scholar] [CrossRef]
- Esch, F.R.; Möll, T.; Schmitt, B.; Elger, C.E.; Neuhaus, C.; Weber, B. Brands on the brain: Do consumers use declarative information or experienced emotions to evaluate brands? J. Consum. Psychol. 2012, 22, 75–85. [Google Scholar] [CrossRef]
- Scimeca, J.M.; Badre, D. Striatal contributions to declarative memory retrieval. Neuron 2012, 75, 380–392. [Google Scholar] [CrossRef] [Green Version]
- Shaw, S.D.; Bagozzi, R.P. The neuropsychology of consumer behavior and marketing. Consum. Psychol. Rev. 2018, 1, 22–40. [Google Scholar] [CrossRef]
- Plassmann, H.; Ambler, T.; Braeutigam, S.; Kenning, P. What can advertisers learn from neuroscience? Int. J. Advert. 2007, 26, 151–175. [Google Scholar] [CrossRef]
- Plassmann, H.; Ramsøy, T.Z.; Milosavljevic, M. Branding the brain: A critical review and outlook. J. Consum. Psychol. 2012, 22, 18–36. [Google Scholar] [CrossRef]
- Tanimizu, T.; Kenney, J.W.; Okano, E.; Kadoma, K.; Frankland, P.W.; Kida, S. Functional connectivity of multiple brain regions required for the consolidation of social recognition memory. J. Neurosci. 2017, 37, 4103–4116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Ma, Q.; Li, M.; Dai, S.; Wang, X.; Shu, L. The neural and psychological basis of herding in purchasing books online: An event-related potential study. Cyberpsych. Behav. Soc. Net. 2010, 13, 321–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, D.; Zhao, Y.; Zhang, L.; Wen, X.; Yin, C. Conformity feedback in an online review helpfulness evaluation task leads to less negative feedback-related negativity amplitudes and more positive P300 amplitudes. J. Neurosci. Psycho. Econ. 2019, 12, 73–87. [Google Scholar] [CrossRef]
- Hajcak, G.; Foti, D. Significance?... Significance! Empirical, methodological, and theoretical connections between the late positive potential and P300 as neural responses to stimulus significance: An integrative review. Psychophysiology 2020, 57, e13570. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Shan, W.; Luan, J. Influence of aggregated ratings on purchase decisions: An event-related potential study. Eur. J. Mark. 2018, 52, 147–158. [Google Scholar] [CrossRef]
- Telpaz, A.; Webb, R.; Levy, D.J. Using EEG to predict consumers’ future choices. J. Market. Res. 2015, 52, 511–529. [Google Scholar] [CrossRef] [Green Version]
- Kenning, P.H.; Plassmann, H. How neuroscience can inform consumer research. IEEE T Neur. Syst. Reh. Eng. 2008, 16, 532–538. [Google Scholar] [CrossRef]
- Schaefer, M.; Berens, H.; Heinze, H.J.; Rotte, M. Neural correlates of culturally familiar brands of car manufacturers. NeuroImage 2006, 31, 861–865. [Google Scholar] [CrossRef]
- Deitz, G.D.; Royne, M.B.; Peasley, M.C.; Coleman, J.T. EEG-based measures versus panel ratings: Predicting social media-based behavioral response to Super Bowl ads. J. Adver. Res. 2016, 56, 217–227. [Google Scholar] [CrossRef]
- Knutson, B.; Bossaerts, P. Neural antecedents of financial decisions. J. Neurosci. 2007, 27, 8174–8177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plassmann, H.; O’doherty, J.; Shiv, B.; Rangel, A. Marketing actions can modulate neural representations of experienced pleasantness. Proc. Natl. Acad. Sci. USA 2008, 105, 1050–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orquin, J.L.; Bagger, M.P.; Lahm, E.S.; Grunert, K.G.; Scholderer, J. The visual ecology of product packaging and its effects on consumer attention. J. Bus. Res. 2020, 111, 187–195. [Google Scholar] [CrossRef]
- Schaefer, M. Neuroeconomics: In search of the neural representation of brands. Prog. Brain Res. 2009, 178, 241–252. [Google Scholar] [CrossRef]
- Vermeir, I.; Verbeke, W. Sustainable food consumption among young adults in Belgium: Theory of planned behaviour and the role of confidence and values. Ecol. Econ. 2008, 64, 542–553. [Google Scholar] [CrossRef]
- Wang, Q.; Meng, L.; Liu, M.; Wang, Q.; Ma, Q. How do social-based cues influence consumers’ online purchase decisions? An event-related potential study. Electron. Commer. Res. 2016, 16, 1–26. [Google Scholar] [CrossRef]
- Sánchez-Fernández, J.; Casado-Aranda, L.A.; Bastidas-Manzano, A.B. Consumer neuroscience techniques in advertising research: A bibliometric citation analysis. Sustainability 2021, 13, 1589. [Google Scholar] [CrossRef]
- Burle, B.; Spieser, L.; Roger, C.; Casini, L.; Hasbroucq, T.; Vidal, F. Spatial and temporal resolutions of EEG: Is it really black and white? A scalp current density view. Int. J. Psychophysiol. 2015, 97, 210–220. [Google Scholar] [CrossRef]
- Harris, J.M.; Ciorciari, J.; Gountas, J. Consumer neuroscience for marketing researchers. J. Consum. Behav. 2018, 17, 239–252. [Google Scholar] [CrossRef]
- Pinti, P.; Tachtsidis, I.; Hamilton, A.; Hirsch, J.; Aichelburg, C.; Gilbert, S.; Burgess, P.W. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann. N. Y. Acad. Sci. 2020, 1464, 5–29. [Google Scholar] [CrossRef]
- Cui, X.; Bray, S.; Bryant, D.M.; Glover, G.H.; Reiss, A.L. A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. NeuroImage 2011, 54, 2808–2821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellman, S.; Nenycz-Thiel, M.; Kennedy, R.; Larguinat, L.; McColl, B.; Varan, D. What makes a television commercial sell? using biometrics to identify successful ads: Demonstrating neuromeasures’ potential on 100 mars brand ads with single-source data. J. Advert. Res. 2017, 57, 53–66. [Google Scholar] [CrossRef]
- Zhao, R. Neuroscience as an insightful decision support tool for sustainable development. Iran. J. Public Health 2019, 48, 1933. [Google Scholar] [CrossRef]
- Zhao, R.; Ren, X.; Liu, Y.; Li, Y.; Long, R. Different Educational Interventions on Individual Cognition of Garbage Classification Based on EEG Monitoring. Int. J. Environ. Res. Public Health 2022, 19, 8567. [Google Scholar] [CrossRef] [PubMed]
Institution | Country | Number of Publications |
---|---|---|
Zhejiang University | China | 14 |
California Institute of Technology | United States | 10 |
Erasmus University | Netherlands | 9 |
Zhejiang University of Technology | China | 9 |
Ningbo University | China | 8 |
Duke University | United States | 8 |
University of Granada | United States | 8 |
University of Michigan | United States | 8 |
Guangdong University of Technology | China | 7 |
Columbia University | United States | 7 |
Keyword | Centrality | Number of Publications | Percentage (%) |
---|---|---|---|
choice | 0.29 | 90 | 21.18 |
emotion | 0.16 | 41 | 9.65 |
attention | 0.08 | 41 | 9.65 |
consumer neuroscience | 0.07 | 41 | 9.65 |
response | 0.06 | 38 | 8.94 |
reward | 0.09 | 38 | 8.94 |
preference | 0.11 | 36 | 8.47 |
prefrontal cortex | 0.09 | 35 | 8.24 |
event-related potential | 0.04 | 33 | 7.76 |
behavior | 0.07 | 29 | 6.82 |
information | 0.12 | 28 | 6.59 |
activation | 0.14 | 28 | 6.59 |
fMRI | 0.07 | 27 | 6.35 |
perception | 0.04 | 27 | 6.35 |
memory | 0.12 | 23 | 5.41 |
model | 0.14 | 21 | 4.94 |
consumer | 0.06 | 21 | 4.94 |
impact | 0.02 | 21 | 4.94 |
EEG | 0.02 | 20 | 4.71 |
orbitofrontal cortex | 0.05 | 20 | 4.71 |
choice | 0.06 | 17 | 4.00 |
emotion | 0.02 | 16 | 3.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhao, R.; Xiong, X.; Ren, X. A Bibliometric Analysis of Consumer Neuroscience towards Sustainable Consumption. Behav. Sci. 2023, 13, 298. https://doi.org/10.3390/bs13040298
Liu Y, Zhao R, Xiong X, Ren X. A Bibliometric Analysis of Consumer Neuroscience towards Sustainable Consumption. Behavioral Sciences. 2023; 13(4):298. https://doi.org/10.3390/bs13040298
Chicago/Turabian StyleLiu, Yan, Rui Zhao, Xin Xiong, and Xinyun Ren. 2023. "A Bibliometric Analysis of Consumer Neuroscience towards Sustainable Consumption" Behavioral Sciences 13, no. 4: 298. https://doi.org/10.3390/bs13040298
APA StyleLiu, Y., Zhao, R., Xiong, X., & Ren, X. (2023). A Bibliometric Analysis of Consumer Neuroscience towards Sustainable Consumption. Behavioral Sciences, 13(4), 298. https://doi.org/10.3390/bs13040298