Hyperpalatable Foods Consumption in a Representative Sample of the General Population in Brazil: Differences of Binge and Non-Binge Eating Meals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedures
2.2. Measures
2.2.1. Diagnosis of Binge Eating Spectrum Disorders
2.2.2. Dietary Intake Assessment
Non-Binge Meals
Binge Eating Episodes
Hyperpalatable Food Classification
- >25% of calories from fat and ≥0.30% sodium: for example, meats (e.g., bacon, hot dog) and meal-based items (e.g., pizza);
- >20% of calories from fat and >20% of calories from sugar: for example, sweets and desserts (e.g., cake and ice cream);
- >40% of calories from carbohydrates and ≥0.20% sodium: including bread, salty and savory snacks (e.g., crackers, popcorn), among others.
2.2.3. Sociodemographic and Clinical Variables
2.3. Data Analysis
3. Results
3.1. Sample Characteristics
3.2. Energy Intake and HPF Consumption during Binge Eating Episodes
3.2.1. Objective Binge Eating Episodes
3.2.2. Subjective Binge Eating Episodes
3.3. Energy Intake and HPF Consumption during Non-Binge Meals
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, Regional, and National Prevalence of Overweight and Obesity in Children and Adults during 1980–2013: A Systematic Analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef]
- Galmiche, M.; Déchelotte, P.; Lambert, G.; Tavolacci, M.P. Prevalence of Eating Disorders over the 2000–2018 Period: A Systematic Literature Review. Am. J. Clin. Nutr. 2019, 109, 1402–1413. [Google Scholar] [CrossRef]
- da Luz, F.Q.; Hay, P.; Touyz, S.; Sainsbury, A. Obesity with Comorbid Eating Disorders: Associated Health Risks and Treatment Approaches. Nutrients 2018, 10, 829. [Google Scholar] [CrossRef]
- Kolar, D.R.; Rodriguez, D.L.M.; Chams, M.M.; Hoek, H.W. Epidemiology of Eating Disorders in Latin America: A Systematic Review and Meta-Analysis. Curr. Opin. Psychiatry 2016, 29, 363–371. [Google Scholar] [CrossRef]
- Kessler, R.C.; Berglund, P.A.; Chiu, W.T.; Deitz, A.C.; Hudson, J.I.; Shahly, V.; Aguilar-gaxiola, S.; Alonso, J.; Angermeyer, M.C.; Benjet, C.; et al. The Prevalence and Correlates of Binge Eating. Biol. Psychiatry 2013, 73, 904–914. [Google Scholar] [CrossRef]
- Appolinario, J.C.; Sichieri, R.; Lopes, C.S.; Moraes, C.E.; da Veiga, G.V.; Freitas, S.; Nunes, M.A.A.; Wang, Y.P.; Hay, P. Correlates and Impact of DSM-5 Binge Eating Disorder, Bulimia Nervosa and Recurrent Binge Eating: A Representative Population Survey in a Middle-Income Country. Soc. Psychiatry Psychiatr. Epidemiol. 2022, 57, 1491–1503. [Google Scholar] [CrossRef]
- de Souza Ferreira, A.P.; Szwarcwald, C.L.; Damacena, G.N.; de Souza Júnior, P.R.B. Increasing Trends in Obesity Prevalence from 2013 to 2019 and Associated Factors in Brazil. Rev. Bras. Epidemiol. 2021, 24, 1–15. [Google Scholar] [CrossRef]
- Triaca, L.M.; dos Santos, A.M.A.; Tejada, C.A.O. Socioeconomic Inequalities in Obesity in Brazil. Econ. Hum. Biol. 2020, 39, 100906. [Google Scholar] [CrossRef]
- Berthoud, H.R. Metabolic and Hedonic Drives in the Neural Control of Appetite: Who Is the Boss? Curr. Opin. Neurobiol. 2011, 21, 888–896. [Google Scholar]
- de Macedo, I.C.; de Freitas, J.S.; da Silva Torres, I.L. The Influence of Palatable Diets in Reward System Activation: A Mini Review. Adv. Pharmacol. Sci. 2016, 2016, 7238679. [Google Scholar] [CrossRef]
- Small, C.J.; Bloom, S.R. Gut Hormones and the Control of Appetite. Trends Endocrinol. Metab. 2004, 15, 259–263. [Google Scholar]
- Dardeno, T.A.; Chou, S.H.; Moon, H.S.; Chamberland, J.P.; Fiorenza, C.G.; Mantzoros, C.S. Leptin in Human Physiology and Therapeutics. Front. Neuroendocrinol. 2010, 31, 377–393. [Google Scholar]
- Atalayer, D.; Gibson, C.; Konopacka, A.; Geliebter, A. Ghrelin and Eating Disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 40, 70–82. [Google Scholar] [CrossRef]
- Wang, G.J.; Volkow, N.D.; Telang, F.; Jayne, M.; Ma, J.; Rao, M.; Zhu, W.; Wong, C.T.; Pappas, N.R.; Geliebter, A.; et al. Exposure to Appetitive Food Stimuli Markedly Activates the Human Brain. Neuroimage 2004, 21, 1790–1797. [Google Scholar] [CrossRef]
- Leigh, A.S.; Morris, M.J. The Role of Reward Circuitry and Food Addiction in the Obesity Epidemic: An Update. Biol. Psychol. 2018, 131, 31–42. [Google Scholar] [CrossRef]
- Erlanson-Albertsson, C. How Palatable Food Disrupts Appetite Regulation. Basic Clin. Pharmacol. Toxicol. 2005, 97, 61–73. [Google Scholar] [CrossRef]
- Nesse, R.M.; Berridge, K.C. Psychoactive Drug Use in Evolutionary Perspective. Science 1997, 278, 63–66. [Google Scholar] [CrossRef]
- Morris, M.J.; Beilharz, J.E.; Maniam, J.; Reichelt, A.C.; Westbrook, R.F. Why Is Obesity Such a Problem in the 21st Century? The Intersection of Palatable Food, Cues and Reward Pathways, Stress, and Cognition. Neurosci. Biobehav. Rev. 2015, 58, 36–45. [Google Scholar]
- Bjorlie, K.; Forbush, K.T.; Chapa, D.A.N.; Richson, B.N.; Johnson, S.N.; Fazzino, T.L. Hyper-Palatable Food Consumption during Binge-Eating Episodes: A Comparison of Intake during Binge Eating and Restricting. Int. J. Eat. Disord. 2022, 55, 688–696. [Google Scholar] [CrossRef]
- van Strien, T.; Gibson, E.L.; Baños, R.; Cebolla, A.; Winkens, L.H.H. Is Comfort Food Actually Comforting for Emotional Eaters? A (Moderated) Mediation Analysis. Physiol. Behav. 2019, 211, 112671. [Google Scholar] [CrossRef]
- Dorton, H.M.; Luo, S.; Monterosso, J.R.; Page, K.A. Influences of Dietary Added Sugar Consumption on Striatal Food-Cue Reactivity and Postprandial GLP-1 Response. Front. Psychiatry 2018, 8, 297. [Google Scholar] [CrossRef]
- Temple, J.L. Behavioral Sensitization of the Reinforcing Value of Food: What Food and Drugs Have in Common. Prev. Med. (Baltim.) 2016, 92, 90–99. [Google Scholar] [CrossRef]
- Demeke, S.; Rohde, K.; Chollet-Hinton, L.; Sutton, C.; Kong, K.L.; Fazzino, T.L. Change in Hyper-Palatable Food Availability in the US Food System over 30 Years: 1988 to 2018. Public Health Nutr. 2022, 26, 182–189. [Google Scholar] [CrossRef]
- Swinburn, B.; Kraak, V.; Rutter, H.; Vandevijvere, S.; Lobstein, T.; Sacks, G.; Gomes, F.; Marsh, T.; Magnusson, R. Strengthening of Accountability Systems to Create Healthy Food Environments and Reduce Global Obesity. Lancet 2015, 385, 2534–2545. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Moubarac, J.C.; Cannon, G.; Ng, S.W.; Popkin, B. Ultra-Processed Products Are Becoming Dominant in the Global Food System. Obes. Rev. 2013, 14, 21–28. [Google Scholar]
- Qi, Q.; Chu, A.Y.; Kang, J.H.; Huang, J.; Rose, L.M.; Jensen, M.K.; Liang, L.; Curhan, G.C.; Pasquale, L.R.; Wiggs, J.L.; et al. Fried Food Consumption, Genetic Risk, and Body Mass Index: Gene-Diet Interaction Analysis in Three US Cohort Studies. BMJ (Online) 2014, 348, g1610. [Google Scholar] [CrossRef]
- Pepino, M.Y.; Mennella, J.A. Habituation to the Pleasure Elicited by Sweetness in Lean and Obese Women. Appetite 2012, 58, 800–805. [Google Scholar] [CrossRef]
- Fazzino, T.L.; Rohde, K.; Sullivan, D.K. Hyper-Palatable Foods: Development of a Quantitative Definition and Application to the US Food System Database. Obesity 2019, 27, 1761–1768. [Google Scholar] [CrossRef]
- Fazzino, T.L.; Dorling, J.L.; Apolzan, J.W.; Martin, C.K. Meal Composition during an Ad Libitum Buffet Meal and Longitudinal Predictions of Weight and Percent Body Fat Change: The Role of Hyper-Palatable, Energy Dense, and Ultra-Processed Foods. Appetite 2021, 167, 105592. [Google Scholar] [CrossRef]
- Moraes, C.E.F.; Mourilhe, C.; Freitas, S.R.; Veiga, G.V.; Marcus, M.D.; Appolinário, J.C. Cross-Cultural Adaptation of the Brazilian Version of the Questionnaire on Eating and Weight Patterns-5 (QEWP-5). Trends Psychiatry Psychother. 2020, 42, 39–47. [Google Scholar] [CrossRef]
- De Moraes, C.E.F.; Mourilhe, C.; da Veiga, G.V.; de Freitas, S.R.; Luiz, R.R.; Hay, P.; Appolinario, J.C. Concurrent Validity of the Brazilian Portuguese Version of the Questionnaire on Eating and Weight Patterns-5 (QEWP-5) in the General Population. Eat. Behav. 2021, 43, 101571. [Google Scholar] [CrossRef]
- First, M.D.; Spitzer, R.L.; Gibbon, M.; Williams, J.B.W. The Structured Clinical Interview for DSM-IV AXIS I Disorders—Patient Edition (SCID-I/P, Version 2.0); New York State Psychiatric Institute; Biometrics Research Department: New York, NY, USA, 1995. [Google Scholar]
- American Psychiatric Association (Ed.) Diagnostic and Statistical Manual of Mental Disorders/DSM-5, 5th ed.; Edwards Brothers Malloy: Washington, DC, USA; London, UK, 2013; ISBN 089042554X. [Google Scholar]
- Rohde, P.; Lewinsohn, P.M.; Seeley, J.R. Comparability of Telephone and Face-to-Face Interviews in Assessing Axis I and II Disorders. Am. J. Psychiatry 1997, 154, 1593–1598. [Google Scholar] [CrossRef]
- Barufaldi, L.A.; Abreu, G.D.A.; da Veiga, G.V.; Sichieri, R.; Kuschnir, M.C.C.; Cunha, D.B.; Pereira, R.A.; Bloch, K.V. Software to Record 24-hour Food Recall: Application in the Study of Cardiovascular Risks in Adolescents. Rev. Bras. Epidemiol. 2016, 19, 464–468. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística—IBGE. Pesquisa de Orçamentos Familiares 2008–2009: Tabela de Composição Nutricional Dos Alimentos Consumidos No Brasil; IBGE: Rio de Janeiro, Brazil, 2011; Volume 39, ISBN 9788524042225. [Google Scholar]
- Stunkard, A. Eating Patterns and Obesity. Psychiatr. Q. 1959, 33, 284–295. [Google Scholar] [CrossRef]
- Fairburn, C.; Cooper, Z.; O’Connor, M. Eating Disorder Examination—(Edition 16.0D); Fairburn, C.G., Ed.; Guilford Press: New York, NY, USA, 2008; ISBN 1606237675. [Google Scholar]
- Raymond, N.C.; Peterson, R.E.; Bartholome, L.T.; Raatz, S.; Jensen, M.D.; Levine, J.A. Comparisons of Energy Intake and Energy Expenditure in Obese Women with and Without Binge Eating Disorder. Obesity (Silver Spring) 2012, 20, 765–772. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. BMI Classification; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Sichieri, R.; Bezerra, I.N.; Araújo, M.C.; de Moura Souza, A.; Yokoo, E.M.; Pereira, R.A. Major Food Sources Contributing to Energy Intake—A Nationwide Survey of Brazilians Aged 10 Years and Older. Br. J. Nutr. 2015, 113, 1638–1642. [Google Scholar]
- Rodrigues, R.M.; Souza, A.D.M.; Bezerra, I.N.; Pereira, R.A.; Yokoo, E.M.; Sichieri, R. Most Consumed Foods in Brazil: Evolution between 2008–2009 and 2017–2018. Rev. Saude Publica 2021, 55, 1–10. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Moubarac, J.C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The Un Decade of Nutrition, the NOVA Food Classification and the Trouble with Ultra-Processing. Public Health Nutr. 2018, 21, 5–17. [Google Scholar]
- Bartholome, L.T.; Raymond, N.C.; Lee, S.S.; Peterson, C.B.; Warren, C.S. Detailed Analysis of Binges in Obese Women With Binge Eating Disorder: Comparisons Using Multiple Methods of Data Collection. Int. J. Eat Disord. 2006, 39, 685–693. [Google Scholar] [CrossRef]
- Mourilhe, C.; de Moraes, C.E.F.; da Veiga, G.V.; da Luz, F.Q.; Pompeu, A.; Nazar, B.P.; Coutinho, E.S.F.; Hay, P.; Appolinario, J.C. An Evaluation of Binge Eating Characteristics in Individuals with Eating Disorders: A Systematic Review and Meta-Analysis. Appetite 2021, 162, 105176. [Google Scholar] [CrossRef]
- Nogueira Bezerra, I.; de Carvalho Gurgel, A.O.; Bastos Barbosa, R.G.; Bezerra da Silva, G. Dietary Behaviors Among Young and Older Adults in Brazil. J. Nutr. Health Aging 2018, 22, 575–580. [Google Scholar] [CrossRef]
- Lopes, M.S.; Caiaffa, W.T.; Andrade, A.C.D.S.; Malta, D.C.; Barber, S.; Friche, A.A.D.L. Disparities in Food Consumption between Economically Segregated Urban Neighbourhoods. Public Health Nutr. 2020, 23, 525–537. [Google Scholar] [CrossRef]
- Antunes, A.B.S.; Cunha, D.B.; Baltar, V.T.; Steluti, J.; Pereira, R.A.; Yokoo, E.M.; Sichieri, R.; Marchioni, D.M. Dietary Patterns of Brazilian Adults in 2008–2009 and 2017–2018. Rev. Saude Publica 2021, 55, 1–11. [Google Scholar] [CrossRef]
- de Paula Costa, D.V.; Lopes, M.S.; de Deus Mendonça, R.; Malta, D.C.; de Freitas, P.P.; Lopes, A.C.S. Food Consumption Differences in Brazilian Urban and Rural Areas: The National Health Survey. Ciênc. Saúde Colet. 2021, 26, 3805–3813. [Google Scholar] [CrossRef]
- Sproesser, G.; Ruby, M.B.; Arbit, N.; Akotia, C.S.; dos Santos Alvarenga, M.; Bhangaokar, R.; Furumitsu, I.; Hu, X.; Imada, S.; Kaptan, G.; et al. Similar or Different? Comparing Food Cultures with Regard to Traditional and Modern Eating across Ten Countries. Food Res. Int. 2022, 157, 111106. [Google Scholar] [CrossRef]
- Forney, K.J.; Holland, L.A.; Joiner, T.E.; Keel, P.K. Determining Empirical Thresholds for “Definitely Large” Amounts of Food for Defining Binge-Eating Episodes. Eat Disord. 2015, 23, 15–30. [Google Scholar] [CrossRef]
- Bezerra, I.N.; Goldman, J.; Rhodes, D.G.; Hoy, M.K.; de Moura Souza, A.; Chester, D.N.; Martin, C.L.; Sebastian, R.S.; Ahuja, J.K.; Sichieri, R.; et al. Difference in Adult Food Group Intake by Sex and Age Groups Comparing Brazil and United States Nationwide Surveys. Nutr. J. 2014, 13, 74. [Google Scholar] [CrossRef] [Green Version]
- Bartholome, L.T.; Peterson, R.E.; Raatz, S.K.; Raymond, N.C. A Comparison of the Accuracy of Self-Reported Intake with Measured Intake of a Laboratory Overeating Episode in Overweight and Obese Women with and without Binge Eating Disorder. Eur. J. Nutr. 2013, 52, 193–202. [Google Scholar] [CrossRef]
- Forbush, K.T.; Hunt, T.K. Characterization of Eating Patterns among Individuals with Eating Disorders: What Is the State of the Plate? Physiol. Behav. 2014, 134, 92–109. [Google Scholar] [CrossRef]
- Lopes, T.S.; Luiz, R.R.; Hoffman, D.J.; Ferriolli, E.; Pfrimer, K.; Moura, A.S.; Sichieri, R.; Pereira, R.A. Misreport of Energy Intake Assessed with Food Records and 24-h Recalls Compared with Total Energy Expenditure Estimated with DLW. Eur. J. Clin. Nutr. 2016, 70, 1259–1264. [Google Scholar] [CrossRef]
- Burrows, T.L.; Ho, Y.Y.; Rollo, M.E.; Collins, C.E. Validity of Dietary Assessment Methods When Compared to the Method of Doubly Labeled Water: A Systematic Review in Adults. Front. Endocrinol. (Lausanne) 2019, 10, 850. [Google Scholar] [CrossRef]
- Castetbon, K.; Vernay, M.; Malon, A.; Salanave, B.; Deschamps, V.; Roudier, C.; Oleko, A.; Szego, E.; Hercberg, S. Dietary Intake, Physical Activity and Nutritional Status in Adults: The French Nutrition and Health Survey (ENNS, 2006–2007). Br. J. Nutr. 2009, 102, 733–743. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística—IBGE. Pesquisa de Orçamentos Familiares 2008–2009: Análise Do Consumo Pessoal No Brasil; IBGE: Rio de Janeiro, Brazil, 2011. [Google Scholar]
- Foster, E.; Lee, C.; Imamura, F.; Hollidge, S.E.; Westgate, K.L.; Venables, M.C.; Poliakov, I.; Rowland, M.K.; Osadchiy, T.; Bradley, J.C.; et al. Validity and Reliability of an Online Self-Report 24-h Dietary Recall Method (Intake24): A Doubly Labelled Water Study and Repeated-Measures Analysis. J. Nutr. Sci. 2019, 8, e29. [Google Scholar] [CrossRef]
- Verly Junior, E.; Marchioni, D.M.; Araujo, M.C.; de Carli, E.; de Oliveira, D.C.R.S.; Yokoo, E.M.; Sichieri, R.; Pereira, R.A. Evolution of Energy and Nutrient Intake in Brazil between 2008–2009 and 2017–2018. Rev. Saude Publica 2021, 55, 1–22. [Google Scholar] [CrossRef]
- Bes-Rastrollo, M.; Sanchez-Villegas, A.; Basterra-Gortari, F.J.; Nunez-Cordoba, J.M.; Toledo, E.; Serrano-Martinez, M. Prospective Study of Self-Reported Usual Snacking and Weight Gain in a Mediterranean Cohort: The SUN Project. Clin. Nutr. 2010, 29, 323–330. [Google Scholar] [CrossRef]
Criteria | BED | BN | RBE |
---|---|---|---|
OBE | Yes | Yes | Yes |
Compensatory behaviors * | No | Yes | - |
Frequency of OBE or Compensatory behaviors | ≥1 x/wk | ≥1 x/wk | ≥1 x/wk |
≥3 of 5 binge-eating-associated features + | Yes | - | No |
Marked distress Regarding binge eating | Yes | - | No |
Overvaluation of weight and shape | - | Yes | - |
Variables | No ED | BED | BN | RBE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n | % | 95%CI | n | % | 95%CI | n | % | 95%CI | n | % | 95%CI | |
Total | 2161 | 93.8 | 92.2–95.4 | 29 | 1.4 | 0.8–2.4 | 17 | 0.7 | 0.3–1.5 | 90 | 6.2 | 3.1–5.3 |
Sex | ||||||||||||
Male | 864 | 46.8 | 44.1–49.5 | 5 | 0.5 | 0.2–1.3 | 2 | 0.1 | 0.03–0.6 | 19 | 2.4 | 1.4–4.0 |
Female | 1297 | 47.0 | 44.3–49.8 | 24 | 2.3 | 1.2–4.2 | 15 | 1.3 | 0.5–2.9 | 71 | 5.6 | 4.1–7.6 |
Race/skin color | ||||||||||||
White | 862 | 35.5 | 32.1–38.9 | 6 | 0.8 | 2.9–2.1 | 6 | 0.5 | 0.2–1.2 | 34 | 3.6 | 2.3–5.4 |
Black | 371 | 17.8 | 15.4–20.2 | 7 | 2.4 | 0.9–6.3 | 6 | 1.8 | 0.5–5.9 | 18 | 4.2 | 2.1–7.9 |
Mixed a | 928 | 40.5 | 37.7–43.3 | 16 | 1.5 | 0.8–2.8 | 5 | 0.5 | 0.2–1.2 | 38 | 4.4 | 3.1–6.3 |
Age | ||||||||||||
18 to 30 years | 524 | 29.9 | 25.8–33.9 | 6 | 1.1 | 0.4–2.9 | 5 | 1.0 | 0.2–3.9 | 32 | 5.3 | 3.4–8.2 |
31 to 45 years | 746 | 34.2 | 31.1–37.4 | 12 | 1.3 | 0.7–2.4 | 10 | 1.0 | 0.4–2.4 | 33 | 3.8 | 2.5–5.6 |
46 to 60 years | 891 | 29.7 | 27.1–32.3 | 11 | 1.8 | 0.7–4.4 | 2 | 0.1 | 0.03–0.7 | 25 | 3.1 | 1.7–5.1 |
BMI b | ||||||||||||
Underweight | 59 | 3.4 | 2.3–4.5 | 0 | – | 0 | – | – | 3 | 7.0 | 1.7–24.8 | |
Normal Weight | 666 | 30.8 | 27.6–33.9 | 1 | 8.1 | 1.1–41.6 | 2 | 7.7 | 1.6–30.1 | 16 | 18.2 | 10.5–29.5 |
Overweight | 790 | 35.1 | 31.9–38.4 | 6 | 27.1 | 9.1–57.9 | 4 | 18.2 | 4.0–54.0 | 24 | 21.8 | 13.5–33.1 |
Obese | 531 | 24.5 | 21.9–27.1 | 21 | 64.8 | 36.1–85.7 | 11 | 74.1 | 40.5–92.3 | 46 | 53.0 | 40.2–65.5 |
OBE | BED (n = 29) | BN (n = 17) | RBE (n = 90) | BED vs. BN BED vs. RBE BN vs. RBE | ||||
---|---|---|---|---|---|---|---|---|
Mean (SE) | 95%CI | Mean (SE) | 95%CI | Mean (SE) | 95%CI | * t | p | |
Total kcal/OBE | 1184 (145.5) | 891–1476 | 1023 (170.5) | 680–1365 | 994 (100.1) | 793–1195 | 0.6 1.1 0.1 | 0.53 0.27 0.89 |
HPF kcal/OBE | 882 (150.1) | 581–1184 | 688 (175.6) | 336–1041 | 790 (91.4) | 606–973 | 0.7 0.5 −0.5 | 0.45 0.60 0.63 |
% kcal from HPF/OBE | 69 | 57–82 | 62 | 49–75 | 76 | 69–83 | 0.5 −0.9 −1.7 | 0.59 0.38 0.10 |
% of kcal from HPF from carbohydrates/ OBE | 58 | 46–69 | 54 | 43–65 | 54 | 50–58 | 0.7 0.9 −0.2 | 0.49 0.37 0.85 |
% of kcal from HPF from lipids/ OBE | 29 | 20–38 | 34 | 21–46 | 32 | 28–35 | −0.2 −0.5 −0.02 | 0.81 0.64 0.98 |
SBE | BED (n = 9) | BN (n = 10) | RBE (n = 27) | BED vs. BN BED vs. RBE BN vs. RBE | ||||
---|---|---|---|---|---|---|---|---|
Mean (SE) | 95%CI | Mean (SE) | 95%CI | Mean (SE) | 95%CI | * t | p | |
Total kcal/SBE | 710 (127.3) | 399–1022 | 954 (217.5) | 422–1487 | 639 (57.9) | 497–780 | −1.1 0.3 1.4 | 0.30 0.78 0.20 |
HPF kcal/SBE | 466 (34.4) | 382–550 | 461 (89.9) | 241–681 | 439 (54.9) | 305–574 | 0.4 0.7 0.1 | 0.71 0.51 0.93 |
% of kcal from HPF/SBE | 76 | 54–98 | 50 | 29–72 | 72 | 55–90 | 2.0 0.4 −1.7 | 0.08 0.72 0.15 |
% of kcal from HPF from carbohydrates/ SBE | 46 | 36–56 | 72 | 56–88 | 54 | 42–67 | −3.1 −1.3 1.5 | 0.03 0.23 0.20 |
% of kcal from HPF from lipids/SBE | 36 | 30–43 | 20 | 7–32 | 29 | 21–37 | 2.9 2.1 −1.2 | 0.03 0.08 0.27 |
Variable | No ED (n = 2048) | BED (n = 29) | BN (n = 16) | RBE (n = 81) | No ED vs. BED No ED vs. BN No ED vs. RBE | BED vs. BN BED vs. RBE BN vs. RBE | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean (SE) | 95%CI | Mean (SE) | 95%CI | Mean (SE) | 95%CI | Mean (SE) | 95%CI | t * | p | t * | p | |
Total kcal | 1783 (47.1) | 1690–1876 | 2153 (365.2) | 1430–2876 | 2219 (700.1) | 832–3607 | 1822 (163.1) | 1499–2145 | 0.7 −0.7 −0.2 | 0.49 0.50 0.85 | 0.8 0.7 −0.6 | 0.43 0.46 0.54 |
HPF kcal | 1102 (42.6) | 1018–1187 | 1480 (319.2) | 848–2112 | 1492 (578.8) | 346–2638 | 1229 (144.6) | 493–1516 | 1.4 −1.1 1.2 | 0.15 0.27 0.23 | 1.4 0.7 −1.3 | 0.16 0.48 0.18 |
% of kcal from HPF | 56 | 55–57 | 63 | 57–69 | 48 | 36–59 | 63 | 58–68 | 2.9 −1.4 2.9 | 0.01 0.17 0.01 | 2.1 0.3 −2.1 | 0.03 0.79 0.04 |
% of kcal from HPF from carbohydrates | 56 | 55–57 | 57 | 52–62 | 48 | 38–58 | 58 | 53–61 | 0.6 −1.3 1.2 | 0.55 0.19 0.23 | 1.4 −0.3 0.6 | 0.16 0.75 0.14 |
% of kcal from HPF from lipids | 28 | 27–29 | 30 | 26–33 | 35 | 27–43 | 27 | 25–29 | 1.0 1.9 −0.2 | 0.35 0.06 0.87 | −1.0 1.0 1.8 | 0.31 0.33 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moraes, C.E.F.d.; Hay, P.; Sichieri, R.; Fazzino, T.L.; Mourilhe, C.; Appolinario, J.C. Hyperpalatable Foods Consumption in a Representative Sample of the General Population in Brazil: Differences of Binge and Non-Binge Eating Meals. Behav. Sci. 2023, 13, 149. https://doi.org/10.3390/bs13020149
Moraes CEFd, Hay P, Sichieri R, Fazzino TL, Mourilhe C, Appolinario JC. Hyperpalatable Foods Consumption in a Representative Sample of the General Population in Brazil: Differences of Binge and Non-Binge Eating Meals. Behavioral Sciences. 2023; 13(2):149. https://doi.org/10.3390/bs13020149
Chicago/Turabian StyleMoraes, Carlos Eduardo Ferreira de, Phillipa Hay, Rosely Sichieri, Tera L. Fazzino, Carla Mourilhe, and José Carlos Appolinario. 2023. "Hyperpalatable Foods Consumption in a Representative Sample of the General Population in Brazil: Differences of Binge and Non-Binge Eating Meals" Behavioral Sciences 13, no. 2: 149. https://doi.org/10.3390/bs13020149
APA StyleMoraes, C. E. F. d., Hay, P., Sichieri, R., Fazzino, T. L., Mourilhe, C., & Appolinario, J. C. (2023). Hyperpalatable Foods Consumption in a Representative Sample of the General Population in Brazil: Differences of Binge and Non-Binge Eating Meals. Behavioral Sciences, 13(2), 149. https://doi.org/10.3390/bs13020149