Assessing Inhibitory Control in the Real World Is Virtually Possible: A Virtual Reality Demonstration
Abstract
:1. Introduction
2. Study 1: Simon Task
2.1. Participants
2.2. Materials and Procedure
2.2.1. Simon Task 2D
2.2.2. Simon Task 3D
2.3. Results
2.4. Discussion
3. Study 2: Flanker Task
3.1. Participants
3.2. Materials and Procedure
3.2.1. Flanker Task 2D
3.2.2. Flanker 3D Task
3.3. Results
3.4. Discussion
4. General Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burgess, P.; Simons, J. Theories of Frontal Lobe Executive Function: Clinical Applications. Eff. Rehabil. Cogn. Deficits 2005, 2, 211–231. [Google Scholar] [CrossRef]
- Gilbert, S.J.; Burgess, P.W. Executive Function. Curr. Biol. 2008, 18, R110–R114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munakata, Y.; Michaelson, L.E. Executive Functions in Social Context: Implications for Conceptualizing, Measuring, and Supporting Developmental Trajectories. Annu. Rev. Dev. Psychol. 2021, 3, 139–163. [Google Scholar] [CrossRef]
- Singer, B.D.; Bashir, A.S. What Are Executive Functions and Self-Regulation and What Do They Have to Do with Language-Learning Disorders? Lang. Speech Hear. Serv. Sch. 1999, 30, 265–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toll, S.W.M.; Van der Ven, S.H.G.; Kroesbergen, E.H.; Van Luit, J.E.H. Executive Functions as Predictors of Math Learning Disabilities. J. Learn. Disabil. 2011, 44, 521–532. [Google Scholar] [CrossRef]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [Green Version]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The Unity and Diversity of Executive Functions and Their Contributions to Complex “Frontal Lobe” Tasks: A Latent Variable Analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [Green Version]
- Friedman, N.P.; Miyake, A. Unity and Diversity of Executive Functions: Individual Differences as a Window on Cognitive Structure. Cortex 2017, 86, 186–204. [Google Scholar] [CrossRef] [Green Version]
- Vestberg, T.; Reinebo, G.; Maurex, L.; Ingvar, M.; Petrovic, P. Core Executive Functions Are Associated with Success in Young Elite Soccer Players. PLoS ONE 2017, 12, e0170845. [Google Scholar] [CrossRef] [Green Version]
- Best, J.R.; Miller, P.H. A Developmental Perspective on Executive Function: Development of Executive Functions. Child Dev. 2010, 81, 1641–1660. [Google Scholar] [CrossRef]
- Romine, C.B.; Reynolds, C.R. A Model of the Development of Frontal Lobe Functioning: Findings from a Meta-Analysis. Appl. Neuropsychol. 2005, 12, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Miyake, A.; Friedman, N.P. The Nature and Organization of Individual Differences in Executive Functions: Four General Conclusions. Curr. Dir. Psychol. Sci. 2012, 21, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Munakata, Y.; Herd, S.A.; Chatham, C.H.; Depue, B.E.; Banich, M.T.; O’Reilly, R.C. A Unified Framework for Inhibitory Control. Trends Cogn. Sci. 2011, 15, 453–459. [Google Scholar] [CrossRef] [Green Version]
- Serences, J.T.; Shomstein, S.; Leber, A.B.; Golay, X.; Egeth, H.E.; Yantis, S. Coordination of Voluntary and Stimulus-Driven Attentional Control in Human Cortex. Psychol. Sci. 2005, 16, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Theeuwes, J. Salience Determines Attentional Orienting in Visual Selection. J. Exp. Psychol. Hum. Percept. Perform. 2020, 46, 1051. [Google Scholar] [CrossRef] [PubMed]
- Theeuwes, J. Top-Down and Bottom-Up Control of Visual Selection. Acta Psychol. 2010, 135, 77–99. [Google Scholar] [CrossRef]
- Wessel, J.R. Prepotent Motor Activity and Inhibitory Control Demands in Different Variants of the Go/No-Go Paradigm. Psychophysiology 2018, 55, e12871. [Google Scholar] [CrossRef]
- Paap, K.R.; Anders-Jefferson, R.; Zimiga, B.; Mason, L.; Mikulinsky, R. Interference Scores Have Inadequate Concurrent and Convergent Validity: Should We Stop Using the Flanker, Simon, and Spatial Stroop Tasks? Cogn. Res. 2020, 5, 7. [Google Scholar] [CrossRef]
- Banich, M.T.; Depue, B.E. Recent Advances in Understanding Neural Systems That Support Inhibitory Control. Curr. Opin. Behav. Sci. 2015, 1, 17–22. [Google Scholar] [CrossRef]
- Simon, J.R.; Rudell, A.P. Auditory S-R Compatibility: The Effect of an Irrelevant Cue on Information Processing. J. Appl. Psychol. 1967, 51, 300–304. [Google Scholar] [CrossRef]
- Eriksen, B.A.; Eriksen, C.W. Effects of Noise Letters upon the Identification of a Target Letter in a Nonsearch Task. Percept. Psychophys. 1974, 16, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Ridderinkhof, K.R.; Wylie, S.A.; van den Wildenberg, W.P.M.; Bashore, T.R.; van der Molen, M.W. The Arrow of Time: Advancing Insights into Action Control from the Arrow Version of the Eriksen Flanker Task. Atten. Percept. Psychophys. 2021, 83, 700–721. [Google Scholar] [CrossRef] [PubMed]
- Kornblum, S.; Hasbroucq, T.; Osman, A. Dimensional Overlap: Cognitive Basis for Stimulus-Response Compatibility—A Model and Taxonomy. Psychol. Rev. 1990, 97, 253. [Google Scholar] [CrossRef] [PubMed]
- Ambrosi, S.; Śmigasiewicz, K.; Burle, B.; Blaye, A. The Dynamics of Interference Control across Childhood and Adolescence: Distribution Analyses in Three Conflict Tasks and Ten Age Groups. Dev. Psychol. 2020, 56, 2262–2280. [Google Scholar] [CrossRef]
- Bidet-Ildei, C.; Bouquet, C. Motor Knowledge Modulates Attentional Processing during Action Judgment. AJSS 2015, 2, 249–262. [Google Scholar] [CrossRef]
- Enns, J.T.; Akhtar, N. A Developmental Study of Filtering in Visual Attention. Child Dev. 1989, 60, 1188. [Google Scholar] [CrossRef]
- Kerzel, D.; Weigelt, M.; Bosbach, S. Estimating the Quantitative Relation between Incongruent Information and Response Time. Acta Psychol. 2006, 122, 267–279. [Google Scholar] [CrossRef]
- Stoffels, E.J.; van der Molen, M.W. Effects of Visual and Auditory Noise on Visual Choice Reaction Time in a Continuous-Flow Paradigm. Percept. Psychophys. 1988, 44, 7–14. [Google Scholar] [CrossRef] [Green Version]
- McDermott, J.M.; Pérez-Edgar, K.; Fox, N.A. Variations of the Flanker Paradigm: Assessing Selective Attention in Young Children. Behav. Res. 2007, 39, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Paap, K.R.; Greenberg, Z.I. There Is No Coherent Evidence for a Bilingual Advantage in Executive Processing. Cogn. Psychol. 2013, 66, 232–258. [Google Scholar] [CrossRef]
- Waszak, F.; Scientifique, D.L.R.; Li, S.; Hommel, B. The Development of Attentional Networks: Crosssectional Findings from a Life Span Sample. Dev. Psychol. 2010, 46, 337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Q.; Proctor, R.W.; Xiong, A.; Vu, K.-P.L. Transfer of Incompatible Spatial Mapping to the Vertical Simon Task Generalizes across Effectors but Not Stimulus Features. Atten. Percept. Psychophys. 2020, 82, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, R.; Prislan, L.; Miller, J. A Bimodal Extension of the Eriksen Flanker Task. Atten. Percept. Psychophys. 2021, 83, 790–799. [Google Scholar] [CrossRef] [PubMed]
- Vu, K.-P.L.; Proctor, R.W.; Urcuioli, P. Transfer Effects of Incompatible Location-Relevant Mappings on a Subsequent Visual or Auditory Simon Task. Mem. Cogn. 2003, 31, 1146–1152. [Google Scholar] [CrossRef] [Green Version]
- Baciero, A.; Uribe, I.; Gomez, P. The Tactile Eriksen Flanker Effect: A Time Course Analysis. Atten. Percept. Psychophys. 2021, 83, 1424–1434. [Google Scholar] [CrossRef] [PubMed]
- Rueda, M.R.; Fan, J.; McCandliss, B.D.; Halparin, J.D.; Gruber, D.B.; Lercari, L.P.; Posner, M.I. Development of Attentional Networks in Childhood. Neuropsychologia 2004, 42, 1029–1040. [Google Scholar] [CrossRef] [PubMed]
- Paap, K.R.; Sawi, O. The Role of Test-Retest Reliability in Measuring Individual and Group Differences in Executive Functioning. J. Neurosci. Methods 2016, 274, 81–93. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, X.; Liu, Y.; Liu, S.; Zhou, B.; Zhang, Z.; Yao, H.; Zhang, X.; Jiang, T. Perceptual and Response Interference in Alzheimer’s Disease and Mild Cognitive Impairment. Clin. Neurophysiol. 2013, 124, 2389–2396. [Google Scholar] [CrossRef]
- Winkler, R.L.; Murphy, A.H. Experiments in the Laboratory and the Real World. Organ. Behav. Hum. Perform. 1973, 10, 252–270. [Google Scholar] [CrossRef]
- Jubran, O.F.; Rocabado, F.; Muntini, L.; DuñAbeitia, J.A.; Lachmann, T. Reproducing Classical Priming, Flanker, and Lexical Decision Tasks in VR: Between Ecological Validity and Experimental Control. In Proceedings of the 33rd European Conference on Cognitive Ergonomics, Association for Computing Machinery, New York, NY, USA, 4 October 2022; pp. 1–5. [Google Scholar]
- Vasser, M.; Aru, J. Guidelines for Immersive Virtual Reality in Psychological Research. Curr. Opin. Psychol. 2020, 36, 71–76. [Google Scholar] [CrossRef]
- de Gelder, B.; Kätsyri, J.; de Borst, A.W. Virtual Reality and the New Psychophysics. Br. J. Psychol. 2018, 109, 421–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelov, V.; Petkov, E.; Shipkovenski, G.; Kalushkov, T. Modern Virtual Reality Headsets. In Proceedings of the 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara, Turkey, 26–27 June 2020; pp. 1–5. [Google Scholar]
- Gaggioli, A. Using Virtual Reality in Experimental Psychology. In Towards Cyberpsychology: Mind, Cognition and Society in the Internet Age; IOS Press: Amsterdam, The Netherlands, 2001; pp. 157–174. ISBN 978-1-58603-197-8. [Google Scholar]
- Jansari, A.S.; Froggatt, D.; Edginton, T.; Dawkins, L. Investigating the Impact of Nicotine on Executive Functions Using a Novel Virtual Reality Assessment. Addiction 2013, 108, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Armougum, A.; Orriols, E.; Gaston-Bellegarde, A.; Marle, C.J.-L.; Piolino, P. Virtual Reality: A New Method to Investigate Cognitive Load during Navigation. J. Environ. Psychol. 2019, 65, 101338. [Google Scholar] [CrossRef]
- Siemerkus, J.; Irle, E.; Schmidt-Samoa, C.; Dechent, P.; Weniger, G. Egocentric Spatial Learning in Schizophrenia Investigated with Functional Magnetic Resonance Imaging. NeuroImage Clin. 2012, 1, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Gorini, A.; Griez, E.; Petrova, A.; Riva, G. Assessment of the Emotional Responses Produced by Exposure to Real Food, Virtual Food and Photographs of Food in Patients Affected by Eating Disorders. Ann. Gen. Psychiatry 2010, 9, 30. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.M.; Alikhademi, K.; Gilbert, J.E. Design of a Toolkit for Real-Time Executive Function Assessment in Custom-Made Virtual Experiences and Interventions. Int. J. Hum. Comput. Stud. 2022, 158, 102734. [Google Scholar] [CrossRef]
- Gupta, A.; Edwards III, H.M.; Rodriguez, A.R.; McKindles, R.J.; Stirling, L.A. Alternative Cue and Response Modalities Maintain the Simon Effect but Impact Task Performance. Appl. Ergon. 2022, 100, 103648. [Google Scholar] [CrossRef]
- Olk, B.; Dinu, A.; Zielinski, D.J.; Kopper, R. Measuring Visual Search and Distraction in Immersive Virtual Reality. R. Soc. Open Sci. 2018, 5, 172331. [Google Scholar] [CrossRef] [Green Version]
- Roberts, A.C.; Yeap, Y.W.; Seah, H.S.; Chan, E.; Soh, C.-K.; Christopoulos, G.I. Assessing the Suitability of Virtual Reality for Psychological Testing. Psychol. Assess. 2019, 31, 318–328. [Google Scholar] [CrossRef]
- Ribeiro, N.; Vigier, T.; Prié, Y. Tracking Motor Activity in Virtual Reality to Reveal Cognitive Functioning: A Preliminary Study. Int. J. Virtual Real. 2021, 21, 30–46. [Google Scholar] [CrossRef]
- Anwyl-Irvine, A.L.; Massonnié, J.; Flitton, A.; Kirkham, N.; Evershed, J.K. Gorilla in Our Midst: An Online Behavioral Experiment Builder. Behav. Res. 2020, 52, 388–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worldviz Vizard, Version 6.0, WorldViz LLC: Santa Barbara, CA, USA, 2019.
- HTC, Corp. HTC VIVE Pro Eye VR Headset. 2019.
- RStudio: Integrated Development Environment for R; RStudio Team: Boston, MA, USA, 2020.
- JASP Team. JASP (Version 0.16.2). 2022. [Google Scholar]
- Perugini, M.; Gallucci, M.; Costantini, G. A Practical Primer To Power Analysis for Simple Experimental Designs. Int. Rev. Soc. Psychol. 2018, 31, 20. [Google Scholar] [CrossRef] [Green Version]
- Lakens, D.; DeBruine, L.M. Improving Transparency, Falsifiability, and Rigor by Making Hypothesis Tests Machine-Readable. Adv. Methods Pract. Psychol. Sci. 2021, 4, 2515245920970949. [Google Scholar] [CrossRef]
- Lakens, D. Sample Size Justification. Collabra Psychol. 2022, 8, 33267. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical Power Analyses Using G*Power 3.1: Tests for Correlation and Regression Analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Bailey, J.O.; Bailenson, J.N.; Obradović, J.; Aguiar, N.R. Virtual Reality’s Effect on Children’s Inhibitory Control, Social Compliance, and Sharing. J. Appl. Dev. Psychol. 2019, 64, 101052. [Google Scholar] [CrossRef]
- Gomez, M.A.; Skiba, R.M.; Snow, J.C. Graspable Objects Grab Attention More Than Images Do. Psychol. Sci. 2018, 29, 206–218. [Google Scholar] [CrossRef]
- Diamond, B.J.; Haines, E.L.; Moors, A.C.; Mosley, J.E.; McKim, D.; Moreines, J. Implicit Bias, Executive Control and Information Processing Speed. J. Cogn. Cult. 2012, 12, 183–193. [Google Scholar] [CrossRef]
- Ito, T.A.; Friedman, N.P.; Bartholow, B.D.; Correll, J.; Loersch, C.; Altamirano, L.J.; Miyake, A. Toward a Comprehensive Understanding of Executive Cognitive Function in Implicit Racial Bias. J. Pers. Soc. Psychol. 2015, 108, 187–218. [Google Scholar] [CrossRef]
- Bonsch, A.; Radke, S.; Overath, H.; Asche, L.M.; Wendt, J.; Vierjahn, T.; Habel, U.; Kuhlen, T.W. Social VR: How Personal Space Is Affected by Virtual Agents’ Emotions. In Proceedings of the 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Reutlingen, Germany, 18 March 2018; pp. 199–206. [Google Scholar]
- Hayduk, L.A. Personal Space: An Evaluative and Orienting Overview. Psychol. Bull. 1978, 85, 117–134. [Google Scholar] [CrossRef]
- Regoeczi, W.C. Crowding in Context: An Examination of the Differential Responses of Men and Women to High-Density Living Environments. J Health Soc. Behav. 2008, 49, 254–268. [Google Scholar] [CrossRef] [PubMed]
Task Modality | Stimulus Type | RT (in ms) M (SD) | Accuracy M (SD) |
---|---|---|---|
Simon 2D | Congruent | 420 (75.53) | 0.96 (0.04) |
Incongruent | 462 (87.68) | 0.89 (0.08) | |
Neutral | 419 (67.53) | 0.95 (0.04) | |
Simon 3D | Incongruent | 641 (110.06) | 0.98 (0.02) |
Congruent | 679 (100.75) | 0.91 (0.06) | |
Neutral | 636 (102.64) | 0.96 (0.03) |
Task Modality | Stimulus Type | RT (in ms) M (SD) | Accuracy M (SD) |
---|---|---|---|
Simon 2D | Congruent | 441 (71.90) | 0.98 (0.02) |
Incongruent | 515 (123.58) | 0.90 (0.14) | |
Neutral | 441 (69.60) | 0.98 (0.02) | |
Simon 3D | Incongruent | 372 (82.40) | 0.98 (0.02) |
Congruent | 422 (89.23) | 0.94 (0.06) | |
Neutral | 450 (95.96) | 0.98 (0.03) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocabado, F.; Duñabeitia, J.A. Assessing Inhibitory Control in the Real World Is Virtually Possible: A Virtual Reality Demonstration. Behav. Sci. 2022, 12, 444. https://doi.org/10.3390/bs12110444
Rocabado F, Duñabeitia JA. Assessing Inhibitory Control in the Real World Is Virtually Possible: A Virtual Reality Demonstration. Behavioral Sciences. 2022; 12(11):444. https://doi.org/10.3390/bs12110444
Chicago/Turabian StyleRocabado, Francisco, and Jon Andoni Duñabeitia. 2022. "Assessing Inhibitory Control in the Real World Is Virtually Possible: A Virtual Reality Demonstration" Behavioral Sciences 12, no. 11: 444. https://doi.org/10.3390/bs12110444
APA StyleRocabado, F., & Duñabeitia, J. A. (2022). Assessing Inhibitory Control in the Real World Is Virtually Possible: A Virtual Reality Demonstration. Behavioral Sciences, 12(11), 444. https://doi.org/10.3390/bs12110444