Analyzing the Housing Consumer Preferences via Analytic Hierarchy Process (AHP) in Dubai, United Arab Emirates
Abstract
:1. Introduction
2. Materials and Methods
Research Concepts Framework
3. Results
3.1. The Characteristics of Survey Participants
3.2. Determining the Priorities and Weights of Each Sector of Housing Determinants
3.2.1. Top Elements Sector
3.2.2. Middle Elements Sector
3.2.3. Bottom Elements Sector
3.3. Comparative AHP Analysis of Gender Preference
3.4. Comparative AHP Analysis of Age Group Preference
3.5. Comparative AHP Analysis of Monthly Income Preference
3.6. Comparative AHP Analysis of Ownership Preference
3.7. Comparative AHP Analysis of Housing Type Preference
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jung, C.; Awad, J. The Improvement of Indoor Air Quality in Residential Buildings in Dubai, UAE. Buildings 2021, 11, 250. [Google Scholar] [CrossRef]
- Jung, C.; Awad, J.; Sami Abdelaziz Mahmoud, N.; Salameh, M. An analysis of indoor environment evaluation for The Springs development in Dubai, UAE. Open House Int. 2021, 46, 651–667. [Google Scholar] [CrossRef]
- Alawadi, K.; Khanal, A.; Almulla, A. Land, urban form, and politics: A study on Dubai’s housing landscape and rental affordability. Cities 2018, 81, 115–130. [Google Scholar] [CrossRef]
- Ibrahim, M.; El-Zaart, A.; Adams, C. Smart sustainable cities roadmap: Readiness for transformation towards urban sustainability. Sustain. Cities Soc. 2018, 37, 530–540. [Google Scholar] [CrossRef]
- Jung, C. Evaluating the Indoor Air Quality after Renovation at the Greens in Dubai, United Arab Emirates. Buildings 2021, 11, 353. [Google Scholar]
- Pillai, R.; Al-Malkawi, H.-A.N.; Bhatti, M.I. Assessing Institutional Dynamics of Governance Compliance in Emerging Markets: The GCC Real Estate Sector. J. Risk Financ. Manag. 2021, 14, 501. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, P.; Yoon, B.; Shojafar, M.; Cho, G.; Ra, I. Convergence of blockchain and artificial intelligence in IoT network for the sustainable smart city. Sustain. Cities Soc. 2020, 63, 102364. [Google Scholar] [CrossRef]
- Khaleej Times. Investors Very Keen on Dubai Real Estate. 2021. Available online: https://www.khaleejtimes.com/business/real-estate/investors-very-keen-on-dubai-real-estate (accessed on 14 April 2021).
- DLD. 5,762 Real Estate Sales Transactions Worth AED 16.2 Billion in September. 2021. Available online: https://dubailand.gov.ae/en/news-media/dld-5-762-real-estate-sales-transactions-worth-aed-16-2-billion-in-september-2021/#/ (accessed on 5 May 2021).
- The Nationals. Sheikh Mohammed Allocates Dh65 Billion to Emirati Housing Programme in Dubai. 2021. Available online: https://www.thenationalnews.com/uae/government/2021/09/22/sheikh-mohammed-allocates-dh65-billion-to-emirati-housing-programme/ (accessed on 12 May 2021).
- KAIZEN. What Makes Dubai Real-Estate Sector Attractive for Global Investors? 2021. Available online: https://www.kaizenams.com/what-makes-dubai-real-estate-sector-attractive-for-global-investors/ (accessed on 4 June 2021).
- Global Property Guide. The UAE’S Economy Improving. 2021. Available online: https://www.globalpropertyguide.com/Middle-East/United-Arab-Emirates (accessed on 6 June 2021).
- Luxury Abode. Why Is Dubai Luxury Real Estate So Attractive for Property Investors Globally? 2021. Available online: https://www.luxuryabode.com/blog/why-is-dubai-luxury-real-estate-so-attractive-for-property-investors-globally/artid943 (accessed on 14 June 2021).
- Gulf News. Safest Countries 2021: UAE Ranked 2nd in the World. 2021. Available online: https://gulfnews.com/uae/safest-countries-2021-uae-ranked-2nd-in-the-world-1.1625647036584 (accessed on 28 June 2021).
- Property Finder. Retirement Visa in Dubai Ultimate Guide. 2021. Available online: https://www.propertyfinder.ae/blog/retirement-visa-in-dubai/ (accessed on 8 July 2021).
- Martín-Carbonell, M.; Riquelme-Marín, A.; Fernández-Daza, M.; Ortigosa-Quiles, J.; Méndez-Mateo, I. Exploring the Psychometric Properties of the Questionnaire on Family Members Adapting to an Older Adult’s Admission to a Nursing Home (CAFIAR-15) in a Colombian Sample. Behav. Sci. 2021, 12, 4. [Google Scholar] [CrossRef]
- Serrano-Gemes, G.; Serrano-del-Rosal, R.; Rich-Ruiz, M. Experiences in the Decision-Making Regarding the Place of Care of the Elderly: A Systematic Review. Behav. Sci. 2021, 11, 14. [Google Scholar] [CrossRef]
- Trees, A.R.; Ohs, J.E.; Murray, M.C. Family communication about end-of-life decisions and the enactment of the decision-maker role. Behav. Sci. 2017, 7, 36. [Google Scholar] [CrossRef]
- Lau, S.; Hiemisch, A. Functional freedom: A psychological model of freedom in decision-making. Behav. Sci. 2017, 7, 41. [Google Scholar] [CrossRef] [Green Version]
- Falade-Obalade, T.A.; Dubey, S. Analysis of the Real Estate Market in Dubai-A Macro Economic Perspective. Int. J. Econ. Manag. 2014, 3, 160–166. [Google Scholar]
- Elessawy, F. The boom: Population and urban growth of Dubai City. Horizons Hum. Soc. Sci 2017, 2, 26–41. [Google Scholar] [CrossRef]
- Lakhani, A.; Zeeman, H.; Wright, C.J.; Watling, D.P.; Smith, D.; Islam, R. Stakeholder priorities for inclusive accessible housing: A systematic review and multicriteria decision analysis. J. Multi-Criteria Decis. Anal. 2020, 27, 5–19. [Google Scholar] [CrossRef]
- Javed, M.M.; Khan, M.M.S.; Aslam, H. Islamic House Financing in Pakistan: A Demand Analysis. Islamic Eco. Fin. Bank. Rev 2015, 2, 1–15. [Google Scholar] [CrossRef]
- Saadi, M.R.; Ahmad, S.Z.; Hussain, M. Prioritization of citizens’ preferences for using mobile government services: The analytic hierarchy process (AHP) approach. Transform. Gov. People Process Policy 2017, 11, 476–503. [Google Scholar] [CrossRef]
- Alawadi, K.; Benkraouda, O. The debate over neighborhood density in Dubai: Between theory and practicality. J. Plan Educ. Res. 2019, 39, 18–34. [Google Scholar] [CrossRef]
- Karjalainen, M. Results of large surveys of residents and developers of multistory timber apartment buildings in Finland. In Proceedings of the International Conference Expo on Infrastructure and Construction, Dubai, United Arab Emirates, 19 April 2018. [Google Scholar]
- Son, S.H.; You, S.M.; Lee, K.S.; Choi, Y.K. A Study on Reconstruction and Remodeling’s Selection Factors of Old Apartment Houses Using AHP. Korean J. Constr. Eng. Manag. 2015, 16, 12–21. [Google Scholar] [CrossRef]
- Chang, K.L.; Liao, S.K.; Tseng, T.W.; Liao, C.Y. An ANP based TOPSIS approach for Taiwanese service apartment location selection. Asia Pac. Manag. Rev. 2015, 20, 49–55. [Google Scholar] [CrossRef]
- Sweis, G.; Imam, R.M.; Kassab, G.M.; Sweis, R. Customer satisfaction in apartment buildings: The case of Jordan. Life Sci. 2013, 10, 237–245. [Google Scholar]
- Kyu-in, L.; Dong-woo, Y. Comparative study for satisfaction level of green apartment residents. Build. Environ. 2011, 46, 1765–1773. [Google Scholar] [CrossRef]
- Zadkarim, S.; Emari, H. Determinants of satisfaction in apartment industry: Offering a model. Int. J. Civ. Eng. 2011, 1, 15–24. [Google Scholar]
- Rahman, M.S.; Hussain, B.; Uddin, A.M.; Islam, N. Exploring residents’ satisfaction of facilities provided by private apartment companies. Asia Pac. Manag. Rev. 2015, 20, 130–140. [Google Scholar] [CrossRef]
- Shareef, S.; Altan, H. Sustainability at an Urban Level: A Case Study of a Neighborhood in Dubai, UAE. Sustainability 2021, 13, 4355. [Google Scholar] [CrossRef]
- Giuffrida, N.; Le Pira, M.; Inturri, G.; Ignaccolo, M.; Calabrò, G.; Cuius, B.; D’Angelo, R.; Pluchino, A. On-demand flexible transit in fast-growing cities: The case of Dubai. Sustainability 2020, 12, 4455. [Google Scholar] [CrossRef]
- Jung, C.; Awad, J.; Chohan, A. The planning of smart elderly housing in Dubai with IoT technologies. Open House Int. 2021, 46, 668–681. [Google Scholar] [CrossRef]
- Al-Ali, A.; Maghelal, P.; Alawadi, K. Assessing neighborhood satisfaction and social capital in a multi-cultural setting of an Abu Dhabi neighborhood. Sustainability 2020, 12, 3200. [Google Scholar] [CrossRef]
- Mushtaha, E.; Alsyouf, I.; Al Labadi, L.; Hamad, R.; Khatib, N.; Al Mutawa, M. Application of AHP and a mathematical index to estimate livability in tourist districts: The case of Al Qasba in Sharjah. Front. Archit. Res. 2020, 9, 872–889. [Google Scholar] [CrossRef]
- Park, S.; Kwon, N.; Ahn, Y. Forecasting repair schedule for building components based on case-based reasoning and fuzzy-AHP. Sustainability 2019, 11, 7181. [Google Scholar] [CrossRef]
- Eryürük, Ş.; Varolgüneş, F.K.; Varolgüneş, S. Assessment of stakeholder satisfaction as additive to improve building design quality: AHP-based approach. J. Hous. Built. Environ. 2021, 37, 505–528. [Google Scholar] [CrossRef]
- Kim, K.H.; Han, M.K. A Study on the User Satisfaction of Type of Parking Lot in Apartment Complex by Structural Equation Modeling. J. Korean Soc. Civ. Eng. 2012, 32, 197–203. [Google Scholar]
- Choi, Y.J. Analyzing weights of certification assessment criteria on the g-seed system using the ahp method-Focused on certification standards for apartment buildings. KIEAE J. 2013, 13, 113–120. [Google Scholar]
- Cho, S.H.; Lee, T.K.; Kim, J.T. Residents’ satisfaction of indoor environmental quality in their old apartment homes. Indoor Built. Environ. 2011, 20, 16–25. [Google Scholar]
- Obeidat, M.S.; Qasim, T.; Khanfar, A. Implementing the AHP multi-criteria decision approach in buying an apartment in Jordan. J. Prop. Res. 2018, 35, 53–71. [Google Scholar] [CrossRef]
- Lepkova, N.; Butkiene, E.; Bełej, M. Study of customer satisfaction with living conditions in new apartment buildings. Real Estate Manag. Valuat. 2016, 24, 52–70. [Google Scholar] [CrossRef]
- Alawadi, K. Rethinking Dubai’s urbanism: Generating sustainable form-based urban design strategies for an integrated neighborhood. Cities 2017, 60, 353–366. [Google Scholar] [CrossRef]
- Masarrat, G.; Jha, S. Assessing the impact of recession on consumer’s behaviour: An empirical study in Dubai. Res. World 2015, 6, 119. [Google Scholar]
- Alnakhi, W.K.; Mamdouh, H.; Hussain, H.Y.; Ibrahim, G.M.; Ahmad, A.S.; Ali, R.; Abdulle, A. The Socio-Demographic Characteristics Associated with Non-Communicable Diseases among the Adult Population of Dubai: Results from Dubai Household Survey 2019. Healthcare 2021, 9, 1139. [Google Scholar] [CrossRef]
- Garg, R.; Rahman, Z.; Qureshi, M.N.; Kumar, I. Identifying and ranking critical success factors of customer experience in banks: An analytic hierarchy process (AHP) approach. J. Model. Manag. 2012, 7, 201–220. [Google Scholar] [CrossRef]
- Al Qubaisi, A.; Badri, M.; Mohaidat, J.; Al Dhaheri, H.; Yang, G.; Al Rashedi, A.; Greer, K. An analytic hierarchy process for school quality and inspection: Model development and application. Int. J. Educ. Manage. 2016, 30, 437–459. [Google Scholar] [CrossRef]
- Darko, A.; Chan, A.P.C.; Ameyaw, E.E.; Owusu, E.K.; Pärn, E.; Edwards, D.J. Review of application of analytic hierarchy process (AHP) in construction. Int. J. Constr. Manag. 2019, 19, 436–452. [Google Scholar] [CrossRef]
- Mosadeghi, R.; Warnken, J.; Tomlinson, R.; Mirfenderesk, H. Comparison of Fuzzy-AHP and AHP in a spatial multi-criteria decision-making model for urban land-use planning. Comput. Environ. Urban Syst. Comput. Environ. Urban 2015, 49, 54–65. [Google Scholar] [CrossRef]
- Ameen, R.F.M.; Mourshed, M. Urban sustainability assessment framework development: The ranking and weighting of sustainability indicators using analytic hierarchy process. Sustain. Cities Soc. 2019, 44, 356–366. [Google Scholar] [CrossRef]
- Myeong, S.; Jung, Y.; Lee, E. A study on determinant factors in smart city development: An analytic hierarchy process analysis. Sustainability 2018, 10, 2606. [Google Scholar] [CrossRef]
- Saha, P.; Paul, B. Identification of potential strategic sites for city planning based on water quality through GIS-AHP-integrated model. Environ. Sci. Pollut. Res. 2021, 28, 23073–23086. [Google Scholar] [CrossRef]
- Saaty, T.L.; De Paola, P. Rethinking design and urban planning for the cities of the future. Buildings 2017, 7, 76. [Google Scholar] [CrossRef]
- Ansah, R.H.; Sorooshian, S.; Bin Mustafa, S. Analytic hierarchy process decision making algorithm. Glob. J. Pure Appl. Math 2015, 11, 2403–2410. [Google Scholar]
- Saaty, T.L.; Shang, J.S. An innovative orders-of-magnitude approach to AHP-based mutli-criteria decision making: Prioritizing divergent intangible humane acts. Eur. J. Oper. Res. 2011, 214, 703–715. [Google Scholar] [CrossRef]
- Benítez, J.; Delgado-Galván, X.; Izquierdo, J.; Pérez-García, R. Improving consistency in AHP decision-making processes. Appl. Math. Comput. 2012, 219, 2432–2441. [Google Scholar] [CrossRef]
- Saaty, T.L. The modern science of multicriteria decision making and its practical applications: The AHP/ANP approach. Oper. Res. 2013, 61, 1101–1118. [Google Scholar] [CrossRef]
- Shin, S.H.; Choi, B.J. A Study on the Improvement of the Safety and Safe Living Standards of Apartment Houses through AHP Analysis. J. Soc. Disaster Inf. 2021, 17, 289–305. [Google Scholar]
- Yuan, J.; Li, W.; Xia, B.; Chen, Y.; Skibniewski, M.J. Operation performance measurement of public rental housing delivery by ppps with fuzzy-ahp comprehensive evaluation. Int. J. Strateg. Prop. Manag. 2019, 23, 328–353. [Google Scholar] [CrossRef]
- Lin, C.; Kou, G.; Ergu, D. An improved statistical approach for consistency test in AHP. Ann. Oper. Res. 2013, 211, 289–299. [Google Scholar] [CrossRef]
- Franek, J.; Kresta, A. Judgment scales and consistency measure in AHP. Procedia Econ. Financ. 2014, 12, 164–173. [Google Scholar] [CrossRef]
- Goby, V.P.; Nickerson, C. Conceptualization of CSR among Muslim consumers in Dubai: Evolving from philanthropy to ethical and economic orientations. J. Bus. Ethics 2016, 136, 167–179. [Google Scholar] [CrossRef]
- Aydin, O.; Hayat, E.A.; Hepsen, A. Count Data Modeling About Relationship Between Dubai Housing Sales Transactions and Financial Indicators. In New Trends in Finance and Accounting; Springer: Cham, Switzerland, 2017; pp. 83–91. [Google Scholar]
- Alawadi, K. Place attachment as a motivation for community preservation: The demise of an old, bustling, Dubai community. Urban Stud. 2017, 54, 2973–2997. [Google Scholar] [CrossRef]
- Dahan, A.A. The Future of The Real Estate Industry of Dubai: The Demand for Real Estates. J. Glob. Econ. 2018, 6, 4. [Google Scholar] [CrossRef]
- Aetna. What’s It Like Living and Working in Dubai as an American? 2021. Available online: https://www.aetnainternational.com/en/individuals/destination-guides/expat-guide-to-dubai/living-working-dubai-american.html#:~:text=What%20is%20the%20average%20salary,as%20cities%20like%20New%20York (accessed on 24 July 2021).
- Elsheshtawy, Y. Where the sidewalk ends: Informal street corner encounters in Dubai. Cities 2013, 31, 382–393. [Google Scholar] [CrossRef]
- Mosteanu, N.R. Intelligent Foreign Direct Investments to boost economic development–UAE case study. Bus. Manag. Rev. 2019, 10, 1–9. [Google Scholar]
- Han, S.; Ko, Y.; Kim, J.; Hong, T. Housing market trend forecasts through statistical comparisons based on big data analytic methods. Eng. Manag. J. 2018, 34, 04017054. [Google Scholar] [CrossRef]
- Agrawal, S.K.; Pallathucheril, V.; Sangapala, P. Affordable housing for Emiratis in the United Arab Emirates: The case study of Ras Al Khaimah. Hous. Policy Debate 2020, 30, 900–925. [Google Scholar] [CrossRef]
- Smith, B. Scared by, of, in, and for Dubai. Soc. Cult. Geogr. 2010, 11, 263–283. [Google Scholar] [CrossRef]
- Hromada, E.; Cermakova, K. Financial Unavailability of Housing in the Czech Republic and Recommendations for its Solution. Int. J. Econ. Sci. 2021, 10, 47–58. [Google Scholar] [CrossRef]
- Čermáková, K.; Hromada, E. Change in the Affordability of Owner-Occupied Housing in the Context of Rising Energy Prices. Energies 2022, 15, 1281. [Google Scholar] [CrossRef]
- Vij, M.; Upadhya, A.; Vij, A.; Kumar, M. Exploring residents’ perceptions of mega event-Dubai Expo 2020: A pre-event perspective. Sustainability 2019, 11, 1322. [Google Scholar] [CrossRef] [Green Version]
Researchers | Year | Contents |
---|---|---|
Obeidat et al. | 2018 |
|
Sweis et al. | 2013 |
|
Kyuin and Dongwoo | 2011 |
|
Zadkarim and Emari | 2011 |
|
Lepkova et al. | 2016 |
|
Cho et al. | 2011 |
|
Choi | 2013 |
|
Son et al. | 2015 |
|
Chang et al. | 2015 |
|
Rahman et al. | 2015 |
|
Park et al. | 2019 |
|
Eryürük et al. | 2021 |
|
Kim and Han | 2012 |
|
Elements | Obeidat et al. (2018) | Sweis et al. (2013) | Kyuin and Dongwoo (2011) | Zadkarim and Emari (2011) | Lepkova et al. (2016) | Cho et al. (2011) | Choi (2013) | Son et al. (2015) | Chang et al. (2015) | Rahman et al. (2015) | Park et al. (2019) | Eryürük et al. (2021) | Kim and Han (2012) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Residential Environment | ● | ● | ● | ● | ● | ||||||||
The Age of the Building | ● | ● | ● | ||||||||||
Building Exterior | ● | ● | ● | ● | |||||||||
Maintenance | ● | ● | ● | ||||||||||
Neighborhood Environment | ● | ● | ● | ● | |||||||||
Local Amenities | ● | ● | ● | ● | ● | ● | ● | ||||||
Natural Environment | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |
Convenience of Transportation | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||
Educational Environment | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||
Reputation | ● | ● | ● | ● | ● | ||||||||
Neighborhood Relations | ● | ● | ● | ● | ● | ● | ● | ● | |||||
Mixing between Social Classes | ● | ● | ● | ||||||||||
Safety | ● | ● | ● | ● | ● | ● | ● | ● | |||||
Maintenance Fee | ● | ● | ● | ● | ● | ||||||||
Investment Value | ● | ● | ● | ● | ● | ● | ● | ● | |||||
Housing Price and Rent | ● | ● | ● | ||||||||||
Cost of Living | ● | ● | |||||||||||
Education Level | ● | ● | ● | ● | |||||||||
Annual Income | ● | ● | ● | ||||||||||
Type of Family | ● | ● | ● | ● | |||||||||
Type of Ownership | ● | ● | ● | ● |
Middle Elements | Bottom Elements | Descriptions |
---|---|---|
Housing Sector | Residential Environment | 1. Orientation 2. View 3. Ventilation 4. Comfort of Residence |
The Age of the Building | 1. Year of Construction 2. Building Safety | |
Building Exterior | 1. Design 2. Housing Type | |
Maintenance | 1. Defect Repair, Cleaning/Garbage Disposal | |
Neighborhood Sector | Neighborhood Environment | 1. Kindergarten 2. Playground 3. Parking Convenience 4. Landscape |
Local Amenities | 1. Hospital 2. Hypermarket 3. Shopping Mall 4. Public Facilities | |
Natural Environment | 1. Greenery 2. Park 3. Beach 4. Desert | |
Convenience of Transportation | 1. Distance from Work 2. Use of Public Transportation | |
Educational Environment | 1. School District 2. Academy 3. Existence of Entertainment Facilities | |
Social and Psychological Sector | Reputation | 1. Developer Brand 2. Distance from Unpleasant Facility |
Neighborhood Relations | 1. Affinity with Neighbors 2. Degree in Socializing | |
Mixing between Social Classes | 1. Income Level of Local Residents 2. Occupation 3. Social Status | |
Safety | 1. Security 2. Safety from Disasters | |
Economic Sector | Maintenance Fee | 1. Maintenance Fee |
Investment Value | 2. Return on Investment (ROI) | |
Housing Price and Rent | 3. Stability of House Price & Rent | |
Cost of Living | 4. Regional Prices |
Middle Elements | CR (Consistency Ratio) |
---|---|
Housing Sector | 0.0027 |
Neighborhood Sector | 0.0013 |
Social and Psychological Sector | 0.0051 |
Economic Sector | 0.0022 |
Category | Subcategory | Number (Percentage) |
---|---|---|
Gender | Male | 220 (64.3) |
Female | 122 (35.6) | |
Age Group | The 30s | 106 (31.0) |
The 40s | 122 (35.7) | |
The 50s | 114 (33.3) | |
Housing Type | Apartment (Townhouse) | 224 (65.5) |
Villa | 118 (34.5) | |
Ownership | Own | 198 (57.9) |
Rent | 144 (42.1) | |
Monthly Income | 10,000–15,000 AED | 98 (28.7) |
15,000–20,000 AED | 155 (45.3) | |
Above 20,000 AED | 89 (26.0) | |
Living Area | Downtown/Marina/Umm Suqeim | 128 (37.4) |
Other Area | 214 (62.6) |
Top Elements | Weight (A) | Middle Elements | Weight (B) | Bottom Elements | Weight (C) | Total Weight (A × B × C) | Rank |
---|---|---|---|---|---|---|---|
Physical Factors | 0.543 | Housing Sector | 0.418 | Residential Environment (RE) | 0.373 | 0.0849 | 4 |
The Age of the Building (AB) | 0.203 | 0.0466 | 12 | ||||
Building Exterior (BE) | 0.152 | 0.0342 | 14 | ||||
Maintenance (MT) | 0.272 | 0.0625 | 7 | ||||
Neighborhood Sector | 0.582 | Neighborhood Environment (NE) | 0.152 | 0.0468 | 11 | ||
Local Amenities (LA) | 0.174 | 0.0530 | 8 | ||||
Natural Environment (NA) | 0.166 | 0.0510 | 9 | ||||
The convenience of Transportation (CT) | 0.279 | 0.0854 | 3 | ||||
Educational Environment (EE) | 0.229 | 0.0698 | 6 | ||||
Non-Physical Factors | 0.457 | Social and Psychological Sector | 0.348 | Reputation (RP) | 0.191 | 0.0277 | 15 |
Neighborhood Relations (NR) | 0.157 | 0.0225 | 16 | ||||
Mixing between Social Classes (MC) | 0.143 | 0.0206 | 17 | ||||
Safety (SF) | 0.508 | 0.0730 | 5 | ||||
Economic Sector | 0.652 | Maintenance Fee (MF) | 0.156 | 0.0422 | 13 | ||
Investment Value (IV) | 0.323 | 0.0866 | 2 | ||||
Housing Price and Rent (HP) | 0.343 | 0.0918 | 1 | ||||
Cost of Living (CL) | 0.179 | 0.0487 | 10 |
Rank | Male (64.3%) | Female (35.6%) | Total (100%) | |||
---|---|---|---|---|---|---|
Bottom Elements | Weight | Bottom Elements | Weight | Bottom Elements | Weight | |
1 | HP | 0.113 | CT | 0.104 | HP | 0.093 |
2 | IV | 0.110 | SF | 0.093 | IV | 0.086 |
3 | RE | 0.087 | HP | 0.087 | CT | 0.085 |
4 | CT | 0.077 | RE | 0.082 | RE | 0.084 |
5 | SF | 0.076 | IV | 0.076 | SF | 0.074 |
6 | EE | 0.075 | MT | 0.065 | EE | 0.070 |
7 | MT | 0.060 | EE | 0.060 | MT | 0.063 |
8 | CL | 0.059 | LA | 0.059 | LA | 0.052 |
9 | NA | 0.056 | AB | 0.057 | NA | 0.051 |
10 | LA | 0.048 | NE | 0.053 | CL | 0.049 |
11 | MF | 0.047 | MF | 0.048 | NE | 0.048 |
12 | NE | 0.043 | CL | 0.046 | AB | 0.046 |
13 | AB | 0.042 | NA | 0.044 | MF | 0.042 |
14 | BE | 0.032 | BE | 0.037 | BE | 0.035 |
15 | RP | 0.030 | RP | 0.035 | RP | 0.027 |
16 | NR | 0.025 | MC | 0.029 | NR | 0.022 |
17 | MC | 0.022 | NR | 0.023 | MC | 0.021 |
Rank | 30s (31.0%) | 40s (35.7%) | 50s (33.3%) | Total (100%) | ||||
---|---|---|---|---|---|---|---|---|
Bottom Elements | Weight | Bottom Elements | Weight | Bottom Elements | Weight | Bottom Elements | Weight | |
1 | HP | 0.102 | RE | 0.096 | IV | 0.124 | HP | 0.093 |
2 | CT | 0.101 | IV | 0.092 | HP | 0.112 | IV | 0.086 |
3 | IV | 0.089 | HP | 0.091 | RE | 0.089 | CT | 0.085 |
4 | SF | 0.086 | EE | 0.081 | SF | 0.076 | RE | 0.084 |
5 | RE | 0.081 | SF | 0.079 | CT | 0.073 | SF | 0.074 |
6 | MT | 0.069 | MT | 0.072 | NA | 0.068 | EE | 0.069 |
7 | EE | 0.067 | CT | 0.065 | CL | 0.065 | MT | 0.063 |
8 | CL | 0.059 | NA | 0.057 | EE | 0.059 | LA | 0.053 |
9 | LA | 0.055 | AB | 0.055 | LA | 0.057 | NA | 0.051 |
10 | AB | 0.053 | NE | 0.053 | MF | 0.049 | CL | 0.049 |
11 | MF | 0.045 | MF | 0.049 | NE | 0.044 | NE | 0.048 |
12 | NE | 0.044 | LA | 0.046 | MT | 0.039 | AB | 0.046 |
13 | NA | 0.042 | RP | 0.038 | NR | 0.033 | MF | 0.042 |
14 | BE | 0.038 | CL | 0.037 | RP | 0.030 | BE | 0.035 |
15 | RP | 0.027 | BE | 0.035 | AB | 0.028 | RP | 0.027 |
16 | MC | 0.022 | NR | 0.029 | BE | 0.027 | NR | 0.023 |
17 | NR | 0.021 | MC | 0.026 | MC | 0.024 | MC | 0.021 |
Rank | 10,000–15,000 AED (28.7%) | 15,000–20,000 AED (45.3%) | Above 20,000 AED (26.0%) | Total (100%) | ||||
---|---|---|---|---|---|---|---|---|
Bottom Elements | Weight | Bottom Elements | Weight | Bottom Elements | Weight | Bottom Elements | Weight | |
1 | RE | 0.112 | HP | 0.107 | IV | 0.126 | HP | 0.093 |
2 | CT | 0.087 | IV | 0.102 | CT | 0.101 | IV | 0.086 |
3 | HP | 0.086 | CT | 0.085 | HP | 0.100 | CT | 0.085 |
4 | MT | 0.085 | RE | 0.082 | RE | 0.083 | RE | 0.084 |
5 | SF | 0.084 | SF | 0.081 | EE | 0.080 | SF | 0.074 |
6 | IV | 0.068 | EE | 0.071 | SF | 0.075 | EE | 0.070 |
7 | AB | 0.061 | MT | 0.064 | LA | 0.066 | MT | 0.063 |
8 | CL | 0.056 | CL | 0.054 | NA | 0.060 | LA | 0.053 |
9 | EE | 0.053 | LA | 0.053 | NE | 0.045 | NA | 0.052 |
10 | LA | 0.051 | NA | 0.052 | MF | 0.041 | CL | 0.048 |
11 | NA | 0.048 | NE | 0.048 | AB | 0.040 | NE | 0.047 |
12 | BE | 0.046 | MF | 0.047 | MT | 0.039 | AB | 0.046 |
13 | MF | 0.045 | AB | 0.044 | CL | 0.038 | MF | 0.043 |
14 | NE | 0.044 | BE | 0.034 | RP | 0.034 | BE | 0.034 |
15 | RP | 0.028 | RP | 0.031 | BE | 0.028 | RP | 0.029 |
16 | NR | 0.025 | NR | 0.025 | MC | 0.024 | NR | 0.022 |
17 | MC | 0.021 | MC | 0.021 | NR | 0.019 | MC | 0.020 |
Rank | Own (57.9%) | Rent (42.1%) | Total (100%) | |||
---|---|---|---|---|---|---|
Bottom Elements | Weight | Bottom Elements | Weight | Bottom Elements | Weight | |
1 | IV | 0.098 | HP | 0.139 | HP | 0.093 |
2 | RE | 0.095 | IV | 0.095 | IV | 0.086 |
3 | CT | 0.087 | SF | 0.094 | CT | 0.085 |
4 | HP | 0.083 | EE | 0.085 | RE | 0.084 |
5 | SF | 0.075 | CT | 0.081 | SF | 0.074 |
6 | MT | 0.065 | RE | 0.069 | EE | 0.069 |
7 | EE | 0.060 | MT | 0.056 | MT | 0.063 |
8 | AB | 0.058 | CL | 0.055 | LA | 0.053 |
9 | CL | 0.054 | LA | 0.054 | NA | 0.051 |
10 | NA | 0.052 | NE | 0.049 | CL | 0.049 |
11 | LA | 0.051 | NA | 0.047 | NE | 0.048 |
12 | MF | 0.048 | MF | 0.045 | AB | 0.046 |
13 | NE | 0.046 | AB | 0.033 | MF | 0.042 |
14 | BE | 0.045 | RP | 0.029 | BE | 0.035 |
15 | RP | 0.033 | BE | 0.025 | RP | 0.027 |
16 | NR | 0.026 | NR | 0.022 | NR | 0.022 |
17 | MC | 0.024 | MC | 0.021 | MC | 0.021 |
Rank | Apartment/Townhouse (65.5%) | Villa (34.5%) | Total (100%) | |||
---|---|---|---|---|---|---|
Bottom Elements | Weight | Bottom Elements | Weight | Bottom Elements | Weight | |
1 | HP | 0.101 | RE | 0.108 | HP | 0.093 |
2 | IV | 0.097 | HP | 0.101 | IV | 0.086 |
3 | CT | 0.084 | IV | 0.092 | CT | 0.085 |
4 | EE | 0.082 | CT | 0.085 | RE | 0.084 |
5 | SF | 0.081 | SF | 0.084 | SF | 0.074 |
6 | RE | 0.073 | MT | 0.077 | EE | 0.070 |
7 | LA | 0.058 | AB | 0.058 | MT | 0.061 |
8 | MT | 0.054 | CL | 0.054 | LA | 0.053 |
9 | CL | 0.053 | EE | 0.052 | NA | 0.051 |
10 | NA | 0.051 | NA | 0.048 | CL | 0.050 |
11 | MF | 0.049 | LA | 0.045 | NE | 0.047 |
12 | NE | 0.048 | NE | 0.043 | AB | 0.046 |
13 | AB | 0.038 | MF | 0.042 | MF | 0.042 |
14 | RP | 0.034 | BE | 0.039 | BE | 0.035 |
15 | BE | 0.032 | RP | 0.027 | RP | 0.027 |
16 | NR | 0.026 | NR | 0.025 | NR | 0.023 |
17 | MC | 0.024 | MC | 0.022 | MC | 0.020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, C.; Al Qassimi, N.; Abdelaziz Mahmoud, N.S.; Lee, S.Y. Analyzing the Housing Consumer Preferences via Analytic Hierarchy Process (AHP) in Dubai, United Arab Emirates. Behav. Sci. 2022, 12, 327. https://doi.org/10.3390/bs12090327
Jung C, Al Qassimi N, Abdelaziz Mahmoud NS, Lee SY. Analyzing the Housing Consumer Preferences via Analytic Hierarchy Process (AHP) in Dubai, United Arab Emirates. Behavioral Sciences. 2022; 12(9):327. https://doi.org/10.3390/bs12090327
Chicago/Turabian StyleJung, Chuloh, Nahla Al Qassimi, Naglaa Sami Abdelaziz Mahmoud, and Sang Yeal Lee. 2022. "Analyzing the Housing Consumer Preferences via Analytic Hierarchy Process (AHP) in Dubai, United Arab Emirates" Behavioral Sciences 12, no. 9: 327. https://doi.org/10.3390/bs12090327
APA StyleJung, C., Al Qassimi, N., Abdelaziz Mahmoud, N. S., & Lee, S. Y. (2022). Analyzing the Housing Consumer Preferences via Analytic Hierarchy Process (AHP) in Dubai, United Arab Emirates. Behavioral Sciences, 12(9), 327. https://doi.org/10.3390/bs12090327