Sport-Related Concussion: Evaluation, Treatment, and Future Directions
Abstract
:1. Introduction
2. Definitions
2.1. Sport-Related Concussion
- A direct or indirect trauma anywhere on the body with a force transmitted to the head;
- Rapid (seconds to minutes) or delayed (minute to hours) symptom presentation, typically with spontaneous resolution;
- Negative standard neuroimaging (computerized tomography (CT) or magnetic resonance imaging (MRI)), reflecting a functional rather than structural injury;
- With or without loss of consciousness, with stepwise resolution of symptoms.
2.2. Post-Concussion Syndrome
3. Evaluation and Treatment
3.1. Immediate Management
3.2. Off-the-Field Assessment
3.3. Recovery
- Stage 1: Activity limited by symptoms: introduction of daily activities that do not provoke symptoms.
- Stage 2: Light aerobic exercise of low intensity: elevation of heart rate above baseline activity with actions such as walking or cycling at a leisurely pace.
- Stage 3: Exercise specific to sport: begin sport-specific movement such as running; contact strictly avoided.
- Stage 4: Training without contact: resume drills with continued strict avoidance on contact with the goal of resuming coordination.
- Stage 5: Resumed full contact practice: participate in practice drills including contact. Close monitoring is suggested.
- Stage 6: Full return to play: resume normal participation in the sport.
3.4. Treatment
4. Modifying Factors
4.1. Initial Symptoms
4.2. Concussion History
4.3. Sex
4.4. Migraine Headaches
4.5. Learning Disability or Attention Deficit Hyperactivity Disorder
4.6. Psychiatric Comorbidities
5. Future Directions
5.1. Genetics
5.1.1. Interleukin 6 Receptor
5.1.2. Apolipoprotein E e4
5.2. Advanced Medical Imaging
5.2.1. Diffusion Tensor Imaging
5.2.2. Magnetic Resonance Spectroscopy
5.2.3. Functional Imaging Techniques
5.2.4. Clinical Significance vs. Imaging
5.3. Helmet and Engineering
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Langlois, J.A.; Rutland-Brown, W.; Wald, M.M. The epidemiology and impact of traumatic brain injury: A brief overview. J. Head Trauma Rehabil. 2006, 21, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Daneshvar, D.H.; Nowinski, C.J.; McKee, A.C.; Cantu, R.C. The epidemiology of sport-related concussion. Clin. Sports Med. 2011, 30, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Hootman, J.M.; Dick, R.; Agel, J. Epidemiology of collegiate injuries for 15 sports: Summary and recommendations for injury prevention initiatives. J. Athl. Train. 2007, 42, 311–319. [Google Scholar] [PubMed]
- Zuckerman, S.L.; Kerr, Z.Y.; Yengo-Kahn, A.; Wasserman, E.; Covassin, T.; Solomon, G.S. Epidemiology of Sports-Related Concussion in NCAA Athletes from 2009–2010 to 2013–2014: Incidence, Recurrence, and Mechanisms. Am. J. Sports Med. 2015, 43, 2654–2662. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.; Iverson, G.L.; McCrory, P. Chronic traumatic encephalopathy in sport: A systematic review. Br. J. Sports Med. 2014, 48, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Casson, I.R.; Viano, D.C.; Haacke, E.M.; Kou, Z.; LeStrange, D.G. Is There Chronic Brain Damage in Retired NFL Players? Neuroradiology, Neuropsychology, and Neurology Examinations of 45 Retired Players. Sports Health 2014, 6, 384–395. [Google Scholar] [CrossRef] [PubMed]
- Ban, V.S.; Madden, C.J.; Bailes, J.E.; Batjer, H.H.; Lonser, R.R. The science and questions surrounding chronic traumatic encephalopathy. Neurosurg. Focus 2016, 40, E15. [Google Scholar] [CrossRef] [PubMed]
- Manley, G.; Gardner, A.J.; Schneider, K.J.; Guskiewicz, K.M.; Bailes, J.; Cantu, R.C.; Castellani, R.J.; Turner, M.; Jordan, B.D.; Randolph, C.; et al. A systematic review of potential long-term effects of sport-related concussion. Br. J. Sports Med. 2017, 51, 969–977. [Google Scholar] [CrossRef] [PubMed]
- McCrory, P.; Meeuwisse, W.; Dvorak, J.; Aubry, M.; Bailes, J.; Broglio, S.; Cantu, R.C.; Cassidy, D.; Echemendia, R.J.; Castellani, R.J.; et al. Consensus statement on concussion in sport-the 5th international conference on concussion in sport held in Berlin, October 2016. Br. J. Sports Med. 2017, 51, 838–847. [Google Scholar] [PubMed]
- American Psychiatric Association. Anxiety Disorders: DSM-5 Selections; American Psychiatric Association Publishing: Arlington, VA, USA, 2016; p. xiv. 114p. [Google Scholar]
- Rose, S.C.; Fischer, A.N.; Heyer, G.L. How long is too long? The lack of consensus regarding the post-concussion syndrome diagnosis. Brain Inj. 2015, 29, 798–803. [Google Scholar] [CrossRef] [PubMed]
- Kerrigan, J.M.; Giza, C.C. When in doubt, sit it out! Pediatric concussion-an update. Childs Nerv. Syst. 2017, 33, 1669–1675. [Google Scholar] [CrossRef] [PubMed]
- Starling, A.J.; Leong, D.F.; Bogle, J.M.; Vargas, B.B. Variability of the modified Balance Error Scoring System at baseline using objective and subjective balance measures. Concussion 2016, 1, CNC5. [Google Scholar] [CrossRef] [PubMed]
- McCrea, M.; Kelly, J.P.; Randolph, C.; Kluge, J.; Bartolic, E.; Finn, G.; Baxter, B. Standardized assessment of concussion (SAC): On-site mental status evaluation of the athlete. J. Head Trauma Rehabil. 1998, 13, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Giza, C.C.; Kutcher, J.S.; Ashwal, S.; Barth, J.; Getchius, T.S.; Gioia, G.A.; Gronseth, G.S.; Guskiewicz, K.; Mandel, S.; Manley, G.; et al. Summary of evidence-based guideline update: Evaluation and management of concussion in sports: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 2013, 80, 2250–2257. [Google Scholar] [CrossRef] [PubMed]
- Barr, W.B.; McCrea, M. Sensitivity and specificity of standardized neurocognitive testing immediately following sports concussion. J. Int. Neuropsychol. Soc. 2001, 7, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Meehan, W.P., 3rd; d’Hemecourt, P.; Collins, C.L.; Comstock, R.D. Assessment and management of sport-related concussions in United States high schools. Am. J. Sports Med. 2011, 39, 2304–2310. [Google Scholar] [CrossRef] [PubMed]
- Collie, A.; Maruff, P. Computerised neuropsychological testing. Br. J. Sports Med. 2003, 37, 2–3. [Google Scholar] [CrossRef] [PubMed]
- Schatz, P.; Sandel, N. Sensitivity and specificity of the online version of ImPACT in high school and collegiate athletes. Am. J. Sports Med. 2013, 41, 321–326. [Google Scholar] [CrossRef] [PubMed]
- McAvoy, K.; Eagan-Johnson, B.; Halstead, M. Return to learn: Transitioning to school and through ascending levels of academic support for students following a concussion. NeuroRehabilitation 2018, 42, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.W.; Kontos, A.P.; Okonkwo, D.O.; Almquist, J.; Bailes, J.; Barisa, M.; Bazarian, J.; Bloom, O.J.; Brody, D.L.; Cantu, R.; et al. Statements of Agreement From the Targeted Evaluation and Active Management (TEAM) Approaches to Treating Concussion Meeting Held in Pittsburgh, October 15–16, 2015. Neurosurgery 2016, 79, 912–929. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, D.W.; Richards, D.; Comper, P.; Hutchison, M.G. Earlier time to aerobic exercise is associated with faster recovery following acute sport concussion. PLoS ONE 2018, 13, e0196062. [Google Scholar] [CrossRef] [PubMed]
- Solomon, G.S.; Sills, A.K. Pharmacologic treatment of sport-related concussion: A review. J. Surg. Orthop. Adv. 2013, 22, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Petraglia, A.L.; Maroon, J.C.; Bailes, J.E. From the field of play to the field of combat: A review of the pharmacological management of concussion. Neurosurgery 2012, 70, 1520–1533. [Google Scholar] [CrossRef] [PubMed]
- Halstead, M.E. Pharmacologic Therapies for Pediatric Concussions. Sports Health 2016, 8, 50–52. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.J.; Coxe, K.; Li, H.; Pommering, T.L.; Young, J.A.; Smith, G.A.; Yang, J. Length of Recovery From Sports-Related Concussions in Pediatric Patients Treated at Concussion Clinics. Clin. J. Sport Med. 2018, 28, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Heyer, G.L.; Schaffer, C.E.; Rose, S.C.; Young, J.A.; McNally, K.A.; Fischer, A.N. Specific Factors Influence Postconcussion Symptom Duration among Youth Referred to a Sports Concussion Clinic. J. Pediatr. 2016, 174, 33–38.e2. [Google Scholar] [CrossRef] [PubMed]
- Zemek, R.; Barrowman, N.; Freedman, S.B.; Gravel, J.; Gagnon, I.; McGahern, C.; Aglipay, M.; Sangha, G.; Boutis, K.; Beer, D.; et al. Clinical Risk Score for Persistent Postconcussion Symptoms Among Children with Acute Concussion in the ED. JAMA 2016, 315, 1014–1025. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.H.; Gill, C.; Kuhn, E.N.; Rocque, B.G.; Menendez, J.Y.; O’Neill, J.A.; Agee, B.S.; Brown, S.T.; Crowther, M.; Davis, R.D.; et al. Predictors of delayed recovery following pediatric sports-related concussion: A case-control study. J. Neurosurg. Pediatr. 2016, 17, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Guskiewicz, K.M.; Ross, S.E.; Marshall, S.W. Postural Stability and Neuropsychological Deficits After Concussion in Collegiate Athletes. J. Athl. Train. 2001, 36, 263–273. [Google Scholar] [PubMed]
- McCrea, M.; Guskiewicz, K.M.; Marshall, S.W.; Barr, W.; Randolph, C.; Cantu, R.C.; Onate, J.A.; Yang, J.; Kelly, J.P. Acute effects and recovery time following concussion in collegiate football players: The NCAA Concussion Study. JAMA 2003, 290, 2556–2563. [Google Scholar] [CrossRef] [PubMed]
- Brett, B.L.; Kuhn, A.W.; Yengo-Kahn, A.M.; Jeckell, A.S.; Solomon, G.S.; Zuckerman, S.L. On-Field Signs Predict Future Acute Symptoms After Sport-Related Concussion: A Structural Equation Modeling Study. J. Int. Neuropsychol. Soc. 2018, 24, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.W.; Iverson, G.L.; Lovell, M.R.; McKeag, D.B.; Norwig, J.; Maroon, J. On-field predictors of neuropsychological and symptom deficit following sports-related concussion. Clin. J. Sport Med. 2003, 13, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Pearce, K.L.; Sufrinko, A.; Lau, B.C.; Henry, L.; Collins, M.W.; Kontos, A.P. Near Point of Convergence After a Sport-Related Concussion: Measurement Reliability and Relationship to Neurocognitive Impairment and Symptoms. Am. J. Sports Med. 2015, 43, 3055–3061. [Google Scholar] [CrossRef] [PubMed]
- Meehan, W.P., 3rd; Mannix, R.; Monuteaux, M.C.; Stein, C.J.; Bachur, R.G. Early symptom burden predicts recovery after sport-related concussion. Neurology 2014, 83, 2204–2210. [Google Scholar] [CrossRef] [PubMed]
- Guskiewicz, K.M.; McCrea, M.; Marshall, S.W.; Cantu, R.C.; Randolph, C.; Barr, W.; Onate, J.A.; Kelly, J.P. Cumulative effects associated with recurrent concussion in collegiate football players: The NCAA Concussion Study. JAMA 2003, 290, 2549–2555. [Google Scholar] [CrossRef] [PubMed]
- Morgan, C.D.; Zuckerman, S.L.; Lee, Y.M.; King, L.; Beaird, S.; Sills, A.K.; Solomon, G.S. Predictors of postconcussion syndrome after sports-related concussion in young athletes: A matched case-control study. J. Neurosurg. Pediatr. 2015, 15, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Castile, L.; Collins, C.L.; McIlvain, N.M.; Comstock, R.D. The epidemiology of new versus recurrent sports concussions among high school athletes, 2005–2010. Br. J. Sports Med. 2012, 46, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Kerr, Z.Y.; Thomas, L.C.; Simon, J.E.; McCrea, M.; Guskiewicz, K.M. Association Between History of Multiple Concussions and Health Outcomes Among Former College Football Players: 15-Year Follow-up from the NCAA Concussion Study (1999–2001). Am. J. Sports. Med. 2018, 46, 1733–1741. [Google Scholar] [CrossRef] [PubMed]
- Terwilliger, V.K.; Pratson, L.; Vaughan, C.G.; Gioia, G.A. Additional Post-Concussion Impact Exposure May Affect Recovery in Adolescent Athletes. J. Neurotrauma 2016, 33, 761–765. [Google Scholar] [CrossRef] [PubMed]
- Coronado, V.G.; Xu, L.; Basavaraju, S.V.; McGuire, L.C.; Wald, M.M.; Faul, M.D.; Guzman, B.R.; Hemphill, J.D. Surveillance for traumatic brain injury-related deaths—United States, 1997–2007. MMWR Surveill. Summ. 2011, 60, 1–32. [Google Scholar] [PubMed]
- Marar, M.; McIlvain, N.M.; Fields, S.K.; Comstock, R.D. Epidemiology of concussions among United States high school athletes in 20 sports. Am. J. Sports Med. 2012, 40, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Dick, R.W. Is there a gender difference in concussion incidence and outcomes? Br. J. Sports Med. 2009, 43 (Suppl. 1), i46–i50. [Google Scholar] [CrossRef]
- Covassin, T.; Schatz, P.; Swanik, C.B. Sex differences in neuropsychological function and post-concussion symptoms of concussed collegiate athletes. Neurosurgery 2007, 61, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Berz, K.; Divine, J.; Foss, K.B.; Heyl, R.; Ford, K.R.; Myer, G.D. Sex-specific differences in the severity of symptoms and recovery rate following sports-related concussion in young athletes. Phys. Sportsmed. 2013, 41, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Covassin, T.; Elbin, R.J., 3rd; Larson, E.; Kontos, A.P. Sex and age differences in depression and baseline sport-related concussion neurocognitive performance and symptoms. Clin. J. Sport Med. 2012, 22, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Zuckerman, S.L.; Solomon, G.S.; Forbes, J.A.; Haase, R.F.; Sills, A.K.; Lovell, M.R. Response to acute concussive injury in soccer players: Is gender a modifying factor? J. Neurosurg. Pediatr. 2012, 10, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Ono, K.E.; Burns, T.G.; Bearden, D.J.; McManus, S.M.; King, H.; Reisner, A. Sex-Based Differences as a Predictor of Recovery Trajectories in Young Athletes After a Sports-Related Concussion. Am. J. Sports Med. 2016, 44, 748–752. [Google Scholar] [CrossRef] [PubMed]
- Chrisman, S.P.; Rivara, F.P.; Schiff, M.A.; Zhou, C.; Comstock, R.D. Risk factors for concussive symptoms 1 week or longer in high school athletes. Brain Inj. 2013, 27, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Brotfain, E.; Gruenbaum, S.E.; Boyko, M.; Kutz, R.; Zlotnik, A.; Klein, M. Neuroprotection by Estrogen and Progesterone in Traumatic Brain Injury and Spinal Cord Injury. Curr. Neuropharmacol. 2016, 14, 641–653. [Google Scholar] [CrossRef] [PubMed]
- Iverson, G.L.; Gardner, A.J.; Terry, D.P.; Ponsford, J.L.; Sills, A.K.; Broshek, D.K.; Solomon, G.S. Predictors of clinical recovery from concussion: A systematic review. Br. J. Sports Med. 2017, 51, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Mautner, K.; Sussman, W.I.; Axtman, M.; Al-Farsi, Y.; Al-Adawi, S. Relationship of Attention Deficit Hyperactivity Disorder and Postconcussion Recovery in Youth Athletes. Clin. J. Sport Med. 2015, 25, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Guerriero, R.M.; Giza, C.C.; Rotenberg, A. Glutamate and GABA imbalance following traumatic brain injury. Curr. Neurol. Neurosci. Rep. 2015, 15, 27. [Google Scholar] [CrossRef] [PubMed]
- Yousefzadeh-Chabok, S.; Dehnadi Moghaddam, A.; Kazemnejad-Leili, E.; Saneei, Z.; Hosseinpour, M.; Kouchakinejad-Eramsadati, L.; Razzaghi, A.; Mohtasham-Amiri, Z. The Relationship Between Serum Levels of Interleukins 6, 8, 10 and Clinical Outcome in Patients With Severe Traumatic Brain Injury. Arch. Trauma Res. 2015, 4, e18357. [Google Scholar] [CrossRef] [PubMed]
- Chiaretti, A.; Antonelli, A.; Mastrangelo, A.; Pezzotti, P.; Tortorolo, L.; Tosi, F.; Genovese, O. Interleukin-6 and nerve growth factor upregulation correlates with improved outcome in children with severe traumatic brain injury. J. Neurotrauma 2008, 25, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Scheller, J.; Chalaris, A.; Schmidt-Arras, D.; Rose-John, S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta 2011, 1813, 878–888. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.C.; Freitag, D.F.; Cutler, A.J.; Howson, J.M.; Rainbow, D.B.; Smyth, D.J.; Kaptoge, S.; Clarke, P.; Boreham, C.; Coulson, R.M.; et al. Functional IL6R 358Ala allele impairs classical IL-6 receptor signaling and influences risk of diverse inflammatory diseases. PLoS Genet. 2013, 9, e1003444. [Google Scholar] [CrossRef] [PubMed]
- Garbers, C.; Monhasery, N.; Aparicio-Siegmund, S.; Lokau, J.; Baran, P.; Nowell, M.A.; Jones, S.A.; Rose-John, S.; Scheller, J. The interleukin-6 receptor Asp358Ala single nucleotide polymorphism rs2228145 confers increased proteolytic conversion rates by ADAM proteases. Biochim. Biophys. Acta 2014, 1842, 1485–1494. [Google Scholar] [CrossRef] [PubMed]
- Terrell, T.R.; Abramson, R.; Barth, J.T.; Bennett, E.; Cantu, R.C.; Sloane, R.; Laskowitz, D.T.; Erlanger, D.M.; McKeag, D.; Nichols, G.; et al. Genetic polymorphisms associated with the risk of concussion in 1056 college athletes: A multicentre prospective cohort study. Br. J. Sports Med. 2018, 52, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Mahley, R.W. Apolipoprotein E: Structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases. Neurobiol. Dis. 2014, 72 Pt A, 3–12. [Google Scholar] [CrossRef]
- Westlye, L.T.; Reinvang, I.; Rootwelt, H.; Espeseth, T. Effects of APOE on brain white matter microstructure in healthy adults. Neurology 2012, 79, 1961–1969. [Google Scholar] [CrossRef] [PubMed]
- Merritt, V.C.; Rabinowitz, A.R.; Arnett, P.A. The Influence of the Apolipoprotein E (APOE) Gene on Subacute Post-Concussion Neurocognitive Performance in College Athletes. Arch. Clin. Neuropsychol. 2018, 33, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Moran, L.M.; Taylor, H.G.; Ganesalingam, K.; Gastier-Foster, J.M.; Frick, J.; Bangert, B.; Dietrich, A.; Nuss, K.E.; Rusin, J.; Wright, M.; et al. Apolipoprotein E4 as a predictor of outcomes in pediatric mild traumatic brain injury. J. Neurotrauma 2009, 26, 1489–1495. [Google Scholar] [CrossRef] [PubMed]
- McCrea, M.; Meier, T.; Huber, D.; Ptito, A.; Bigler, E.; Debert, C.T.; Manley, G.; Menon, D.; Chen, J.K.; Wall, R.; et al. Role of advanced neuroimaging, fluid biomarkers and genetic testing in the assessment of sport-related concussion: A systematic review. Br. J. Sports Med. 2017, 51, 919–929. [Google Scholar] [CrossRef] [PubMed]
- Giza, C.C.; Hovda, D.A. The Neurometabolic Cascade of Concussion. J. Athl. Train. 2001, 36, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Giza, C.C.; Hovda, D.A. The new neurometabolic cascade of concussion. Neurosurgery 2014, 75 (Suppl. 4), S24–S33. [Google Scholar] [CrossRef]
- Barkhoudarian, G.; Hovda, D.A.; Giza, C.C. The Molecular Pathophysiology of Concussive Brain Injury—An Update. Phys. Med. Rehabil. Clin. N. Am. 2016, 27, 373–393. [Google Scholar] [CrossRef] [PubMed]
- Sharp, D.J.; Ham, T.E. Investigating white matter injury after mild traumatic brain injury. Curr. Opin. Neurol. 2011, 24, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.B.; Lee, S.K.; Kim, K.K.; Song, I.C.; Chang, K.H. Role of immediate postictal diffusion-weighted MRI in localizing epileptogenic foci of mesial temporal lobe epilepsy and non-lesional neocortical epilepsy. Seizure 2004, 13, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Song, S.K.; Sun, S.W.; Ju, W.K.; Lin, S.J.; Cross, A.H.; Neufeld, A.H. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 2003, 20, 1714–1722. [Google Scholar] [CrossRef] [PubMed]
- Song, S.K.; Sun, S.W.; Ramsbottom, M.J.; Chang, C.; Russell, J.; Cross, A.H. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 2002, 17, 1429–1436. [Google Scholar] [CrossRef] [PubMed]
- Aoki, Y.; Inokuchi, R.; Gunshin, M.; Yahagi, N.; Suwa, H. Diffusion tensor imaging studies of mild traumatic brain injury: A meta-analysis. J. Neurol. Neurosurg. Psychiatry 2012, 83, 870–876. [Google Scholar] [CrossRef] [PubMed]
- Wintermark, M.; Sanelli, P.C.; Anzai, Y.; Tsiouris, A.J.; Whitlow, C.T.; Druzgal, T.J.; Gean, A.D.; Lui, Y.W.; Norbash, A.M.; Raji, C.; et al. Imaging evidence and recommendations for traumatic brain injury: Advanced neuro- and neurovascular imaging techniques. AJNR Am. J. Neuroradiol. 2015, 36, E1–E11. [Google Scholar] [CrossRef] [PubMed]
- Eierud, C.; Craddock, R.C.; Fletcher, S.; Aulakh, M.; King-Casas, B.; Kuehl, D.; LaConte, S.M. Neuroimaging after mild traumatic brain injury: Review and meta-analysis. Neuroimage Clin. 2014, 4, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Chu, Z.; Wilde, E.A.; Hunter, J.V.; McCauley, S.R.; Bigler, E.D.; Troyanskaya, M.; Yallampalli, R.; Chia, J.M.; Levin, H.S. Voxel-based analysis of diffusion tensor imaging in mild traumatic brain injury in adolescents. AJNR Am. J. Neuroradiol. 2010, 31, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Wilde, E.A.; McCauley, S.R.; Hunter, J.V.; Bigler, E.D.; Chu, Z.; Wang, Z.J.; Hanten, G.R.; Troyanskaya, M.; Yallampalli, R.; Li, X.; et al. Diffusion tensor imaging of acute mild traumatic brain injury in adolescents. Neurology 2008, 70, 948–955. [Google Scholar] [CrossRef] [PubMed]
- Henry, L.C.; Tremblay, S.; Leclerc, S.; Khiat, A.; Boulanger, Y.; Ellemberg, D.; Lassonde, M. Metabolic changes in concussed American football players during the acute and chronic post-injury phases. BMC Neurol. 2011, 11, 105. [Google Scholar] [CrossRef] [PubMed]
- Shenton, M.E.; Hamoda, H.M.; Schneiderman, J.S.; Bouix, S.; Pasternak, O.; Rathi, Y.; Vu, M.A.; Purohit, M.P.; Helmer, K.; Koerte, I.; et al. A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav. 2012, 6, 137–192. [Google Scholar] [CrossRef] [PubMed]
- Virji-Babul, N.; Borich, M.R.; Makan, N.; Moore, T.; Frew, K.; Emery, C.A.; Boyd, L.A. Diffusion tensor imaging of sports-related concussion in adolescents. Pediatr. Neurol. 2013, 48, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Cubon, V.A.; Putukian, M.; Boyer, C.; Dettwiler, A. A diffusion tensor imaging study on the white matter skeleton in individuals with sports-related concussion. J. Neurotrauma 2011, 28, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Messe, A.; Caplain, S.; Paradot, G.; Garrigue, D.; Mineo, J.F.; Soto Ares, G.; Ducreux, D.; Vignaud, F.; Rozec, G.; Desal, H.; et al. Diffusion tensor imaging and white matter lesions at the subacute stage in mild traumatic brain injury with persistent neurobehavioral impairment. Hum. Brain Mapp. 2011, 32, 999–1011. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.P.; Tetzlaff, J.E.; Bonis, J.M.; Nelson, L.D.; Mayer, A.; Huber, D.L.; Harezlak, J.; Mathews, V.P.; Ulmer, J.L.; Sinson, G.P.; et al. Prevalence of potentially clinically significant MRI findings in athletes with and without sport-related concussion. J. Neurotrauma 2019. [Google Scholar] [CrossRef] [PubMed]
- Gasparovic, C.; Yeo, R.; Mannell, M.; Ling, J.; Elgie, R.; Phillips, J.; Doezema, D.; Mayer, A.R. Neurometabolite concentrations in gray and white matter in mild traumatic brain injury: An 1H-magnetic resonance spectroscopy study. J. Neurotrauma 2009, 26, 1635–1643. [Google Scholar] [CrossRef] [PubMed]
- Shekdar, K.; Wang, D.J. Role of magnetic resonance spectroscopy in evaluation of congenital/developmental brain abnormalities. In Seminars in Ultrasound, CT and MRI; WB Saunders: Philadelphia, PA, USA, 2011; Volume 32, pp. 510–538. [Google Scholar] [CrossRef]
- Vespa, P.; Prins, M.; Ronne-Engstrom, E.; Caron, M.; Shalmon, E.; Hovda, D.A.; Martin, N.A.; Becker, D.P. Increase in extracellular glutamate caused by reduced cerebral perfusion pressure and seizures after human traumatic brain injury: A microdialysis study. J. Neurosurg. 1998, 89, 971–982. [Google Scholar] [CrossRef] [PubMed]
- Vagnozzi, R.; Signoretti, S.; Cristofori, L.; Alessandrini, F.; Floris, R.; Isgro, E.; Ria, A.; Marziali, S.; Zoccatelli, G.; Tavazzi, B.; et al. Assessment of metabolic brain damage and recovery following mild traumatic brain injury: A multicentre, proton magnetic resonance spectroscopic study in concussed patients. Brain 2010, 133, 3232–3242. [Google Scholar] [CrossRef] [PubMed]
- Sivák, Š.; Bittšanský, M.; Grossmann, J.; Nosál’, V.; Kantorova, E.; Sivakova, J.; Demkova, A.; Hnilicova, P.; Dobrota, D.; Kurča, E. Clinical correlations of proton magnetic resonance spectroscopy findings in acute phase after mild traumatic brain injury. Brain Inj. 2014, 28, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S.D.; Brooks, W.M.; Jung, R.E.; Hart, B.L.; Yeo, R.A. Proton MR spectroscopic findings correspond to neuropsychological function in traumatic brain injury. AJNR Am. J. Neuroradiol. 1998, 19, 1879–1885. [Google Scholar] [PubMed]
- Garnett, M.R.; Blamire, A.M.; Rajagopalan, B.; Styles, P.; Cadoux-Hudson, T.A. Evidence for cellular damage in normal-appearing white matter correlates with injury severity in patients following traumatic brain injury: A magnetic resonance spectroscopy study. Brain 2000, 123 Pt 7, 1403–1409. [Google Scholar] [CrossRef]
- Henry, L.C.; Tremblay, S.; Boulanger, Y.; Ellemberg, D.; Lassonde, M. Neurometabolic changes in the acute phase after sports concussions correlate with symptom severity. J. Neurotrauma 2010, 27, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Kubas, B.; Łebkowski, W.; Łebkowska, U.; Kułak, W.; Tarasow, E.; Walecki, J. Proton MR spectroscopy in mild traumatic brain injury. Pol. J. Radiol. 2010, 75, 7–10. [Google Scholar] [PubMed]
- Ptito, A.; Chen, J.K.; Johnston, K.M. Contributions of functional magnetic resonance imaging (fMRI) to sport concussion evaluation. NeuroRehabilitation 2007, 22, 217–227. [Google Scholar] [PubMed]
- Slobounov, S.; Gay, M.; Johnson, B.; Zhang, K. Concussion in athletics: Ongoing clinical and brain imaging research controversies. Brain Imaging Behav. 2012, 6, 224–243. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.K.; Johnston, K.M.; Frey, S.; Petrides, M.; Worsley, K.; Ptito, A. Functional abnormalities in symptomatic concussed athletes: An fMRI study. Neuroimage 2004, 22, 68–82. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.K.; Johnston, K.M.; Petrides, M.; Ptito, A. Neural substrates of symptoms of depression following concussion in male athletes with persisting postconcussion symptoms. Arch. Gen. Psychiatry 2008, 65, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.; Gay, M.; Zhang, K.; Neuberger, T.; Horovitz, S.G.; Hallett, M.; Sebastianelli, W.; Slobounov, S. The use of magnetic resonance spectroscopy in the subacute evaluation of athletes recovering from single and multiple mild traumatic brain injury. J Neurotrauma 2012, 29, 2297–2304. [Google Scholar] [CrossRef] [PubMed]
- Murdaugh, D.L.; King, T.Z.; Sun, B.; Jones, R.A.; Ono, K.E.; Reisner, A.; Burns, T.G. Longitudinal Changes in Resting State Connectivity and White Matter Integrity in Adolescents With Sports-Related Concussion. J. Int. Neuropsychol. Soc. 2018, 24, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Madhavan, R.; Joel, S.E.; Mullick, R.; Cogsil, T.; Niogi, S.N.; Tsiouris, A.J.; Mukherjee, P.; Masdeu, J.C.; Marinelli, L.; Shetty, T. Longitudinal Resting State Functional Connectivity Predicts Clinical Outcome in Mild Traumatic Brain Injury. J. Neurotrauma 2018. [Google Scholar] [CrossRef] [PubMed]
- Strain, J.F.; Womack, K.B.; Didehbani, N.; Spence, J.S.; Conover, H.; Hart, J., Jr.; Kraut, M.A.; Cullum, C.M. Imaging Correlates of Memory and Concussion History in Retired National Football League Athletes. JAMA Neurol. 2015, 72, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Hart, J.; Kraut, M.A.; Womack, K.B.; Strain, J.; Didehbani, N.; Bartz, E.; Conover, H.; Mansinghani, S.; Lu, H.; Cullum, C.M. Neuroimaging of cognitive dysfunction and depression in aging retired National Football League players: A cross-sectional study. JAMA Neurol. 2013, 70, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, S.; Beaulé, V.; Proulx, S.; Tremblay, S.; Marjańska, M.; Doyon, J.; Lassonde, M.; Théoret, H. Multimodal assessment of primary motor cortex integrity following sport concussion in asymptomatic athletes. Clin. Neurophysiol. 2014, 125, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
- Ford, J.H.; Giovanello, K.S.; Guskiewicz, K.M. Episodic memory in former professional football players with a history of concussion: An event-related functional neuroimaging study. J. Neurotrauma 2013, 30, 1683–1701. [Google Scholar] [CrossRef] [PubMed]
- Legarreta, A.D.; Monk, S.H.; Kirby, P.W.; Brett, B.L.; Yengo-Kahn, A.M.; Bhatia, A.; Solomon, G.S.; Zuckerman, S.L. Long-Term Neuroimaging Findings in American Football Players: Systematic Review. World Neurosurg. 2018, 120, e365–e379. [Google Scholar] [CrossRef] [PubMed]
- Monk, S.H.; Legarreta, A.D.; Kirby, P.; Brett, B.L.; Yengo-Kahn, A.M.; Bhatia, A.; Solomon, G.S.; Zuckerman, S.L. Imaging findings after acute sport-related concussion in American football players: A systematic review. J. Clin. Neurosci. 2018. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.; Lovell, M.R.; Iverson, G.L.; Ide, T.; Maroon, J. Examining concussion rates and return to play in high school football players wearing newer helmet technology: A three-year prospective cohort study. Neurosurgery 2006, 58, 275–286, discussion 275–286. [Google Scholar] [CrossRef] [PubMed]
- Rowson, S.; Duma, S.M.; Greenwald, R.M.; Beckwith, J.G.; Chu, J.J.; Guskiewicz, K.M.; Mihalik, J.P.; Crisco, J.J.; Wilcox, B.J.; McAllister, T.W.; et al. Can helmet design reduce the risk of concussion in football? J. Neurosurg. 2014, 120, 919–922. [Google Scholar] [CrossRef] [PubMed]
- Rowson, S.; Bland, M.L.; Campolettano, E.T.; Press, J.N.; Rowson, B.; Smith, J.A.; Sproule, D.W.; Tyson, A.M.; Duma, S.M. Biomechanical Perspectives on Concussion in Sport. Sports Med. Arthrosc. Rev. 2016, 24, 100–107. [Google Scholar] [CrossRef] [PubMed]
- King, A.I. Is head injury caused by linear or angular acceleration? In Proceedings of the International Research Conference on the Biomechanics of Impact (IRCOBI), Lisbon, Portugal, 25–26 September 2003.
- Breedlove, K.M.; Breedlove, E.; Nauman, E.; Bowman, T.G.; Lininger, M.R. The Ability of an Aftermarket Helmet Add-On Device to Reduce Impact-Force Accelerations During Drop Tests. J. Athl. Train. 2017, 52, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Lange, K.; How Army Research Is Combating Concussions in the NFL. DoDLive. 2016. Available online: http://www.dodlive.mil/2016/2002/2004/how-army-research-is-combating-concussions-in-the-nfl/ (accessed on 1 October 2019).
- Zuckerman, S.L.; Reynolds, B.B.; Yengo-Kahn, A.M.; Kuhn, A.W.; Chadwell, J.T.; Goodale, S.E.; Lafferty, C.E.; Langford, K.T.; McKeithan, L.J.; Kirby, P.; et al. A football helmet prototype that reduces linear and rotational acceleration with the addition of an outer shell. J. Neurosurg. 2018. [Google Scholar] [CrossRef] [PubMed]
- Rowson, S.; Duma, S.M. Development of the STAR evaluation system for football helmets: Integrating player head impact exposure and risk of concussion. Ann. Biomed. Eng. 2011, 39, 2130–2140. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.R.; Warnica, M.J.; Levine, I.C.; Brooks, J.S.; Laing, A.C.; Burkhart, T.A.; Dickey, J.P. Laboratory Evaluation of the gForce Tracker, a Head Impact Kinematic Measuring Device for Use in Football Helmets. Ann. Biomed. Eng. 2016, 44, 1246–1256. [Google Scholar] [CrossRef] [PubMed]
- Rowson, S.; Duma, S.M.; Beckwith, J.G.; Chu, J.J.; Greenwald, R.M.; Crisco, J.J.; Brolinson, P.G.; Duhaime, A.C.; McAllister, T.W.; Maerlender, A.C. Rotational head kinematics in football impacts: An injury risk function for concussion. Ann. Biomed. Eng. 2012, 40, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Press, J.N.; Rowson, S. Quantifying Head Impact Exposure in Collegiate Women’s Soccer. Clin. J. Sport Med. 2017, 27, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.C.; Nangia, V.; Bui, K.; Hammoor, B.; Kurt, M.; Hernandez, F.; Kuo, C.; Camarillo, D.B. In Vivo Evaluation of Wearable Head Impact Sensors. Ann. Biomed. Eng. 2016, 44, 1234–1245. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, K.L.; Baker, M.M.; Dalton, S.L.; Dompier, T.P.; Broglio, S.P.; Kerr, Z.Y. Epidemiology of Sport-Related Concussions in High School Athletes: National Athletic Treatment, Injury and Outcomes Network (NATION), 2011–2012 through 2013–2014. J. Athl. Train. 2017, 52, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Brennan, J.H.; Mitra, B.; Synnot, A.; McKenzie, J.; Willmott, C.; McIntosh, A.S.; Maller, J.J.; Rosenfeld, J.V. Accelerometers for the Assessment of Concussion in Male Athletes: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Harman, D. Reducing the Risk of Concussion Through Personalized Helmet Design, 2016.
Domain | Suggested Test(s) |
---|---|
Postural Stability | Modified balance error scoring system (mBESS) |
Oculomotor Functions | Vestibular/ocular motor screening (VOMS) |
Neurocognitive Functions | Standard assessment of concussion (SAC) of the sport concussion assessment tool-5th edition (SCAT5) |
Symptoms | Post-concussion symptom scale (PCSS) of the sport concussion assessment tool-5th edition (SCAT5) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McKeithan, L.; Hibshman, N.; Yengo-Kahn, A.M.; Solomon, G.S.; Zuckerman, S.L. Sport-Related Concussion: Evaluation, Treatment, and Future Directions. Med. Sci. 2019, 7, 44. https://doi.org/10.3390/medsci7030044
McKeithan L, Hibshman N, Yengo-Kahn AM, Solomon GS, Zuckerman SL. Sport-Related Concussion: Evaluation, Treatment, and Future Directions. Medical Sciences. 2019; 7(3):44. https://doi.org/10.3390/medsci7030044
Chicago/Turabian StyleMcKeithan, Lydia, Natalie Hibshman, Aaron M. Yengo-Kahn, Gary S. Solomon, and Scott L. Zuckerman. 2019. "Sport-Related Concussion: Evaluation, Treatment, and Future Directions" Medical Sciences 7, no. 3: 44. https://doi.org/10.3390/medsci7030044