Self-Report versus Neuropsychological Tests for Examining Executive Functions in Youth Soccer Athletes—A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Neuropsychological EF Tasks
2.3. Self-Reporting of EFs
2.4. Procedures
2.5. Statistical Analysis
3. Results
3.1. Descriptive Results
3.2. Correlational Analysis
3.3. Sensitivity Analysis
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed]
- Voss, M.W.; Kramer, A.F.; Basak, C.; Prakash, R.S.; Roberts, B. Are expert athletes’ expert’ in the cognitive laboratory? A meta-analytic review of cognition and sport expertise. Appl. Cognit. Psychol. 2010, 24, 812–826. [Google Scholar] [CrossRef]
- Scharfen, H.-E.; Memmert, D. Measurement of cognitive functions in experts and elite athletes: A meta-analytic review. Appl. Cogn. Psychol. 2019, 33, 843–860. [Google Scholar] [CrossRef]
- Heilmann, F.; Weinberg, H.; Wollny, R. The Impact of Practicing Open- vs. Closed-Skill Sports on Executive Functions—A Meta-Analytic and Systematic Review with a Focus on Characteristics of Sports. Brain Sciences 2022, 12, 1071. [Google Scholar] [CrossRef]
- Verburgh, L.; Königs, M.; Scherder, E.J.A.; Oosterlaan, J. Physical exercise and executive functions in preadolescent children, adolescents and young adults: A meta-analysis. Br. J. Sports Med. 2014, 48, 973–979. [Google Scholar] [CrossRef]
- Beavan, A.; Spielmann, J.; Ehmann, P.; Mayer, J. The Development of Executive Functions in High-Level Female Soccer Players. Percept. Mot. Ski. 2022, 129, 1036–1052. [Google Scholar] [CrossRef]
- Sakamoto, S.; Takeuchi, H.; Ihara, N.; Ligao, B.; Suzukawa, K. Possible requirement of executive functions for high performance in soccer. PLoS ONE 2018, 13, e0201871. [Google Scholar] [CrossRef]
- Vestberg, T.; Gustafson, R.; Maurex, L.; Ingvar, M.; Petrovic, P. Executive functions predict the success of top-soccer players. PLoS ONE 2012, 7, e34731. [Google Scholar] [CrossRef]
- Montuori, S.; D’Aurizio, G.; Foti, F.; Liparoti, M.; Lardone, A.; Pesoli, M.; Sorrentino, G.; Mandolesi, L.; Curcio, G.; Sorrentino, P. Executive functioning profiles in elite volleyball athletes: Preliminary results by a sport-specific task switching protocol. Hum. Mov. Sci. 2019, 63, 73–81. [Google Scholar] [CrossRef]
- Kilger, M.; Blomberg, H. Governing Talent Selection through the Brain: Constructing Cognitive Executive Function as a Way of Predicting Sporting Success. Sport Ethics Philos. 2020, 14, 206–225. [Google Scholar] [CrossRef]
- Beavan, A.; Spielmann, J.; Mayer, J.; Skorski, S.; Meyer, T.; Fransen, J. The rise and fall of executive functions in high-level football players. Psychol. Sport Exerc. 2020, 49, 101677. [Google Scholar] [CrossRef]
- Beavan, A.F.; Spielmann, J.; Mayer, J.; Skorski, S.; Meyer, T.; Fransen, J. Age-Related Differences in Executive Functions within High-Level Youth Soccer Players. Braz. J. Mot. Beh. 2019, 13, 64–75. [Google Scholar] [CrossRef]
- Anderson, P. Assessment and development of executive function (EF) during childhood. Child Neuropsychol. 2002, 8, 71–82. [Google Scholar] [CrossRef]
- Sakalidis, K.E.; Burns, J.; van Biesen, D.; Dreegia, W.; Hettinga, F.J. The impact of cognitive functions and intellectual impairment on pacing and performance in sports. Psychol. Sport Exerc. 2021, 52, 101840. [Google Scholar] [CrossRef]
- Rosso, E.G.F. Brief Report: Coaching Adolescents with Autism Spectrum Disorder in a School-Based Multi-Sport Program. J. Autism Dev. Disord. 2016, 46, 2526–2531. [Google Scholar] [CrossRef]
- Roth, R.M.; Isquith, P.K.; Gioia, G.A. Assessment of executive functioning using the Behavior Rating Inventory of Executive Function (BRIEF). In Handbook of Executive Functioning; Springer: Berlin/Heidelberg, Germany, 2014; pp. 301–331. [Google Scholar]
- Alosco, M.L.; Kasimis, A.B.; Stamm, J.M.; Chua, A.S.; Baugh, C.M.; Daneshvar, D.H.; Robbins, C.A.; Mariani, M.; Hayden, J.; Conneely, S.; et al. Age of first exposure to American football and long-term neuropsychiatric and cognitive outcomes. Transl. Psychiatry 2017, 7, e1236. [Google Scholar] [CrossRef]
- Drechsler, R.; Steinhausen, H.-C. Verhaltensinventar zur Beurteilung Exekutiver Funktionen BRIEF. Deutschsprachige Adaption des Behavior Rating Inventory of Executive Function; Hogrefe Verlag: Bern, Switzerland, 2013. [Google Scholar]
- Buchanan, T. Self-report measures of executive function problems correlate with personality, not performance-based executive function measures, in non-clinical samples. Psychol. Assess. 2016, 28, 372–385. [Google Scholar] [CrossRef]
- Buchanan, T.; Heffernan, T.M.; Parrott, A.C.; Ling, J.; Rodgers, J.; Scholey, A.B. A short self-report measure of problems with executive function suitable for administration via the Internet. Behav. Res. Methods 2010, 42, 709–714. [Google Scholar] [CrossRef]
- Bryant, A.M.; Kerr, Z.Y.; Walton, S.R.; Barr, W.B.; Guskiewicz, K.M.; McCrea, M.A.; Brett, B.L. Investigating the association between subjective and objective performance-based cognitive function among former collegiate football players. Clin. Neuropsychol. 2022, 1–22. [Google Scholar] [CrossRef]
- Eriksen, B.A.; Eriksen, C.W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 1974, 16, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Verbruggen, F.; Logan, G.D. Response inhibition in the stop-signal paradigm. Trends Cogn. Sci. 2008, 12, 418–424. [Google Scholar] [CrossRef]
- Kirchner, W.K. Age differences in short-term retention of rapidly changing information. J. Exp. Psychol. 1958, 55, 352. [Google Scholar] [CrossRef]
- Rogers, R.D.; Monsell, S. Costs of a predictible switch between simple cognitive tasks. J. Exp. Psychol. Gen. 1995, 124, 207–231. [Google Scholar] [CrossRef]
- Heilmann, F.; Memmert, D.; Weinberg, H.; Lautenbach, F. The relationship between executive functions and sports experience, relative age effect, as well as physical maturity in youth soccer players of different ages. Int. J. Sport Exerc. Psychol. 2022, 1–19. [Google Scholar] [CrossRef]
- Gioia, G.A.; Isquith, P.K.; Guy, S.C.; Kenworthy, L. Behavior rating inventory of executive function. Child Neuropsychol. A J. Norm. Abnorm. Dev. Child. Adolesc. 2000, 6, 235–238. [Google Scholar]
- Dancey, C.P.; Reidy, J. Statistics without Maths for Psychology; Pearson Education: London, UK, 2007. [Google Scholar]
- Nyongesa, M.K.; Ssewanyana, D.; Mutua, A.M.; Chongwo, E.; Scerif, G.; Newton, C.R.J.C.; Abubakar, A. Assessing Executive Function in Adolescence: A Scoping Review of Existing Measures and Their Psychometric Robustness. Front. Psychol. 2019, 10, 311. [Google Scholar] [CrossRef] [Green Version]
Task | Parameter | Mean | SD | Range | |
---|---|---|---|---|---|
Min | Max | ||||
Cued Go/NoGo task | error rate (%) | 0.02 | 0.06 | 0.00 | 0.50 |
mean RT (ms) | 315.16 | 31.89 | 269.88 | 420.40 | |
mean RT horizontal cue (ms) | 312.11 | 30.96 | 262.46 | 412.00 | |
mean RT vertical cue (ms) | 327.43 | 40.54 | 222.28 | 458.30 | |
Flanker task | % of correct answers | 0.97 | 0.03 | 0.78 | 1.00 |
mean RT (ms) | 446.80 | 62.93 | 326.94 | 629.38 | |
mean RT congruent (ms) | 436.83 | 62.71 | 323.63 | 614.13 | |
mean RT incongruent (ms) | 468.42 | 70.10 | 333.29 | 742.90 | |
3-back task | mean RT (ms) | 764.36 | 276.20 | 360.11 | 1673.30 |
accuracy (%) | 14.13 | 5.87 | 0.00 | 26.08 | |
Number-letter task | % correct answers switch trials (ms) | 0.86 | 0.11 | 0.53 | 1.00 |
% correct answers non-switch trials | 0.93 | 0.09 | 0.50 | 1.00 | |
accuracy (%) | −0.07 | 0.09 | −0.35 | 0.15 | |
mean RT switch trials (ms) | 1518.37 | 426.17 | 783.17 | 2627.29 | |
mean RT non-switch trials (ms) | 1014.91 | 297.23 | 555.00 | 2068.52 | |
mean RT switch costs (ms) | 503.46 | 296.55 | −200.16 | 1300.98 |
Inhibit | Shift | Emotional Control | Monitor | Working Memory | Plan | Organize | Initiate | Total Score | |
---|---|---|---|---|---|---|---|---|---|
mean | 19.34 | 15.72 | 14.26 | 7.31 | 18.01 | 20.68 | 10.44 | 15.16 | 120.93 |
SD | 3.16 | 2.94 | 2.67 | 1.71 | 3.69 | 3.75 | 2.66 | 3.03 | 17.00 |
min | 14.00 | 10.00 | 10.00 | 5.00 | 12.00 | 13.00 | 7.00 | 10.00 | 82.00 |
max | 31.00 | 22.00 | 23.00 | 12.00 | 28.00 | 28.00 | 18.00 | 22.00 | 170.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heilmann, F. Self-Report versus Neuropsychological Tests for Examining Executive Functions in Youth Soccer Athletes—A Cross-Sectional Study. Behav. Sci. 2022, 12, 346. https://doi.org/10.3390/bs12090346
Heilmann F. Self-Report versus Neuropsychological Tests for Examining Executive Functions in Youth Soccer Athletes—A Cross-Sectional Study. Behavioral Sciences. 2022; 12(9):346. https://doi.org/10.3390/bs12090346
Chicago/Turabian StyleHeilmann, Florian. 2022. "Self-Report versus Neuropsychological Tests for Examining Executive Functions in Youth Soccer Athletes—A Cross-Sectional Study" Behavioral Sciences 12, no. 9: 346. https://doi.org/10.3390/bs12090346
APA StyleHeilmann, F. (2022). Self-Report versus Neuropsychological Tests for Examining Executive Functions in Youth Soccer Athletes—A Cross-Sectional Study. Behavioral Sciences, 12(9), 346. https://doi.org/10.3390/bs12090346