Predicting Scores on the Mini-Mental State Examination (MMSE) from Spontaneous Speech
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Materials and Procedure
2.3. Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Filiou, R.-P.; Bier, N.; Slegers, A.; Houzé, B.; Belchior, P.; Brambati, S.M. Connected Speech Assessment in the Early Detection of Alzheimer’s Disease and Mild Cognitive Impairment: A Scoping Review. Aphasiology 2020, 34, 723–755. [Google Scholar] [CrossRef]
- Mueller, K.D.; Hermann, B.; Mecollari, J.; Turkstra, L.S. Connected Speech and Language in Mild Cognitive Impairment and Alzheimer’s Disease: A Review of Picture Description Tasks. J. Clin. Exp. Neuropsychol. 2018, 40, 917–939. [Google Scholar] [CrossRef] [PubMed]
- Orimaye, S.O.; Wong, J.S.-M.; Wong, C.P. Correction: Deep Language Space Neural Network for Classifying Mild Cognitive Impairment and Alzheimer-Type Dementia. PLoS ONE 2019, 14, e0214103. [Google Scholar] [CrossRef]
- Beltrami, D.; Gagliardi, G.; Rossini Favretti, R.; Ghidoni, E.; Tamburini, F.; Calzà, L. Speech Analysis by Natural Language Processing Techniques: A Possible Tool for Very Early Detection of Cognitive Decline? Front. Aging Neurosci. 2018, 10, 369. [Google Scholar] [CrossRef]
- McCullough, K.C.; Bayles, K.A.; Bouldin, E.D. Language Performance of Individuals at Risk for Mild Cognitive Impairment. J. Speech Lang. Hear. Res. 2019, 62, 706–722. [Google Scholar] [CrossRef]
- Grande, X.; Berron, D.; Maass, A.; Bainbridge, W.A.; Düzel, E. Content-Specific Vulnerability of Recent Episodic Memories in Alzheimer’s Disease. Neuropsychologia 2021, 160, 107976. [Google Scholar] [CrossRef]
- Malcorra, B.L.C.; Mota, N.B.; Weissheimer, J.; Schilling, L.P.; Wilson, M.A.; Hübner, L.C. Low Speech Connectedness in Alzheimer’s Disease Is Associated with Poorer Semantic Memory Performance. J. Alzheimers Dis. 2021, 82, 905–912. [Google Scholar] [CrossRef]
- Seixas-Lima, B.; Murphy, K.; Troyer, A.K.; Levine, B.; Graham, N.L.; Leonard, C.; Rochon, E. Episodic Memory Decline Is Associated with Deficits in Coherence of Discourse. Cogn. Neuropsychol. 2020, 37, 511–522. [Google Scholar] [CrossRef]
- Aramaki, E.; Shikata, S.; Miyabe, M.; Kinoshita, A. Vocabulary Size in Speech May Be an Early Indicator of Cognitive Impairment. PLoS ONE 2016, 11, e0155195. [Google Scholar] [CrossRef]
- Alhanai, T.; Au, R.; Glass, J. Spoken Language Biomarkers for Detecting Cognitive Impairment. In Proceedings of the 2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), Okinawa, Japan, 16–20 December 2017; pp. 409–416. [Google Scholar]
- Kintsch, W.; Keenan, J. Reading Rate and Retention as a Function of the Number of Propositions in the Base Structure of Sentences. Cognit. Psychol. 1973, 5, 257–274. [Google Scholar] [CrossRef]
- Graham, N.L.; Patterson, K.; Hodges, J.R. When More Yields Less: Speaking and Writing Deficits in Nonfluent Progressive Aphasia. Neurocase 2004, 10, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Domínguez, L.; Ratté, S.; Sierra-Martínez, G.; Roche-Bergua, A. Computer-based Evaluation of Alzheimer’s Disease and Mild Cognitive Impairment Patients during a Picture Description Task. Alzheimers Dement. Diagn. Assess. Dis. Monit. 2018, 10, 260–268. [Google Scholar] [CrossRef]
- Allen, P.A.; Smith, A.F.; Lien, M.-C.; Kaut, K.P.; Canfield, A. A Multistream Model of Visual Word Recognition. Atten. Percept. Psychophys. 2009, 71, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Bush, A.L.H.; Allen, P.A.; Kaut, K.P.; Ogrocki, P.K. Influence of Mild Cognitive Impairment on Visual Word Recognition. Aging Neuropsychol. Cogn. 2007, 14, 329–352. [Google Scholar] [CrossRef]
- Belleville, S.; Fouquet, C.; Hudon, C.; Zomahoun, H.T.V.; Croteau, J.; Consortium for the Early Identification of Alzheimer’s Disease-Quebec. Neuropsychological Measures That Predict Progression from Mild Cognitive Impairment to Alzheimer’s Type Dementia in Older Adults: A Systematic Review and Meta-Analysis. Neuropsychol. Rev. 2017, 27, 328–353. [Google Scholar] [CrossRef] [PubMed]
- Seixas-Lima, B.; Murphy, K.; Troyer, A.K.; Levine, B.; Graham, N.; Leonard, C.; Tang-Wai, D.; Black, S.; Rochon, E. Language and Memory: An Investigation of the Relationship between Autobiographical Memory Recall and Narrative Production of Semantic and Episodic Information. Aphasiology 2022, 36, 1–20. [Google Scholar] [CrossRef]
- Murphy, K.J.; Troyer, A.K.; Levine, B.; Moscovitch, M. Episodic, but Not Semantic, Autobiographical Memory Is Reduced in Amnestic Mild Cognitive Impairment. Neuropsychologia 2008, 46, 3116–3123. [Google Scholar] [CrossRef]
- Masdeu, J.C.; Zubieta, J.L.; Arbizu, J. Neuroimaging as a Marker of the Onset and Progression of Alzheimer’s Disease. J. Neurol. Sci. 2005, 236, 55–64. [Google Scholar] [CrossRef]
- Moret-Tatay, C.; Radawski, H.M.; Guariglia, C. Health Professionals’ Experience Using an Azure Voice-Bot to Examine Cognitive Impairment (WAY2AGE). Healthcare 2022, 10, 783. [Google Scholar] [CrossRef]
- Moret-Tatay, C.; Iborra-Marmolejo, I.; Jorques-Infante, M.J.; Esteve-Rodrigo, J.V.; Schwanke, C.H.A.; Irigaray, T.Q. Can Virtual Assistants Perform Cognitive Assessment in Older Adults? A Review. Medicina 2021, 57, 1310. [Google Scholar] [CrossRef]
- Folstein, M.; Folstein, S.; McHugh, P. “Mini-Mental State.” A Practical Method for Grading the Cognitive State of Patients for the Clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Lobo, A.; Saz, P.; Marcos, G.; Día, J.L.; de la Cámara, C.; Ventura, T.; Morales Asín, F.; Fernando Pascual, L.; Montañés, J.A.; Aznar, S. Revalidation and standardization of the cognition mini-exam (first Spanish version of the Mini-Mental Status Examination) in the general geriatric population. Med. Clin. (Barc.) 1999, 112, 767–774. [Google Scholar]
- Pi, J.; Olivé, J.M.; Esteban, M. Mini Mental State Examination: Association of the score obtained with the age and degree of literacy in an aged population. Med. Clin. (Barc.) 1994, 103, 641–644. [Google Scholar]
- Graesser, A.C.; McNamara, D.S.; Louwerse, M.M.; Cai, Z. Coh-Metrix: Analysis of Text on Cohesion and Language. Behav. Res. Methods Instrum. Comput. 2004, 36, 193–202. [Google Scholar] [CrossRef]
- Krull, V.; Choi, S.; Kirk, K.I.; Prusick, L.; French, B. Lexical Effects on Spoken-Word Recognition in Children with Normal Hearing. Ear Hear. 2010, 31, 102–114. [Google Scholar] [CrossRef]
- Wisler, A.A.; Fletcher, A.; McAuliffe, M.J. Predicting Scores on the Montreal Cognitive Assessment from a Spontaneous Speech Sample. J. Acoust. Soc. Am. 2018, 144, 1968. [Google Scholar] [CrossRef]
- Taler, V.; Phillips, N.A. Language Performance in Alzheimer’s Disease and Mild Cognitive Impairment: A Comparative Review. J. Clin. Exp. Neuropsychol. 2008, 30, 501–556. [Google Scholar] [CrossRef]
- D’Iorio, A.; Santangelo, G. Apathy and Depression in Amnestic and Non-Amnestic Mild Cognitive Impairment. J. Clin. Exp. Neuropsychol. 2022, 44, 103–108. [Google Scholar] [CrossRef]
- Huckans, M.; Hutson, L.; Twamley, E.; Jak, A.; Kaye, J.; Storzbach, D. Efficacy of Cognitive Rehabilitation Therapies for Mild Cognitive Impairment (MCI) in Older Adults: Working Toward a Theoretical Model and Evidence-Based Interventions. Neuropsychol. Rev. 2013, 23, 63–80. [Google Scholar] [CrossRef]
Group | Mean | SD | p | |
---|---|---|---|---|
Density | Control | 0.515 | 0.086 | <0.05 |
MCI | 0.400 | 0.069 | ||
Length | Control | 162.55 | 114.20 | 0.501 |
MCI | 124.38 | 74.13 | ||
Freq | Control | 1.369 | 0.389 | 0.298 |
MCI | 1.491 | 0.366 | ||
Time | Control | 2.700 | 1.657 | 0.353 |
MCI | 2.077 | 0.954 | ||
Place | Control | 2.050 | 1.276 | 0.265 |
MCI | 1.615 | 1.502 | ||
Action | Control | 4.850 | 3.328 | 0.372 |
MCI | 3.462 | 2.258 |
Variable | Age | MMSE | Length | Density | Freq | Time | Place | Action |
---|---|---|---|---|---|---|---|---|
Age | — | |||||||
MMSE | −0.344 * | — | ||||||
Length | −0.018 | 0.222 | — | |||||
Density | −0.295 | 0.488 ** | −0.306 | — | ||||
Freq | −0.132 | −0.103 | 0.313 | −0.061 | — | |||
Time | 0.127 | 0.243 | 0.773 *** | −0.083 | 0.254 | — | ||
Place | −0.028 | 0.211 | 0.683 *** | −0.068 | 0.373 * | 0.666 *** | — | |
Action | −0.091 | 0.227 | 0.779 *** | −0.125 | 0.276 | 0.598 *** | 0.407 * | — |
Model | B | SE | β | t | p | |
---|---|---|---|---|---|---|
1 | (Intercept) | 24.981 | 8.223 | 3.038 | 0.005 | |
Age | −0.120 | 0.077 | −0.252 | −1.549 | 0.134 | |
Density | 21.006 | 7.423 | 0.443 | 2.830 | 0.009 | |
Freq | −3.070 | 1.962 | −0.253 | −1.565 | 0.130 | |
Time | 0.604 | 0.752 | 0.188 | 0.803 | 0.429 | |
Place | 0.463 | 0.700 | 0.137 | 0.661 | 0.514 | |
Action | 0.249 | 0.295 | 0.161 | 0.842 | 0.408 | |
2 | (Intercept) | 20.953 | 7.700 | 2.721 | 0.011 | |
Age | −0.097 | 0.069 | −0.204 | −1.392 | 0.175 | |
Density | 26.288 | 7.232 | 0.555 | 3.635 | 0.001 | |
Freq | −2.927 | 1.778 | −0.241 | −1.646 | 0.111 | |
Length | 0.021 | 0.007 | 0.463 | 3.034 | 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bueno-Cayo, A.M.; del Rio Carmona, M.; Castell-Enguix, R.; Iborra-Marmolejo, I.; Murphy, M.; Irigaray, T.Q.; Cervera, J.F.; Moret-Tatay, C. Predicting Scores on the Mini-Mental State Examination (MMSE) from Spontaneous Speech. Behav. Sci. 2022, 12, 339. https://doi.org/10.3390/bs12090339
Bueno-Cayo AM, del Rio Carmona M, Castell-Enguix R, Iborra-Marmolejo I, Murphy M, Irigaray TQ, Cervera JF, Moret-Tatay C. Predicting Scores on the Mini-Mental State Examination (MMSE) from Spontaneous Speech. Behavioral Sciences. 2022; 12(9):339. https://doi.org/10.3390/bs12090339
Chicago/Turabian StyleBueno-Cayo, Alma M., Minerva del Rio Carmona, Rosa Castell-Enguix, Isabel Iborra-Marmolejo, Mike Murphy, Tatiana Quarti Irigaray, José Francisco Cervera, and Carmen Moret-Tatay. 2022. "Predicting Scores on the Mini-Mental State Examination (MMSE) from Spontaneous Speech" Behavioral Sciences 12, no. 9: 339. https://doi.org/10.3390/bs12090339
APA StyleBueno-Cayo, A. M., del Rio Carmona, M., Castell-Enguix, R., Iborra-Marmolejo, I., Murphy, M., Irigaray, T. Q., Cervera, J. F., & Moret-Tatay, C. (2022). Predicting Scores on the Mini-Mental State Examination (MMSE) from Spontaneous Speech. Behavioral Sciences, 12(9), 339. https://doi.org/10.3390/bs12090339