The “Ifs” and “Hows” of the Role of Music on the Implementation of Emotional Regulation Strategies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments
2.2.1. Emotional Regulation during the Session
2.2.2. Individual Differences in Relevant Dimensions
2.2.3. Executive Functioning Tasks
2.3. Procedure
2.4. Data Analysis
2.4.1. Dependent Variables
2.4.2. Control Analyses
2.4.3. Music Effects on ER Moderated by Musical Sophistication and Executive Functioning
2.4.4. Reappraisal Mode with vs. without Music
3. Results
3.1. Control Analyses
3.2. Music Effects on ER
3.3. Music Effects on ER Moderated by Musical Sophistication
3.4. Music Effects on ER Moderated by Executive Functioning
3.5. Reappraisal Mode with vs. without Music
4. Discussion
4.1. Facilitating Effect: Does Music Make it Easier?
4.2. The Moderating Role of Musical Sophistication
4.3. The Moderating Role of Executive Functions
4.4. Reappraisal Mode: Does Music Make It Different?
4.5. Other Limitations and Prospects
4.6. Overview
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. How Participants Distracted Themselves in the D-Wo (Distraction without Music) Condition
Appendix B. Reappraisal Instructions
Appendix C. Effects of ER Type, Music, Strategies and Gold-MSI on Emotional Regulation
Emotional Regulation Intensity | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | −1.33 | −2.38–−0.28 | 0.013 |
ER type [passive] | 2.37 | 1.13–3.60 | <0.001 |
strategy [R] | 2.12 | 0.49–3.74 | 0.011 |
music [Y] | 1.87 | 0.44–3.30 | 0.010 |
GoldMSI | 0.04 | 0.02–0.05 | <0.001 |
ER type [passive] * strategy [R] | −3.46 | −5.37–−1.55 | <0.001 |
ER type [passive] * music [Y] | −2.92 | −4.60–−1.24 | 0.001 |
strategy [R] * music [Y] | −1.91 | −4.10–0.28 | 0.087 |
ER type [passive] * GoldMSI | −0.05 | −0.07–−0.03 | <0.001 |
strategy [R] * GoldMSI | −0.04 | −0.06–−0.02 | 0.001 |
music [Y] * GoldMSI | −0.04 | −0.06–−0.01 | 0.002 |
(ER type [passive] * strategy [R]) * music [Y] | 2.88 | 0.31–5.45 | 0.028 |
(ER type [passive] * strategy [R]) * GoldMSI | 0.06 | 0.03–0.09 | <0.001 |
(ER type [passive] * music [Y]) *GoldMSI | 0.05 | 0.03–0.08 | <0.001 |
(Strategy [R] * music [Y]) * GoldMSI | 0.04 | 0.00–0.07 | 0.030 |
(ER type [passive] * strategy [R] * music [Y]) * GoldMSI | −0.05 | −0.09–−0.01 | 0.009 |
SD (Intercept) | 0.26 | ||
SD (Observations) | 0.63 | ||
Random Effects | |||
σ2 | 0.16 | ||
τ00 ID | 0.07 | ||
ICC | 0.31 | ||
N ID | 48 | ||
Observations | 96 | ||
Marginal R2/Conditional R2 | 0.411/0.593 |
Emotional Regulation Intensity | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 0.44 | 0.09–0.80 | 0.014 |
ER type [passive] | −0.32 | −0.78–0.14 | 0.171 |
Strategy [R] | 0.38 | −0.27–1.03 | 0.249 |
Music [Y] | 0.08 | −0.42–0.58 | 0.752 |
ER type [passive] * Strategy [R] | −0.84 | −1.67–−0.00 | 0.049 |
ER type [passive] * Music [Y] | −0.23 | −0.88–0.41 | 0.479 |
Strategy [R] * Music [Y] | −0.29 | −1.10–0.53 | 0.494 |
ER type [passive] * Strategy [R] * Music [Y] | 0.65 | −0.41–1.70 | 0.229 |
SD (Intercept) | 0.20 | ||
SD (Observations) | 0.66 | ||
Random Effects | |||
σ2 | 0.19 | ||
τ00 ID | 0.04 | ||
ICC | 0.17 | ||
N ID | 24 | ||
Observations | 48 | ||
Marginal R2/Conditional R2 | 0.333/0.446 |
Emotional Regulation Intensity | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.38 | 0.80–1.96 | <0.001 |
ER type [passive] | −1.51 | −2.25–−0.78 | <0.001 |
Strategy [R] | −0.96 | −1.63–−0.28 | 0.005 |
Music [Y] | −0.86 | −1.56–−0.16 | 0.016 |
ER type [passive] *strategy [R] | 1.02 | 0.17–1.86 | 0.019 |
ER type [passive] * Music [Y] | 1.00 | 0.12–1.88 | 0.025 |
strategy [R] * Music [Y] | 0.97 | 0.07–1.87 | 0.035 |
(ER type [passive] * strategy [R]) * Music [Y] | −1.18 | −2.31–−0.06 | 0.040 |
SD (Intercept) | 0.24 | ||
SD (Observations) | 0.68 | ||
Random Effects | |||
σ2 | 0.21 | ||
τ00 ID | 0.06 | ||
ICC | 0.21 | ||
N ID | 24 | ||
Observations | 48 | ||
Marginal R2/Conditional R2 | 0.378/0.509 |
Appendix D. Best Model Engaging EF
Emotional Regulation Intensity | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 2.15 | 0.87–3.43 | 0.001 |
ERtype [passive] | −2.49 | −4.30–−0.68 | 0.007 |
strategy [R] | −0.00 | −1.58–1.58 | 0.999 |
music [Y] | −1.78 | −3.21–−0.36 | 0.014 |
DS | −0.37 | −0.70–−0.05 | 0.024 |
NA.N | −0.00 | −0.00–−0.00 | 0.032 |
ER type [passive] * strategy [R] | 0.41 | −1.82–2.64 | 0.719 |
ER type [passive] * music [Y] | 2.66 | 0.65–4.67 | 0.010 |
strategy [R] * music [Y] | 0.37 | −1.87–2.61 | 0.746 |
ER type [passive] * DS | 0.45 | −0.01–0.91 | 0.055 |
strategy [R] * DS | −0.10 | −0.51–0.31 | 0.641 |
Music [Y] * DS | 0.43 | 0.07–0.80 | 0.020 |
ER type [passive] * NA.N | −0.00 | −0.00–0.00 | 0.640 |
strategy [R] * NA.N | 0.00 | 0.00–0.00 | 0.030 |
Music [Y] * NA.N | 0.00 | −0.00–0.00 | 0.371 |
DS * NA.N | 0.00 | −0.00–0.00 | 0.145 |
(ER type [passive] * strategy [R]) * music [Y] | −2.01 | −5.17–1.16 | 0.214 |
(ER type [passive] * strategy [R]) * DS | −0.04 | −0.62–0.54 | 0.901 |
(ER type [passive] * music [Y]) * DS | −0.67 | −1.19–−0.16 | 0.011 |
(strategy [R] * music [Y]) * DS | 0.02 | −0.57–0.62 | 0.937 |
(ER type [passive] * strategy [R]) * NA.N | 0.00 | −0.00–0.00 | 0.914 |
(ER type [passive] * music [Y]) * NA.N | 0.00 | −0.00–0.00 | 0.367 |
(strategy [R] * music [Y]) * NA.N | 0.00 | −0.00–0.00 | 0.934 |
(ER type [passive] * DS) * NA.N | 0.00 | −0.00–0.00 | 0.764 |
(strategy [R] * DS) * NA.N | −0.00 | −0.00–−0.00 | 0.018 |
(Music [Y] * DS) * NA.N | −0.00 | −0.00–0.00 | 0.801 |
(ER type [passive] * strategy [R] * music [Y]) * DS | 0.43 | −0.41–1.28 | 0.317 |
(ER type [passive] * strategy [R] * music [Y]) * NA.N | −0.00 | −0.00–0.00 | 0.746 |
(ER type [passive] * strategy [R] * DS) * NA.N | 0.00 | −0.00–0.00 | 0.586 |
(ER type [passive] * music [Y] * DS) * NA.N | −0.00 | −0.00–0.00 | 0.323 |
(strategy [R] * music [Y] * DS) * NA.N | 0.00 | −0.00–0.00 | 0.973 |
(ER type [passive] * strategy [R] * music [Y] * DS) * NA.N | 0.00 | −0.00–0.00 | 0.938 |
SD (Intercept) | 0.00 | ||
SD (Observations) | 0.63 | ||
Random Effects | |||
σ2 | 0.16 | ||
τ00 ID | 0.00 | ||
N ID | 48 | ||
Observations | 96 | ||
Marginal R2/Conditional R2 | 0.596/NA |
Emotional Regulation Intensity | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.16 | 0.60–1.72 | <0.001 |
ER type [passive] | −1.59 | −2.38–−0.80 | <0.001 |
Music [Y] | −0.61 | −1.25–0.02 | 0.059 |
Strategy [R] | −0.49 | −1.18–0.21 | 0.171 |
NA.N | −0.00 | −0.00–0.00 | 0.106 |
ER type [passive] * music [Y] | 1.11 | 0.22–2.01 | 0.015 |
ER type [passive] * strategy [R] | 0.84 | −0.14–1.83 | 0.093 |
Music [Y] * strategy [R] | 0.66 | −0.20–1.52 | 0.130 |
Retype [passive] * NA.N | −0.00 | −0.00–0.00 | 0.056 |
Music [Y] * NA.N | 0.00 | −0.00–0.00 | 0.343 |
Strategy [R] * NA.N | 0.00 | −0.00–0.00 | 0.298 |
(ER type [passive] * music [Y]) * strategy [R] | −1.25 | −2.46–−0.03 | 0.044 |
(ER type [passive] * music [Y]) * NA.N | 0.00 | −0.00–0.00 | 0.169 |
(ER type [passive] *strategy [R]) * NA.N | 0.00 | −0.00–0.00 | 0.201 |
(music [Y] * strategy [R]) * NA.N | 0.00 | −0.00–0.00 | 0.620 |
(ER type [passive] *music [Y] * strategy [R]) * NA.N | −0.00 | −0.00–0.00 | 0.402 |
SD (Intercept) | 0.00 | ||
SD (Observations) | 0.68 | ||
Random Effects | |||
σ2 | 0.21 | ||
τ00 ID | 0.00 | ||
N ID | 22 | ||
Observations | 44 | ||
Marginal R2/Conditional R2 | 0.601/NA |
Emotional Regulation Intensity | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 0.57 | 0.32–0.82 | <0.001 |
ER type [passive] | −0.52 | −0.87–−0.17 | 0.004 |
music [Y] | 0.17 | −0.27–0.61 | 0.453 |
Strategy [R] | −0.40 | −0.77–−0.03 | 0.035 |
NA.N | −0.00 | −0.00–−0.00 | 0.008 |
ER type [passive] * music [Y] | −0.44 | −1.07–0.19 | 0.172 |
ER type [passive] * strategy [R] | 0.23 | −0.29–0.75 | 0.392 |
Music [Y] * strategy [R] | 0.23 | −0.35–0.81 | 0.442 |
ER type [passive] * NA.N | 0.00 | −0.00–0.00 | 0.075 |
Music [Y] * NA.N | 0.00 | 0.00–0.00 | 0.001 |
Strategy [R] * NA.N | −0.00 | −0.00–0.00 | 0.611 |
(ER type [passive] * music [Y]) * strategy [R] | 0.03 | −0.79–0.85 | 0.948 |
(ER type [passive] * music [Y]) * NA.N | −0.00 | −0.00–−0.00 | 0.012 |
(ER type [passive] * strategy [R]) * NA.N | 0.00 | −0.00–0.00 | 0.339 |
(music [Y] * strategy [R]) * NA.N | −0.00 | −0.00–−0.00 | 0.028 |
(ER type [passive] * music [Y] * strategy [R]) * NA.N | 0.00 | −0.00–0.00 | 0.307 |
SD (Intercept) | 0.00 | ||
SD (Observations) | 0.56 | ||
Random Effects | |||
σ2 | 0.10 | ||
τ00 ID | 0.00 | ||
N ID | 26 | ||
Observations | 52 | ||
Marginal R2/Conditional R2 | 0.603/NA |
Appendix E
Appendix E.1. Reappraisal with Music (R-W)
Appendix E.2. Reappraisal without Music (R-Wo)
Appendix E.3. Distraction without Music
Appendix E.4. Characteristics of the Music in which the Participants Focused during the D-W Condition (Distraction with Music)
References
- Hoeksma, J.B.; Oosterlaan, J.; Schipper, E.M. Emotion Regulation and the Dynamics of Feelings: A Conceptual and Methodological Framework. Child Dev. 2004, 75, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Sandner, M.; Zeier, P.; Lois, G.; Wessa, M. Cognitive emotion regulation withstands the stress test: An fMRI study on the effect of acute stress on distraction and reappraisal. Neuropsychologia 2021, 157, 107876. [Google Scholar] [CrossRef] [PubMed]
- Bascour-Sandoval, C.; Salgado-Salgado, S.; Gómez-Milán, E.; Fernández-Gómez, J.; Michael, G.A.; Gálvez-García, G. Pain and distraction according to sensory modalities: Current findings and future directions. Pain Pract. 2019, 19, 686–702. [Google Scholar] [CrossRef] [PubMed]
- English, T.; Lee, I.A.; John, O.P.; Gross, J.J. Emotion regulation strategy selection in daily life: The role of social context and goals. Motiv. Emot. 2017, 41, 230–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barlett, C.P.; Anderson, C.A. Reappraising the situation and its impact on aggressive behavior. Pers. Soc. Psychol. Bull. 2011, 37, 1564–1573. [Google Scholar] [CrossRef] [PubMed]
- Van Dillen, L.F.; Koole, S.L. Clearing the mind: A working memory model of distraction from negative mood. Emotion 2007, 7, 715–723. [Google Scholar] [CrossRef]
- Hou, J.; Song, B.; Chen, A.C.N.; Sun, C.; Zhou, J.; Zhu, H.; Beauchaine, T.P. Review on neural correlates of emotion regulation and music: Implications for emotion dysregulation. Front. Psychol. 2017, 8, 501. [Google Scholar] [CrossRef] [Green Version]
- Saarikallio, S.; Baltazar, M.; Västfjäll, D. Adolescents’ musical relaxation: Understanding related affective processing. Nord. J. Music. Ther. 2017, 26, 376–389. [Google Scholar] [CrossRef] [Green Version]
- Groarke, J.M.; Hogan, M.J. Development and Psychometric Evaluation of the adaptive functions of music listening scale. Front. Psychol. 2018, 9, 516. [Google Scholar] [CrossRef]
- Saarikallio, S. Music as emotional self-regulation throughout adulthood. Psychol. Music. 2011, 39, 307–327. [Google Scholar] [CrossRef]
- Miranda, D.; Blais-Rochette, C. Neuroticism and emotion regulation through music listening: A meta-analysis. Music Sci. 2018, 24, 342–355. [Google Scholar] [CrossRef]
- Papinczak, Z.E.; Dingle, G.A.; Stoyanov, S.R.; Hides, L.; Zelenko, O. young people’s uses of music for well-being. J. Youth Stud. 2015, 18, 1119–1134. [Google Scholar] [CrossRef]
- Saarikallio, S.; Erkkilä, J. The role of music in adolescents’ mood regulation. Psychol. Music. 2007, 35, 88–109. [Google Scholar] [CrossRef]
- Baltazar, M.; Västfjäll, D.; Asutay, E.; Koppel, L.; Saarikallio, S. Is it me or the music? Stress reduction and the role of regulation strategies and music. Music Sci. 2019, 2, 2059204319844161. [Google Scholar] [CrossRef]
- Garrido, S. Rumination and Sad Music: A Review of the Literature and a Future Direction. In Proceedings of the The Second International Conference on Music Communication Science, Sydney, Australia, 3–4 December 2009; Available online: http://marcs.uws.edu.au/links/ICoMusic09/index.html (accessed on 30 October 2021).
- Alluri, V.; Mittal, A.; Azhagammal, S.C.; Vuoskoski, J.K.; Saarikallio, S. Maladaptive music listening strategies are modulated by individual traits. Psychol. Music 2022. [Google Scholar] [CrossRef]
- Zhang, J.D.; Schubert, E. A single item measure for identifying musician and nonmusician categories based on measures of Musical Sophistication. Music. Percept. 2019, 36, 457–467. [Google Scholar] [CrossRef]
- Cristofori, I.; Cohen-Zimerman, S.; Grafman, J. Executive Functions. Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 197–219. [Google Scholar] [CrossRef]
- Sperduti, M.; Makowski, D.; Arcangeli, M.; Wantzen, P.; Zalla, T.; Lemaire, S.; Dokic, J.; Pelletier, J.; Piolino, P. The distinctive role of executive functions in implicit emotion regulation. Acta Psychol. 2017, 173, 13–20. [Google Scholar] [CrossRef]
- Holley, S.R.; Ewing, S.T.; Stiver, J.T.; Bloch, L. The relationship between emotion regulation, executive functioning, and aggressive behaviors. J. Interpers. Violence 2017, 32, 1692–1707. [Google Scholar] [CrossRef]
- Greitemeyer, T. Exposure to music with prosocial lyrics reduces aggression: First evidence and test of the underlying mechanism. J. Exp. Soc. Psychol. 2011, 47, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Rentfrow, P.J. The role of music in everyday life: Current directions in the social psychology of music. Soc. Pers. Psychol. Compass 2012, 6, 402–416. [Google Scholar] [CrossRef]
- Decety, J.; Bartal, I.B.-A.; Uzefovsky, F.; Knafo-Noam, A. Empathy as a driver of prosocial behaviour: Highly conserved neurobehavioural mechanisms across species. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambrosini, E.; Arbula, S.; Rossato, C.; Pacella, V.; Vallesi, A. Neuro-cognitive architecture of executive functions: A latent variable analysis. Cortex 2019, 119, 441–456. [Google Scholar] [CrossRef] [PubMed]
- Glisky, E.L.; Alexander, G.E.; Hou, M.; Kawa, K.; Woolverton, C.B.; Zigman, E.K.; Nguyen, L.A.; Haws, K.; Figueredo, A.J.; Ryan, L. Differences between young and older adults in unity and diversity of executive functions. Aging, Neuropsychol. Cogn. 2021, 28, 829–854. [Google Scholar] [CrossRef]
- Karr, J.E.; Areshenkoff, C.N.; Rast, P.; Hofer, S.M.; Iverson, G.L.; Garcia-Barrera, M.A. The unity and diversity of executive functions: A systematic review and re-analysis of latent variable Studies. Psychol. Bull. 2018, 144, 1147–1185. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical Power Analyses Using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, M.; Mendes, A.M.; de Sousa, L. Adaptação para Português do Inventário da Expressão da Ira Estado-Traço (STAXI-2; Spielberger, 1999). Psichologica 2007, 46, 85–104. [Google Scholar]
- Spielberger, C.D.; Sydeman, S.J.; Owen, A.E.; Marsh, B.J. Measuring anxiety and anger with the State-Trait Anxiety Inventory (STAI) and the State-Trait Anger Expression Inventory (STAXI). In The Use of Psychological Testing for Treatment Planning and Outcomes Assessment, 2nd ed.; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 1999; pp. 993–1021. ISBN 978-0-8058-2761-3. [Google Scholar]
- Medland, H.; De France, K.; Hollenstein, T.; Mussoff, D.; Koval, P. Regulating emotion systems in everyday life. Eur. J. Psychol. Assess. 2020, 36, 437–446. [Google Scholar] [CrossRef]
- Coutinho, J.; Ribeiro, E.; Ferreirinha, R.; Dias, P. The portuguese version of the Difficulties in Emotion Regulation Scale and its relationship with psychopathological symptoms. Arch. Clin. Psychiatry 2010, 37, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Lima, C.F.; Correia, A.I.; Müllensiefen, D.; Castro, S.L. Goldsmiths Musical Sophistication Index (Gold-MSI): Portuguese Version and associations with socio-demographic factors, personality and music preferences. Psychol. Music 2020, 48, 376–388. [Google Scholar] [CrossRef] [Green Version]
- Rabi, R.; Vasquez, B.P.; Alain, C.; Hasher, L.; Belleville, S.; Anderson, N.D. Inhibitory control deficits in individuals with amnestic mild cognitive impairment: A meta-analysis. Neuropsychol. Rev. 2020, 30, 97–125. [Google Scholar] [CrossRef]
- Wechsler, D.; Coalson, D.L.; Raiford, S.E. WAIS-IV Technical and Interpretive Manual; Pearson: San Antonio, TX, USA, 2008. [Google Scholar]
- Malooly, A.M.; Genet, J.J.; Siemer, M. Individual differences in reappraisal effectiveness: The role of affective flexibility. Emotion 2013, 13, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Marchewka, A.; Żurawski, Ł.; Jednoróg, K.; Grabowska, A. The Nencki Affective Picture System (NAPS): Introduction t a novel, standardized, wide-range, high-quality, realistic picture database. Behav. Res. Methods 2014, 46, 596–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jallais, C.; Gilet, A.-L. Inducing changes in arousal and valence: Comparison of two mood induction procedures. Behav. Res. Methods 2010, 42, 318–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McRae, K.; Jacobs, S.E.; Ray, R.D.; John, O.P.; Gross, J.J. Individual differences in reappraisal ability: Links to reappraisal frequency, well-being, and cognitive control. J. Res. Pers. 2012, 46, 2–7. [Google Scholar] [CrossRef]
- Picó-Pérez, M.; Radua, J.; Steward, T.; Menchón, J.M.; Soriano-Mas, C. Emotion regulation in mood and anxiety disorders: A meta-analysis of fMRI cognitive reappraisal studies. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2017, 79, 96–104. [Google Scholar] [CrossRef] [Green Version]
- Harley, J.M.; Pekrun, R.; Taxer, J.L.; Gross, J.J. Emotion Regulation in Achievement Situations: An Integrated Model. Educ. Psychol. 2019, 54, 106–126. [Google Scholar] [CrossRef]
- Sheppes, G.; Meiran, N. Better Late Than Never? On the dynamics of online regulation of sadness using distraction and cognitive reappraisal. Pers. Soc. Psychol. Bull. 2007, 33, 1518–1532. [Google Scholar] [CrossRef] [Green Version]
- Hoaglin, D.C.; Iglewicz, B. Fine-tuning some resistant rules for outlier labeling. J. Am. Stat. Assoc. 1987, 82, 1147–1149. [Google Scholar] [CrossRef]
- Bates, D.; Kliegl, R.; Vasishth, S.; Baayen, H. Parsimonious Mixed Models. arXiv 2018, arXiv:150604967. [Google Scholar]
- Vrieze, S.I. Model Selection and Psychological Theory: A discussion of the differences between the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Psychol. Methods 2012, 17, 228–243. [Google Scholar] [CrossRef] [Green Version]
- Cuff, B.M.P.; Brown, S.J.; Taylor, L.; Howat, D.J. Empathy: A review of the concept. Emot. Rev. 2016, 8, 144–153. [Google Scholar] [CrossRef]
- Kerr-Gaffney, J.; Harrison, A.; Tchanturia, K. Cognitive and affective empathy in eating disorders: A systematic review and meta-analysis. Front. Psychiatry 2019, 10, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, F.S.; Santos, F.H.; Albuquerque, P.B.; Oliveira-Silva, P. Emotional induction through music: Measuring cardiac and electrodermal responses of emotional states and their persistence. Front. Psychol. 2019, 10, 451. [Google Scholar] [CrossRef] [Green Version]
- Patston, L.L.; Tippett, L.J. The effect of background music on cognitive performance in musicians and nonmusicians. Music Percept. 2011, 29, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Ugwuanyi, C.S.; Ede, M.O.; Onyishi, C.N.; Ossai, O.V.; Nwokenna, E.N.; Obikwelu, L.C.; Nweke, M.L. Effects of cognitive-behavioral therapy with music therapy in reducing physics test anxiety among students as measured by generalized test anxiety scale. Medicine 2020, 99, e16406. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.J.; Lu, K.C.; Chen, C.M.; Chang, C.C. The effects of music as therapy on the overall well-being of elderly patients on maintenance hemodialysis. Biol. Res. Nurs. 2012, 14, 277–285. [Google Scholar] [CrossRef]
- Cacciafesta, M.; Ettorre, E.; Amici, A.; Cicconetti, P.; Martinelli, V.; Linguanti, A.E.E.A.; Marigliano, V. New frontiers of cognitive rehabilitation in geriatric age: The Mozart Effect (ME). Arch. Gerontol. Geriatr. 2010, 51, e79–e82. [Google Scholar] [CrossRef]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [Green Version]
- Faber, M.; D’Mello, S.K. How the stimulus influences mind wandering in semantically rich task contexts. Cogn. Res. Princ. Implic. 2018, 3, 35. [Google Scholar] [CrossRef]
- Thompson, N.M.; Uusberg, A.; Gross, J.J.; Chakrabarti, B. Empathy and emotion regulation: An integrative account. In Progress in Brain Research; Srinivasan, N., Ed.; Emotion and Cognition; Elsevier: Amsterdam, The Netherlands, 2019; Volume 247, pp. 273–304. [Google Scholar]
- Juslin, P.N.; Västfjäll, D. Emotional responses to music: The need to consider underlying mechanisms. Behav. Brain Sci. 2008, 31, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Hakvoort, L.; Bogaerts, S.; Thaut, M.H.; Spreen, M. Influence of music therapy on coping skills and anger management in forensic psychiatric patients: An exploratory study. Int. J. Offender Ther. Comp. Criminol. 2015, 59, 810–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobbestael, J.; Arntz, A.; Wiers, R.W. How to push someone’s buttons: A comparison of four anger-induction methods. Cogn. Emot. 2008, 22, 353–373. [Google Scholar] [CrossRef]
- Lantrip, C.; Huang, J.H. Cognitive control of emotion in older adults: A review. Clin. Psychiatry 2017, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, B.M.; Denson, T.F.; Barnett, J.; Calderwood, C.; Grisham, J.R. Sex hormones are associated with rumination and interact with emotion regulation strategy choice to predict negative affect in women following a sad mood induction. Front. Psychol. 2018, 9, 937. [Google Scholar] [CrossRef]
- Krueger, J.W. Doing things with music. Phenomenol. Cogn. Sci. 2011, 10, 1–22. [Google Scholar] [CrossRef]
- Fleurian, R.; Pearce, M.T. Chills in music: A systematic review. Psychol. Bull. 2021, 147, 890–920. [Google Scholar] [CrossRef]
Question [Target] | Type of Response |
---|---|
| Yes or no response |
| Open response |
| Yes or no response |
| Less or more response |
| Yes or no response |
| Multiple choice (more than one allowed) |
Instrument/Task | Mean (Standard Deviation) | One-Way ANOVA | |||
---|---|---|---|---|---|
D-W | D-Wo | R-W | R-Wo | ||
DERS | |||||
Total Score | 105( 12.8) | 105 (13.1) | 105 (10.8) | 102 (11.2) | p = 0.91, η2 = 0.01 |
Awareness | 17.8 (3.21) | 17.8 (1.78) | 17.8 (2.5) | 17.7 (2.56) | p = 0.99, η2 = 0.001 |
Clarity | 9.71 (1.79) | 9.71 (1.35) | 10.9 (1.80) | 10.1 (2.02) | p = 0.35, η2 = 0.072 |
Strategies | 19.2 (3.43) | 19.8 (2.04) | 18.9 (2.14) | 18.3 (2.58) | p = 0.57, η2 = 0.044 |
Impulse | 12.9 (4.46) | 13.2 (4.46) | 12.6 (2.90) | 12.6 (3.48) | p = 0.97, η2 = 0.005 |
Nonacceptance | 20.3 (1.75) | 19.9 (2.57) | 19.8 (2.09) | 19.4 (2.47) | p = 0.84, η2 = 0.019 |
Goals | 25.4 (7.92) | 25.1 (7.47) | 24.9 (4.96) | 24.3 (6.63) | p = 0.98, η2 = 0.004 |
RESS EMA | |||||
Rumination | 6.7 (1.36) | 7.86 (1.49) | 7.75 (1.48) | 7.83 (1.62) | p = 0.26, η2 = 0.086 |
Relaxation | 7.4 (1.35) | 6.43 (1.43) | 7 (1.83) | 7.08 (1.26) | p = 0.47, η2 = 0.055 |
Reappraisal | 7.1 (1.18) | 7.36 (1.51) | 7.33 (1.75) | 8.42 (0.95) | p = 0.13, η2 = 0.119 |
Engagement | 7.3 (1.67) | 7.36 (1.85) | 6.67 (1.80) | 6.92 (1.66) | p = 0.76, η2 = 0.026 |
Distraction | 7.2 (1.84) | 7.57 (1.83) | 7.5 (1.19) | 8 (1.22) | p = 0.71, η2 = 0.030 |
Suppression | 4.6 (1.80) | 5.14 (1.62) | 6.08 (1.80) | 6.17 (1.77) | p = 0.14, η2 = 0.115 |
TP1 | TP2 | TP3 | TP4 | TP5 | TP6 | |
---|---|---|---|---|---|---|
Mean (SD) | 1.11 (0.15) | 1.81 (0.69) | 1.88 (0.67) | 1.16 (0.21) | 1.79 (0.76) | 1.21 (0.28) |
Anger Induction | (first, TP2-1) 0.70(0.64) * | (second, TP5-4 ) 0.62 (0.67) * | ||||
Emotional Regulation Intensity | (passive, TP4-3) −0.07 (0.47) | (active, TP6-5) 0.58 (0.59) * |
Emotional Regulation Intensity | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 0.72 | 0.40–1.05 | <0.001 |
ER type [passive] | −0.68 | −1.11–−0.25 | 0.002 |
strategy [R] | −0.20 | −0.64–0.24 | 0.369 |
music [Y] | −0.20 | −0.63–0.22 | 0.355 |
ER type [passive] * strategy [R] | 0.02 | −0.57–0.60 | 0.957 |
ER type [passive] * music [Y] | 0.14 | −0.42–0.71 | 0.617 |
strategy [R] * music [Y] | 0.26 | −0.34–0.86 | 0.391 |
(ER type [passive] * strategy [R]) * music [Y] | −0.20 | −0.99–0.59 | 0.622 |
SD (Intercept) | 0.18 | ||
SD (Observations) | 0.70 | ||
Random Effects | |||
σ2 | 0.24 | ||
τ00 ID | 0.03 | ||
ICC | 0.12 | ||
N ID | 48 | ||
Observations | 96 | ||
Marginal R2/Conditional R2 | 0.286/0.370 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, M.; Cera, N.; Silva, S. The “Ifs” and “Hows” of the Role of Music on the Implementation of Emotional Regulation Strategies. Behav. Sci. 2022, 12, 199. https://doi.org/10.3390/bs12060199
Carvalho M, Cera N, Silva S. The “Ifs” and “Hows” of the Role of Music on the Implementation of Emotional Regulation Strategies. Behavioral Sciences. 2022; 12(6):199. https://doi.org/10.3390/bs12060199
Chicago/Turabian StyleCarvalho, Mariana, Nicoletta Cera, and Susana Silva. 2022. "The “Ifs” and “Hows” of the Role of Music on the Implementation of Emotional Regulation Strategies" Behavioral Sciences 12, no. 6: 199. https://doi.org/10.3390/bs12060199
APA StyleCarvalho, M., Cera, N., & Silva, S. (2022). The “Ifs” and “Hows” of the Role of Music on the Implementation of Emotional Regulation Strategies. Behavioral Sciences, 12(6), 199. https://doi.org/10.3390/bs12060199