EEG-Derived Functional Connectivity Patterns Associated with Mild Cognitive Impairment in Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Universe and Sample
- Patients with Parkinson’s disease, according to the diagnostic criteria of the London Brain Bank [14].
- Patients with a complete neuropsychological evaluation, including Mattis Scale for Dementia Assessment-2 (MDRS-2), suggested by MDS [15] to determine cognitive phenotypes: PD-MCI with a score between 123–138 and PD-WCI greater or equal to 138.
- Patients with an EEG in a waking functional state with eyes closed.
- Subjects treated with drugs that can contaminate the brain electrical activity recorded in the EEG, such as anxiolytics or antipsychotics.
- Parkinson’s disease patients with dementia according to MDS criteria [16].
- Subjects presenting an EEG with multiple artifacts do not allow obtaining an adequate number of windows for spectral analysis.
2.2. Obtaining Information
- -
- Section III of the Movement Disorder Society-Unified Parkinson’s Disease Rating Scale revised by the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) (Annex 2).
- -
- Global Cognition: assessed by MDRS-2 a multidimensional battery to assess cognitive engagement, consists of 36 tasks divided into five subscales: attention, initiation/perseverance, construction, conceptualization, and memory. The total score, between 0 and 144, is derived from the sum of the partial scores. The MDS suggests the use of MDRS-2 with a cut-off point of ≤123 for PD-D [17] and a cutoff ≤ 137 for PD-MCI [18].
- -
- Executive Functions: Frontal Function Assessment Test (FAB) Frontal Assessment Battery) which consists of 6 subtests that explore each of the processes controlled by the frontal lobes. Higher test scores mean better performance and the maximum total score that can be obtained on the FAB is 18 [19].
- -
- Working memory—Attention: Evaluated by the subscale for ordering numbers and letters, part of the Wechsler Adult Intelligence Scale III (WAIS III, from the English Wechsler Adult Intelligence Scale III). It is considered adequate to be applied in patients with PD according to the MDS [15], evaluates the number of numbers and letters that can be evoked, the more combinations the better the patient.
- -
- SL: In all the selected segments, the spatial synchronization matrix between the electrodes was calculated for the alpha, beta, theta, and delta frequency bands. This index is based on quantifying the probability that a segment of a Y1 signal resembles another segment of the same Y2 signal, each time that in the other series X1 resembles X2. Its range is between 0 ≤ SL ≤ 1 [4,20].
- -
- Functional segregation measures: clustering or segregation coefficient (proportion of connections between the closest nodes, relative to the maximum number of possible connections) and local efficiency (it reflects how connected neighboring nodes are).
- -
- Measures of functional integration: mean path length (minimum number of edges that must pass from one node to another; it reflects the efficiency of communication in a network) and global connectivity (global connectivity of each node with the rest).
2.3. Statistical Analysis of the Information
2.4. Ethical Aspects
3. Results
3.1. Functional Connectivity Analysis
3.2. Topological Analysis of Neural Networks
3.3. Topological Measures and Cognitive Manifestation in PD-MCI Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jahanshahi, M.; Obeso, I.; Rothwell, J.C.; Obeso, J.A. A fronto–striato–subthalamic–pallidal network for goal-directed and habitual inhibition. Nat. Rev. Neurosci. 2015, 16, 719–732. [Google Scholar] [CrossRef]
- Muñoz Ospina, B.E.; Orozco Vélez, J.L. Espectro clínico y tratamiento del trastorno cognoscitivo y demencia asociada a la enfermedad de Parkinson. Acta Neurol. Colomb. 2019, 35, 33–46. [Google Scholar] [CrossRef]
- O’Callaghan, C.; Lewis, S.J. Cognition in Parkinson’s disease. In International Review of Neurobiology; Elsevier: Amsterdam, The Netherlands, 2017; Volume 133, pp. 557–583. [Google Scholar]
- Maestú, F.; Pereda, E.; Del Pozo, F. Conectividad Funcional y Anatómica en el Cerebro Humano; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Arroyave, J.A.C.; Quintero, C.A.T.; Salazar, D.A.P. Marcadores electroencefalográficos y fenotipo cognitivo en la enfermedad de Parkinson. Una revisión sistemática. Medicina 2018, 40, 332–348. [Google Scholar]
- Geraedts, V.J.; Boon, L.I.; Marinus, J.; Gouw, A.A.; van Hilten, J.J.; Stam, C.J.; Tannemaat, M.R.; Contarino, M.F. Clinical correlates of quantitative EEG in Parkinson disease: A systematic review. Neurology 2018, 91, 871–883. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.-L.; Wu, T. The study of brain functional connectivity in Parkinson’s disease. Transl. Neurodegener. 2016, 5, 18. [Google Scholar] [CrossRef] [Green Version]
- Cromarty, R.A.; Elder, G.J.; Graziadio, S.; Baker, M.; Bonanni, L.; Onofrj, M.; O’Brien, J.T.; Taylor, J.-P. Neurophysiological biomarkers for Lewy body dementias. Clin. Neurophysiol. 2016, 127, 349–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bočková, M.; Rektor, I. Impairment of brain functions in Parkinson’s disease reflected by alterations in neural connectivity in EEG studies: A viewpoint. Clin. Neurophysiol. 2019, 130, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Bosboom, J.; Stoffers, D.; Wolters, E.C.; Stam, C.J.; Berendse, H.W. MEG resting state functional connectivity in Parkinson’s disease related dementia. J. Neural. Transm. 2009, 116, 193. [Google Scholar] [CrossRef] [Green Version]
- Cozac, V.V.; Gschwandtner, U.; Hatz, F.; Hardmeier, M.; Rüegg, S.; Fuhr, P. Quantitative EEG and cognitive decline in Parkinson’s disease. Parkinson Dis. 2016, 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Utianski, R.L.; Caviness, J.N.; van Straaten, E.C.; Beach, T.G.; Dugger, B.N.; Shill, H.A.; Driver-Dunckley, E.D.; Sabbagh, M.N.; Mehta, S.; Adler, C.H. Graph theory network function in Parkinson’s disease assessed with electroencephalography. Clin. Neurophysiol. 2016, 127, 2228–2236. [Google Scholar] [CrossRef] [Green Version]
- Babiloni, C.; Del Percio, C.; Lizio, R.; Noce, G.; Lopez, S.; Soricelli, A.; Ferri, R.; Pascarelli, M.T.; Catania, V.; Nobili, F. Functional cortical source connectivity of resting state electroencephalographic alpha rhythms shows similar abnormalities in patients with mild cognitive impairment due to Alzheimer’s and Parkinson’s diseases. Clin. Neurophysiol. 2018, 129, 766–782. [Google Scholar] [CrossRef]
- Gibb, W.; Lees, A. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1988, 51, 745–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litvan, I.; Goldman, J.G.; Tröster, A.I.; Schmand, B.A.; Weintraub, D.; Petersen, R.C.; Mollenhauer, B.; Adler, C.H.; Marder, K.; Williams-Gray, C.H. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Mov. Disord. 2012, 27, 349–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emre, M.; Aarsland, D.; Brown, R.; Burn, D.J.; Duyckaerts, C.; Mizuno, Y.; Broe, G.A.; Cummings, J.; Dickson, D.W.; Gauthier, S. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2007, 22, 1689–1707. [Google Scholar] [CrossRef] [PubMed]
- Llebaria, G.; Pagonabarraga, J.; Kulisevsky, J.; García-Sánchez, C.; Pascual-Sedano, B.; Gironell, A.; Martínez-Corral, M. Cut-off score of the Mattis Dementia Rating Scale for screening dementia in Parkinson’s disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2008, 23, 1546–1550. [Google Scholar] [CrossRef]
- Villeneuve, S.; Rodrigues-Brazète, J.; Joncas, S.; Postuma, R.B.; Latreille, V.; Gagnon, J.-F. Validity of the Mattis Dementia Rating Scale to detect mild cognitive impairment in Parkinson’s disease and REM sleep behavior disorder. Dement. Geriatr. Cogn. Disord. 2011, 31, 210–217. [Google Scholar] [CrossRef]
- Hurtado-Pomares, M.; Terol-Cantero, M.C.; Sánchez-Pérez, A.; Leiva-Santana, C.; Peral-Gómez, P.; Valera-Gran, D.; Navarrete-Muñoz, E.M. Measuring executive dysfunction in Parkinson’s disease: Reliability and validity of the Spanish version of Frontal Assessment Battery (FAB-E). PLoS ONE 2018, 13, e0207698. [Google Scholar] [CrossRef] [PubMed]
- Stam, C.J.; Van Dijk, B.W. Synchronization likelihood: An unbiased measure of generalized synchronization in multivariate data sets. Phys. D 2002, 236–241. [Google Scholar] [CrossRef]
- Herrera-Díaz, A.; Mendoza-Quiñones, R.; Melie-Garcia, L.; Martínez-Montes, E.; Sanabria-Diaz, G. Functional Connectivity and Quantitative EEG in Womenwith Alcohol Use Disorders: A Resting-State Study. Brain Topogr. 2016, 29, 368–381. [Google Scholar] [CrossRef]
- Aarsland, D.; Creese, B.; Politis, M.; Chaudhuri, K.R.; Weintraub, D.; Ballard, C. Cognitive decline in Parkinson disease. Nat. Rev. Neurol. 2017, 13, 217. [Google Scholar] [CrossRef] [Green Version]
- Bocanegra, Y.; Trujillo-Orrego, N.; Pineda, D. Demencia y deterioro cognitivo leve en la enfermedad de Parkinson: Una revisión. Rev. Neurol 2014, 59, 555–569. [Google Scholar] [CrossRef]
- Hassan, M.; Chaton, L.; Benquet, P.; Delval, A.; Leroy, C.; Plomhause, L.; Moonen, A.J.; Duits, A.A.; Leentjens, A.F.; van Kranen-Mastenbroek, V. Functional connectivity disruptions correlate with cognitive phenotypes in Parkinson’s disease. Neuroimage Clin. 2017, 14, 591–601. [Google Scholar] [CrossRef]
- Klassen, B.; Hentz, J.; Shill, H.; Driver-Dunckley, E.; Evidente, V.; Sabbagh, M.; Adler, C.; Caviness, J. Quantitative EEG as a predictive biomarker for Parkinson disease dementia. Neurology 2011, 77, 118–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pugnetti, L.; Baglio, F.; Farina, E.; Alberoni, M.; Calabrese, E.; Gambini, A.; Di Bella, E.; Garegnani, M.; Deleonardis, L.; Nemni, R. EEG evidence of posterior cortical disconnection in PD and related dementias. Int. J. Neurosci. 2010, 120, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Teramoto, H.; Morita, A.; Ninomiya, S.; Akimoto, T.; Shiota, H.; Kamei, S. Relation between resting state front-parietal EEG coherence and executive function in parkinson’s disease. Biomed. Res. Int. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Ponsen, M.; Stam, C.; Bosboom, J.; Berendse, H.; Hillebrand, A. A three dimensional anatomical view of oscillatory resting-state activity and functional connectivity in Parkinson’s disease related dementia: An MEG study using atlas-based beamforming. Neuroimage Clin. 2013, 2, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Babiloni, C.; Del Percio, C.; Lizio, R.; Noce, G.; Lopez, S.; Soricelli, A.; Ferri, R.; Nobili, F.; Arnaldi, D.; Famà, F. Abnormalities of resting-state functional cortical connectivity in patients with dementia due to Alzheimer’s and Lewy body diseases: An EEG study. Neurobiol. Aging 2018, 65, 18–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, J.S.; Strunk, J.; Mak-McCully, R.; Houser, M.; Poizner, H.; Aron, A.R. Dopaminergic therapy in Parkinson’s disease decreases cortical beta band coherence in the resting state and increases cortical beta band power during executive control. Neuroimage Clin. 2013, 3, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Silberstein, P.; Pogosyan, A.; Kühn, A.A.; Hotton, G.; Tisch, S.; Kupsch, A.; Dowsey-Limousin, P.; Hariz, M.I.; Brown, P. Cortico-cortical coupling in Parkinson’s disease and its modulation by therapy. Brain 2005, 128, 1277–1291. [Google Scholar] [CrossRef] [Green Version]
- Herz, D.M.; Siebner, H.R.; Hulme, O.J.; Florin, E.; Christensen, M.S.; Timmermann, L. Levodopa reinstates connectivity from prefrontal to premotor cortex during externally paced movement in Parkinson’s disease. Neuroimage 2014, 90, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Stoffers, D.; Bosboom, J.L.; Wolters, E.C.; Stam, C.J.; Berendse, H.W. Dopaminergic modulation of cortico-cortical functional connectivity in Parkinson’s disease: An MEG study. Exp. Neurol. 2008, 213, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Braak, H.; Del Tredici, K.; Rub, U.; de Vos, R.A.I.; Jansen-Steur, E.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 2003, 24, 197–211. [Google Scholar] [CrossRef]
- Braak, H.; Rub, U.; Del Tredici, K. Cognitive decline correlate s with neuropathological stage in Parkinson’s disease. J. Neurol. Sci. 2006, 248, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Olde Dubbelink, K.T.; Hillebrand, A.; Stoffers, D.; Deijen, J.B.; Twisk, J.W.; Stam, C.J.; Berendse, H.W. Disrupted brain network topology in Parkinson’s disease: A longitudinal magnetoencephalography study. Brain 2014, 137, 197–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stam, C.J.; de Haan, W.; Daffertshofer, A.; Jones, B.F.; Manshanden, I.; Van Walsum, A.V.C.; Montez, T.; Verbunt, J.P.A.; de Munck, J.C.; van Dijk, B.W.; et al. Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 2009, 1, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Vecchio, F.; Miraglia, F.; Marra, C.; Quaranta, D.; Vita, M.G.; Bramanti, P.; Rossini, P.M. Human brain networks in cognitive decline: A graph theoretical analysis of cortical connectivity from EEG data. J. Alzheimer Dis. 2014, 41, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Bellucci, A.; Mercuri, N.B.; Venneri, A.; Faustini, G.; Longhena, F.; Pizzi, M.; Missale, C.; Spano, P. Review: Parkinson’s disease: From synaptic loss to connectome dysfunction. Neuropathol. Appl. Neurobiol. 2016, 42, 77–94. [Google Scholar] [CrossRef] [Green Version]
PD-WCI n = 15 M (SD) | PD-MCI n = 15 M (SD) | PD Total M (SD) | p | |
---|---|---|---|---|
Average age | 58.40 (7.4) | 62.73 (7.8) | 60.57 (7.8) | 0.13 |
Sex (M/F) | 4/1 | 4/1 | 4/1 | - |
Years of Evolution | 7.73 (4.5) | 8.06 (4.5) | 7.90 (4.4) | 0.84 |
FAB | 15.13 (2.5) | 14.33 (2.4) | 14.73 (2.5) | 0.08 |
MDRS-2 | 140.67 (1.7) | 130.93 (5.04) | 135.80 (6.2) | 0.00 |
WAIS III | 7.93 (3.3) | 5.93 (1.6) | 6.93 (2.8) | 0.04 |
MDS-UPDRS Motor | 31.73 (9.6) | 36.00 (12.32) | 33.86 (11.1) | 0.34 |
LED | 568.3 (201.4) | 588.3 (343.4) | 578.3 (276.8) | 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peláez Suárez, A.A.; Berrillo Batista, S.; Pedroso Ibáñez, I.; Casabona Fernández, E.; Fuentes Campos, M.; Chacón, L.M. EEG-Derived Functional Connectivity Patterns Associated with Mild Cognitive Impairment in Parkinson’s Disease. Behav. Sci. 2021, 11, 40. https://doi.org/10.3390/bs11030040
Peláez Suárez AA, Berrillo Batista S, Pedroso Ibáñez I, Casabona Fernández E, Fuentes Campos M, Chacón LM. EEG-Derived Functional Connectivity Patterns Associated with Mild Cognitive Impairment in Parkinson’s Disease. Behavioral Sciences. 2021; 11(3):40. https://doi.org/10.3390/bs11030040
Chicago/Turabian StylePeláez Suárez, Alejandro Armando, Sheila Berrillo Batista, Ivonne Pedroso Ibáñez, Enrique Casabona Fernández, Marinet Fuentes Campos, and Lilia Morales Chacón. 2021. "EEG-Derived Functional Connectivity Patterns Associated with Mild Cognitive Impairment in Parkinson’s Disease" Behavioral Sciences 11, no. 3: 40. https://doi.org/10.3390/bs11030040
APA StylePeláez Suárez, A. A., Berrillo Batista, S., Pedroso Ibáñez, I., Casabona Fernández, E., Fuentes Campos, M., & Chacón, L. M. (2021). EEG-Derived Functional Connectivity Patterns Associated with Mild Cognitive Impairment in Parkinson’s Disease. Behavioral Sciences, 11(3), 40. https://doi.org/10.3390/bs11030040