Relation of Brain Perfusion Patterns to Sudden Unexpected Death Risk Stratification: A Study in Drug Resistant Focal Epilepsy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Single-Photon Emission Tomography (SPECT) Acquisition
2.2. Structural Magnetic Resonance Imaging (MRI) Acquisition
2.3. Cerebral Perfusion Quantification Methodology
Perfusion Index Calculation
2.4. Statistical Analysis
- Determination of the perfusion index for quantifying the change between the interictal and ictal state. Hence, three states were considered for the analysis: interictal, ictal, and change.
- 2.
- Individual analysis to select the structures involved in the most hyperperfused and hypoperfused cluster in each state. A univariate k means algorithm was used with cross-validation.
- 3.
- Selection features by predicting the SUDEP score using the group cluster previously identified.
2.5. Ethical Considerations
3. Results
3.1. Demographical and Clinical Data
3.2. Brain Perfusion Patterns in Each Subject
3.3. Relationship between Perfusion Patterns and Sudep-7 Inventory Using Feature Selection and Variable Screening
4. Discussion
4.1. Main Findings
4.1.1. Hypo and Hyperperfused ROIs in Cortical and Subcortical Structures during the Ictal and Interictal State in DRFE
4.1.2. Invariability in the Perfusion Pattern during Interictal to Ictal as Potential SUDEP Biomarkers
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Peedicail, J.S.; Gaxiola-Valdez, I.; Li, E.; Mosher, V.; Wilson, W.; Perera, T.; Singh, S.; Teskey, G.C.; Federico, P. Postictal brainstem hypoperfusion and risk factors for sudden unexpected death in epilepsy. Neurology 2020, 95, e1694–e1705. [Google Scholar] [CrossRef] [PubMed]
- Katayama, P.L. Cardiorespiratory Dysfunction Induced by Brainstem Spreading Depolarization: A Potential Mechanism for SUDEP. J. Neurosci. 2020, 40, 2387–2389. [Google Scholar] [CrossRef]
- Moseley, B.D.; DeGiorgio, C.M. The SUDEP Risk Inventory: Association with postictal generalized EEG suppression. Epilepsy Res. 2015, 117, 82–84. [Google Scholar] [CrossRef] [PubMed]
- DeGiorgio, C.M.; Miller, P.; Meymandi, S.; Epps, J.; Chin, A.; Gordon, S.; Gornbein, J.; Harper, R.M. RMSSD, a measure of vagus-mediated heart rate variability, is associated with risk factors for SUDEP: The SUDEP-7 Inventory. Epilepsy Res. 2010, 19, 78–81. [Google Scholar] [CrossRef] [Green Version]
- Moseley, B.D.; Britton, J.W.; Nelson, C.; Lee, R.W.; So, E. Periictal cerebral tissue hypoxemia: A potential marker of SUDEP risk. Epilepsia 2012, 53, e208–e211. [Google Scholar] [CrossRef]
- Odom, N.; Bateman, L.M. Sudden unexpected death in epilepsy, periictal physiology, and the SUDEP-7 Inventory. Epilepsia 2018, 59, e157–e160. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.J.; Siddarth, P.; Riley, J.D.; Gurbani, S.G.; Ly, R.; Yee, V.W.; Levitt, J.G.; Toga, A.W.; Caplan, R. Alterations in Spontaneous Brain Activity and Functional Network Reorganization following Surgery in Children with Medically Refractory Epilepsy: A Resting-State Functional Magnetic Resonance Imaging Study. Epilepsia 2013, 54, 2116–2124. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Jiang, Y.; Qin, Y.; Zhou, B.; Lei, D.; Luo, C.; Zhang, H.; Gong, Q.; Zhou, D.; An, D. Dynamic gray matter and intrinsic activity changes after epilepsy surgery. Acta Neurol. Scand. 2021, 143, 261–270. [Google Scholar] [CrossRef]
- Morales Chacón, L.M.; González González, J.; Ríos Castillo, M.; Berrillo Batista, S.; Batista García-Ramo, K.; Santos Santos, A.; Quintanal Cordero, N.; Zaldívar Bermúdez, M.; Garbey Fernández, R.; Estupiñan Díaz, B.; et al. Surgical Outcome in Extratemporal Epilepsies Based on Multimodal Pre-Surgical Evaluation and Sequential Intraoperative Electrocorticography. Behav. Sci. 2021, 11, 30. [Google Scholar] [CrossRef]
- Smit, D.J.A.; Andreassen, O.A.; Boomsma, D.I.; Burwell, S.J.; Chorlian, D.B.; de Geus, E.J.C.; Elvsåshagen, T.; Gordon, R.L.; Harper, J.; Hegerl, U.; et al. Large-scale collaboration in ENIGMA-EEG: A perspective on the meta-analytic approach to link neurological and psychiatric liability genes to electrophysiological brain activity. Brain Behav. 2021, 11, e02188. [Google Scholar] [CrossRef]
- Allen, L.A.; Harper, R.M.; Vos, S.B.; Scott, C.A.; Lacuey, N.; Vilella, L.; Winston, J.S.; Whatley, B.P.; Kumar, R.; Ogren, J.; et al. Peri-ictal hypoxia is related to extent of regional brain volume loss accompanying generalized tonic-clonic seizures. Epilepsia 2020, 61, 1570–1580. [Google Scholar] [CrossRef] [PubMed]
- Carlson, C. Generalized Postictal EEG Background Suppression: A Marker of SUDEP Risk. Clin. Drug Investig. 2018, 38, 845–851. [Google Scholar] [CrossRef]
- Allen, L.A.; Harper, R.M.; Kumar, R.; Guye, M.; Ogren, J.A.; Lhatoo, S.D.; Lemieux, L.; Scott, C.A.; Vos, S.B.; Rani, S.; et al. Dysfunctional Brain Networking among Autonomic Regulatory Structures in Temporal Lobe Epilepsy Patients at High Risk of Sudden Unexpected Death in Epilepsy. Epilepsia 2008, 49, 367–368. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.A.; Harper, R.M.; Lhatoo, S.; Lemieux, L.; Diehl, B. Neuroimaging of Sudden Unexpected Death in Epilepsy (SUDEP): Insights from Structural and Resting-State Functional MRI Studies. J. Neurol. Neurosurg. Psychiatry 2006, 77, 481–484. [Google Scholar] [CrossRef] [Green Version]
- Mueller, S.G.; Bateman, L.M.; Laxer, K.D. Evidence for brainstem network disruption in temporal lobe epilepsy and sudden unexplained death in epilepsy. NeuroImage Clin. 2014, 5, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Mueller, S.G.; Nei, M.; Bateman, L.M.; Knowlton, R.; Laxer, K.D.; Friedman, D.; Devinsky, O.; Goldman, A.M. Brainstem network disruption: A pathway to sudden unexplained death in epilepsy? Hum. Brain Mapp. 2018, 39, 4820–4830. [Google Scholar] [CrossRef] [Green Version]
- Finsterer, J.; Scorza, C.A.; Fiorini, A.C.; Scorza, F.A. Volume loss and altered neuronal composition in the brainstem reticular zone may not cause sudden unexpected death in epilepsy. Neuropathol. Appl. Neurobiol. 2021, 47, 171–172. [Google Scholar] [CrossRef]
- Blumenfeld, H.; Varghese, G.I.; Purcaro, M.J.; Motelow, J.E.; Enev, M.; McNally, K.A.; Levin, A.R.; Hirsch, L.J.; Tikofsky, R.; Zubal, I.G.; et al. Cortical and subcortical networks in human secondarily generalized tonic-clonic seizures. Brain 2009, 132 Pt 4, 999–1012. [Google Scholar] [CrossRef] [Green Version]
- Batista García-Ramó, K.; Sanchez Catasus, C.A.; Morales Chacón, L.; Aguila Ruiz, A.; Sánchez Corneaux, A.; Rojas López, P.; Bosh Bayard, J. A Novel Noninvasive Approach Based on SPECT and EEG for the Location of the Epileptogenic Zone in Pharmacoresistant Non-Lesional Epilepsy. Medicina 2019, 55, 478. [Google Scholar] [CrossRef] [Green Version]
- Devous, M.D., Sr.; Thisted, R.A.; Morgan, G.F.; Leroy, R.F.; Rowe, C.C. SPECT brain imaging in epilepsy: A meta-analysis. J. Nucl. Med. 1998, 39, 285–293. [Google Scholar]
- Morales-Chacon, L.M.; Alfredo Sanchez Catasus, C.; Minou Baez Martin, M.; Rodriguez Rojas, R.; Lorigados Pedre, L.; Estupiñan Diaz, B. Multimodal imaging in nonlesional medically intractable focal epilepsy. Front. Biosci. 2015, 7, 42–57. [Google Scholar] [CrossRef] [PubMed]
- Ogren, J.A.; Tripathi, R.; Macey, P.M.; Kumar, R.; Stern, J.M.; Eliashiv, D.S.; Allen, L.A.; Diehl, B.; Engel, J., Jr.; Rani, M.R.S.; et al. Regional cortical thickness changes accompanying generalized tonic-clonic seizures. Neurology 2017, 89, 633–635. [Google Scholar] [CrossRef] [PubMed]
- Arocha Pérez, J.L.; Morales Chacón, L.M.; Batista García Ramo, K.; Galán García, L. Sequential Semiology of Seizures and Brain Perfusion Patterns in Patients with Drug-Resistant Focal Epilepsies: A Perspective from Neural Networks. Behav. Sci. 2022, 12, 107. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.A.; Vos, S.B.; Kumar, R.; Ogren, J.A.; Harper, R.K.; Winston, G.P.; Balestrini, S.; Wandschneider, B.; Scott, C.A.; Ourselin, S.; et al. Cerebellar, limbic, and midbrain volume alterations in sudden unexpected death in epilepsy. Epilepsia 2019, 60, 718–729. [Google Scholar] [CrossRef] [Green Version]
- Allen, L.A.; Harper, R.M.; Guye, M.; Kumar, R.; Ogren, J.A.; Vos, S.B.; Ourselin, S.; Scott, C.A.; Lhatoo, S.D.; Lemieux, L.; et al. Altered brain connectivity in sudden unexpected death in epilepsy (SUDEP) revealed using resting-state fMRI. Neuroimage Clin. 2019, 24, 102060. [Google Scholar] [CrossRef]
- Mandal, R.; Budde, R.; Lawlor, G.L.; Irazoqui, P. Utilizing multimodal imaging to visualize potential mechanism for sudden death in epilepsy. Epilepsy Behav. Case Rep. 2018, 10, 118–121. [Google Scholar] [CrossRef]
- Morales Chacón, L.M.; Garcia Maeso, I.; Baez Martin, M.M.; Bender Del Busto, J.E.; García Navarro, M.E.; Quintanal Cordero, N.; Estupiñan Díaz, B.; Lorigados Pedre, L.; Valdés Yerena, R.; Gonzalez, J.; et al. Long-Term Electroclinical and Employment Follow up in Temporal Lobe Epilepsy Surgery. A Cuban Comprehensive Epilepsy Surgery Program. Behav. Sci. 2018, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Walczak, T.S.; Leppik, I.E.; D’Amelio, M.; Rarick, J.; So, E.; Ahman, P.; Ruggles, K.; Cascino, G.D.; Annegers, J.F.; Hauser, W.A. Incidence and risk factors in sudden unexpected death in epilepsy: A prospective cohort study. Neurology 2001, 56, 519–525. [Google Scholar] [CrossRef]
- Novak, J.L.; Miller, P.R.; Markovic, D.; Meymandi, S.K.; DeGiorgio, C.M. Risk Assessment for Sudden Death in Epilepsy: The SUDEP-7 Inventory. Brain Connect 2016, 6, 187–200. [Google Scholar] [CrossRef] [Green Version]
- Gantet, P.; Payoux, P.; Celler, A.; Majorel, C.; Gourion, D.; Noll, D.; Esquerré, J.P. Iterative three-dimensional expectation maximization restoration of single photon emission computed tomography images: Application in striatal imaging. Med. Phys. 2006, 33, 52–60. [Google Scholar] [CrossRef]
- Liu, L.; Liu, H.; Xu, S.; Zhang, S.; Tao, Y.; Mok, G.S.P.; Chen, Y. The Impact of Total Variation Regularized Expectation Maximization Reconstruction on (68)Ga-DOTA-TATE PET/CT Images in Patients With Neuroendocrine Tumor. Front. Med. 2022, 9, 845806. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Brady, M.; Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 2001, 20, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M. Fast robust automated brain extraction. Hum. Brain Mapp. 2002, 17, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, M.; Bannister, P.; Brady, M.; Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002, 17, 825–841. [Google Scholar] [CrossRef]
- Thomas, B.A.; Erlandsson, K.; Modat, M.; Thurfjell, L.; Vandenberghe, R.; Ourselin, S.; Hutton, B.F. The importance of appropriate partial volume correction for PET quantification in Alzheimer's disease. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 1104–1119. [Google Scholar] [CrossRef]
- Oishi, K.; Faria, A.; Jiang, H.; Li, X.; Akhter, K.; Zhang, J.; Hsu, J.T.; Miller, M.I.; van Zijl, P.C.; Albert, M.; et al. Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: Application to normal elderly and Alzheimer’s disease participants. Neuroimage 2009, 46, 486–499. [Google Scholar] [CrossRef]
- Xia, M.; Wang, J.; He, Y. BrainNet Viewer: A network visualization tool for human brain connectomics. PLoS ONE 2013, 8, e68910. [Google Scholar] [CrossRef] [Green Version]
- Diniz, P.S.R.; Suykens, J.A.K.; Chellappa, R.; Theodoridis, S. Signal Processing Theory and Machine Learning; DLaDCW Clustering Academic Press Library in Signal Processing; Academic Press: Waltham, MA, USA, 2014; Volume 1, pp. 1115–1149. [Google Scholar]
- Klugah-Brown, B.; Luo, C.; Peng, R.; He, H.; Li, J.; Dong, L.; Yao, D. Altered structural and causal connectivity in frontal lobe epilepsy. BMC Neurol. 2019, 19, 70. [Google Scholar] [CrossRef]
- Wang, X.; Hu, W.; McGonigal, A.; Zhang, C.; Sang, L.; Zhao, B.; Sun, T.; Wang, F.; Zhang, J.G.; Shao, X.; et al. Electroclinical features of insulo-opercular epilepsy: An SEEG and PET study. Ann. Clin. Transl. Neurol. 2019, 6, 1165–1177. [Google Scholar] [CrossRef]
- Hogan, R.E.; Kaiboriboon, K.; Osman, M. Composite SISCOM images in mesial temporal lobe epilepsy: Technique and illustration of regions of hyperperfusion. Nucl. Med. Commun. 2004, 25, 539–545. [Google Scholar] [CrossRef]
- Bernedo Paredes, V.E.; Buchholz, H.G.; Gartenschläger, M.; Breimhorst, M.; Schreckenberger, M.; Werhahn, K.J. Reduced D2/D3 Receptor Binding of Extrastriatal and Striatal Regions in Temporal Lobe Epilepsy. PLoS ONE 2015, 10, e0141098. [Google Scholar] [CrossRef]
- Hogan, R.E.; Kaiboriboon, K.; Bertrand, M.E.; Rao, V.; Acharya, J. Composite SISCOM perfusion patterns in right and left temporal seizures. Arch. Neurol. 2006, 63, 1419–1426. [Google Scholar] [CrossRef] [Green Version]
- McDonald, C.R.; Hagler, D.J.; Ahmadi, M.E., Jr.; Tecoma, E.; Iragui, V.; Dale, A.M.; Halgren, E. Basal ganglia involvement in temporal lobe epilepsy: A functional and morphologic study. Epilepsy Res. 2008, 79, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Öztürk, Z.; Güneş, A.; Karalok, Z.S. Disrupted basal ganglia-thalamocortical loops in focal to bilateral tonic-clonic seizures. Epilepsy Behav. 2020, 104 Pt A, 106860. [Google Scholar] [CrossRef]
- Meurs, A.; Clinckers, R.; Ebinger, G.; Michotte, Y.; Smolders, I. Substantia nigra is an anticonvulsant site of action of topiramate in the focal pilocarpine model of limbic seizures. Epilepsia 2006, 47, 1519–1535. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Y.; Gong, H.; Liang, P.; Zhang, P. The role of the substantia nigra pars reticulata anterior in amygdala-kindled seizures. Brain Res. 2019, 1715, 84–93. [Google Scholar] [CrossRef]
- Chabardès, S.; Minotti, L.; Chassagnon, S.; Piallat, B.; Torres, N.; Seigneuret, E.; Vercueil, L.; Carron, R.; Hirsch, E.; Kahane, P.; et al. Basal ganglia deep-brain stimulation for treatment of drug-resistant epilepsy: Review and current data. Neurochirurgie 2008, 54, 436–440. [Google Scholar] [CrossRef]
- Rektor, I.; Kuba, R.; Brázdil, M.; Chrastina, J. Do the basal ganglia inhibit seizure activity in temporal lobe epilepsy? Epilepsy Behav. 2012, 25, 56–59. [Google Scholar] [CrossRef]
- De Sarro, G.; De Sarro, A.; Meldrum, B.S. Anticonvulsant action of 2-chloroadenosine injected focally into the inferior colliculus and substantia nigra. Eur. J. Pharmacol. 1991, 194, 145–152. [Google Scholar] [CrossRef]
- Englot, D.J. SUDEP: The Worst in Epilepsy and the Hardest to Image. Epilepsy Behav. 2020, 104 Pt A, 106918. [Google Scholar] [CrossRef] [Green Version]
- Patodia, S.; Tachrount, M.; Somani, A.; Scheffer, I.; Yousry, T.; Golay, X.; Sisodiya, S.M.; Thom, M. MRI and pathology correlations in the medulla in sudden unexpected death in epilepsy (SUDEP): A postmortem study. Neuropathol. Appl. Neurobiol. 2021, 47, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Brennan, M.; Scott, S.; Bergin, P. Sudden unexpected death in epilepsy (SUDEP) in New Zealand; a retrospective review. N. Z. Med. J. 2020, 133, 65–71. [Google Scholar] [PubMed]
- Harden, C.; Tomson, T.; Gloss, D.; Buchhalter, J.; Cross, J.H.; Donner, E.; French, J.A.; Gil-Nagel, A.; Hesdorffer, D.C.; Smithson, W.H.; et al. Practice guideline summary: Sudden unexpected death in epilepsy incidence rates and risk factors: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology 2017, 88, 1674–1680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Li, H.; Zhu, L.; Yu, X.; Jin, B.; Chen, C.; Wang, S.; Ding, M.; Zhang, M.; Chen, Z.; et al. Localized shape abnormalities in the thalamus and pallidum are associated with secondarily generalized seizures in mesial temporal lobe epilepsy. Epilepsy Behav. 2017, 70 Pt A, 259–264. [Google Scholar] [CrossRef]
- Whelan, C.D.; Altmann, A.; Botía, J.A.; Jahanshad, N.; Hibar, D.P.; Absil, J.; Alhusaini, S.; Alvim, M.K.M.; Auvinen, P.; Bartolini, E.; et al. Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain 2018, 141, 391–408. [Google Scholar] [CrossRef] [Green Version]
- McGonigal, A.; El Youssef, N.; Bartolomei, F.; Giusiano, B.; Guedj, E. Interictal (18)F-FDG brain PET metabolism in patients with postictal EEG suppression. Epilepsy Behav. 2021, 116, 107742. [Google Scholar] [CrossRef]
- Galovic, M.; van Dooren, V.Q.H.; Postma, T.S.; Vos, S.B.; Caciagli, L.; Borzì, G.; Cueva Rosillo, J.; Vuong, K.A.; de Tisi, J.; Nachev, P.; et al. Progressive Cortical Thinning in Patients With Focal Epilepsy. JAMA Neurol. 2019, 76, 1230–1239. [Google Scholar] [CrossRef]
- Edlow, B.L.; McNab, J.A.; Witzel, T.; Kinney, H.C. The Structural Connectome of the Human Central Homeostatic Network. Epilepsy Res. 2018, 148, 107–114. [Google Scholar] [CrossRef] [Green Version]
Patient | Age (Years) | Age Seizure Onset (Years) | Epilepsy Duration (Years) | Sex | Epilepsy Type/Lateralization Sz Onset | Sz Duration (s) | SUDEP-7 Score | Epilepsy Surgery Type | Histopathological Findings |
---|---|---|---|---|---|---|---|---|---|
1 | 32 | 8.0 | 24 | female | TLE/L | 109 | 3 | L temporal lobectomy | FCD I |
2 | 33 | 0.8 | 32 | female | TLE/L | 62 | 5 | Non operated | Non operated |
3 | 21 | 6 | 15 | male | NLFE/R | 95 | 7 | R midlle frontal gyrus topectomy plus MST | FCD I |
4 | 25 | 9.0 | 16 | female | LFE/R | 73 | 7 | Non operated | Non operated |
5 | 15 | 4.0 | 11 | male | NLFE plus Lennox Gastaut Syndrome/R | 66 | 7 | R frontal resection plus anterior callosotomy plus disconnection | Descriptive |
6 | 15 | 14.0 | 1 | female | NLFE/R | 19 | 4 | R frontal resection plus MST | FCD Ia |
7 | 18 | 8.0 | 10 | male | NLFE/L | 56 | 7 | L parietal topectomy and posterior disconnection | FCD Ia |
8 | 17 | 3.0 | 14 | male | LFE/L | 35 | 7 | anterior callosotomy plus L frontal resection | FCD I |
9 | 28 | 3.0 | 25 | male | NLFE/R | 72 | 4 | Non operated | Non operated |
Patient | INTERICTAL | ICTAL | CHANGE | |||||
---|---|---|---|---|---|---|---|---|
Hypo. Cluster Mean ± SD (N/Nsubc) | Hyper. Cluster Mean ± SD (N/Nsubc) | * Time (s) | Seizure Duration (s) | Hypo. Cluster Mean ± SD (N/Nsubc) | Hyper. Cluster Mean ± SD (N/Nsubc) | Hypo. Cluster Mean ± SD (N/Nsubc) | Hyper. Cluster Mean ± SD (N/Nsubc) | |
1 | 0.51 ± 0.07 (2/1) | 1.21 ± 0.02 (9/4) | 7 | 109 | 0.41 ± 0.14 (3/2) | 1.46 ± 0.11 (5/2) | −0.61 ± 0.09 (13/11) | 0.27 ± 0.11 (11/6) |
2 | 0.64 ± 0.02 (13/10) | 1.24 ± 0.04 (4/0) | 17 | 62 | 0.41 ± 0.14 (5/3) | 1.29 ± 0.07 (14/9) | −0.13 ± 0.05 (19/2) | 0.68 ± 0.14 (7/6) |
3 | 0.45 ± 0.11 (7/7) | 1.21 ± 0.03 (13/3) | 2 | 95 | 0.46 ± 0.11 (7/6) | 1.37 ± 0.00 (16/3) | −0.20 ± 0.07 (11/3) | 0.37 ± 0.12 (7/2) |
4 | 0.42 ± 0.10 (8/8) | 1.16 ± 0.00 (9/1) | 8 | 66 | 0.59 ± 0.15 (7/6) | 1.30 ± 0.06 (4/3) | −0.12 ± 0.04 (9/1) | 0.73 ± 0.44 (10/2) |
5 | 0.57 ± 0.08 (7/7) | 1.21 ± 0.04 (6/2) | 4 | 19 | 0.45 ± 0.08 (4/4) | 1.16 ± 0.02 (9/3) | −0.13 ± 0.03 (20/7) | 0.27 ± 0.07 (4/2) |
6 | 0.48 ± 0.02 (6/4) | 1.33 ± 0.04 (6/3) | 6 | 56 | 0.54 ± 0.10 (8/8) | 1.28 ± 0.10 (14/3) | −0.47 ± 0.10 (2/2) | 0.32 ± 0.49 (4/3) |
7 | 0.60 ± 0.01 (3/3) | 1.24 ± 0.03 (10/5) | 10 | 35 | 0.50 ± 0.14 (7/6) | 1.16 ± 0.04 (12/3) | −0.47 ± 0.10 (11/6) | 0.11 ± 0.03 (14/3) |
8 | 0.54 ± 0.11 (7/7) | 1.16 ± 0.04 (10/1) | 5 | 72 | 0.74 ± 0.03 (5/4) | 1.44 ± 0.09 (4/4) | −0.11 ± 0.04 (24/6) | 1.08 ± 0.21 (6/6) |
9 | 0.62 ± 0.06 (4/3) | 1.77 ± 0.20 (3/0) | 3 | 73 | 0.57 ± 0.02 (4/3) | 1.44 ± 0.02 (11/2) | −0.34 ± 0.11 (3/2) | 0.25 ± 0.09 (15/3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chacon, L.M.; Garcia, L.G.; Bosch-Bayard, J.; García-Ramo, K.B.; Martin, M.M.B.; Alfonso, M.A.; Batista, S.B.; de la Paz Bermudez, T.; González, J.G.; Coroneux, A.S. Relation of Brain Perfusion Patterns to Sudden Unexpected Death Risk Stratification: A Study in Drug Resistant Focal Epilepsy. Behav. Sci. 2022, 12, 207. https://doi.org/10.3390/bs12070207
Chacon LM, Garcia LG, Bosch-Bayard J, García-Ramo KB, Martin MMB, Alfonso MA, Batista SB, de la Paz Bermudez T, González JG, Coroneux AS. Relation of Brain Perfusion Patterns to Sudden Unexpected Death Risk Stratification: A Study in Drug Resistant Focal Epilepsy. Behavioral Sciences. 2022; 12(7):207. https://doi.org/10.3390/bs12070207
Chicago/Turabian StyleChacon, Lilia Morales, Lidice Galan Garcia, Jorge Bosch-Bayard, Karla Batista García-Ramo, Margarita Minou Báez Martin, Maydelin Alfonso Alfonso, Sheyla Berrillo Batista, Tania de la Paz Bermudez, Judith González González, and Abel Sánchez Coroneux. 2022. "Relation of Brain Perfusion Patterns to Sudden Unexpected Death Risk Stratification: A Study in Drug Resistant Focal Epilepsy" Behavioral Sciences 12, no. 7: 207. https://doi.org/10.3390/bs12070207
APA StyleChacon, L. M., Garcia, L. G., Bosch-Bayard, J., García-Ramo, K. B., Martin, M. M. B., Alfonso, M. A., Batista, S. B., de la Paz Bermudez, T., González, J. G., & Coroneux, A. S. (2022). Relation of Brain Perfusion Patterns to Sudden Unexpected Death Risk Stratification: A Study in Drug Resistant Focal Epilepsy. Behavioral Sciences, 12(7), 207. https://doi.org/10.3390/bs12070207