Neurorehabilitation of Traumatic Brain Injury (TBI): A Clinical Review
Abstract
:1. Introduction
2. Lesion Diversity and Clinical Patterns
2.1. From Lesion Diversity…
2.2. … To Clinical Patterns
3. Which Medical Aspects Are Special in the Rehabilitation of TBI?
3.1. Disorders of Consciousness (DOC)
3.2. Paroxysmal Sympathetic Hyperactivity (PSH)
3.3. Posttraumatic Agitation (PA)
3.4. Posttraumatic Hydrocephalus (PTH)
3.5. Posttraumatic Neuroendocrine Disorders in TBI
4. Admission to Rehabilitation After TBI
4.1. Who Will Be Admitted to Neurorehabilitation?
4.2. What Are the Admission Criteria?
4.3. Which Patients Should Be Excluded and Which Not—Despite Current Practice?
5. The Role of Timing and Rehabilitation Programmes on the Outcome in TBI Rehabilitation
6. Intensity and Duration of Interprofessional In-Patient Rehabilitation
6.1. Intensity
6.2. Duration
7. Are There Any Specific Rehabilitation Approaches Superior to Another?
8. Conclusions
Funding
Conflicts of Interest
References
- Thurman, D.J.; Alverson, C.; Dunn, K.A.; Guerrero, J.; Sniezek, J.E. Traumatic brain injury in the United States: A public health perspective. J. Head Trauma Rehabil. 1999, 14, 602–615. [Google Scholar] [CrossRef]
- Zaloshnja, E.; Miller, T.; Langlois, J.A.; Selassie, A.W. Prevalence of long-term disability from traumatic brain injury in the civilian population of the United States, 2005. J. Head Trauma Rehabil. 2008, 23, 394–400. [Google Scholar] [CrossRef]
- Walder, B.; Haller, G.; Rebetez, M.M.L.; Delhumeau, C.; Bottequin, E.; Schoettker, P.; Ravussin, P.; Brodmann Maeder, M.; Stover, J.F.; Zürcher, M.; et al. Severe traumatic brain injury in a high-income country: An epidemiological study. J. Neurotrauma 2013, 30, 1934–1942. [Google Scholar] [CrossRef]
- Leo, P.; McCrea, M. Epidemiology. In Translational Research in Traumatic Brain Injury; Laskowitz, D., Grant, G., Eds.; Frontiers in Neuroscience; CRC Press/Taylor and Francis Group: Boca Raton, FL, USA, 2016; ISBN 978-1-4665-8491-4. [Google Scholar]
- Adams, J.H.; Doyle, D.; Ford, I.; Gennarelli, T.A.; Graham, D.I.; Mclellan, D.R. Diffuse axonal injury in head injury: Definition, diagnosis and grading. Histopathology 1989, 15, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Christman, C.W.; Grady, M.S.; Walker, S.A.; Holloway, K.L.; Povlishock, J.T. Ultrastructural studies of diffuse axonal injury in humans. J. Neurotrauma 1994, 11, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.H.; Meaney, D.F.; Shull, W.H. Diffuse axonal injury in head trauma. J. Head Trauma Rehabil. 2003, 18, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Andriessen, T.M.J.C.; Jacobs, B.; Vos, P.E. Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury. J. Cell. Mol. Med. 2010, 14, 2381–2392. [Google Scholar] [CrossRef] [PubMed]
- Johnson, V.E.; Stewart, W.; Smith, D.H. Axonal pathology in traumatic brain injury. Exp. Neurol. 2013, 246, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhang, K.; Wang, Z.; Chen, G. Progress of Research on Diffuse Axonal Injury after Traumatic Brain Injury. Neural Plast. 2016, 2016, 9746313. [Google Scholar] [CrossRef] [PubMed]
- Povlishock, J.T.; Katz, D.I. Update of neuropathology and neurological recovery after traumatic brain injury. J. Head Trauma Rehabil. 2005, 20, 76–94. [Google Scholar] [CrossRef]
- Kinnunen, K.M.; Greenwood, R.; Powell, J.H.; Leech, R.; Hawkins, P.C.; Bonnelle, V.; Patel, M.C.; Counsell, S.J.; Sharp, D.J. White matter damage and cognitive impairment after traumatic brain injury. Brain 2011, 134, 449–463. [Google Scholar] [CrossRef] [PubMed]
- Skandsen, T.; Kvistad, K.A.; Solheim, O.; Strand, I.H.; Folvik, M.; Vik, A. Prevalence and impact of diffuse axonal injury in patients with moderate and severe head injury: A cohort study of early magnetic resonance imaging findings and 1-year outcome. J. Neurosurg. 2010, 113, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Bigler, E.D. The lesion(s) in traumatic brain injury: Implications for clinical neuropsychology. Arch. Clin. Neuropsychol. 2001, 16, 95–131. [Google Scholar] [CrossRef] [PubMed]
- Bigler, E.D. Anterior and middle cranial fossa in traumatic brain injury: Relevant neuroanatomy and neuropathology in the study of neuropsychological outcome. Neuropsychology 2007, 21, 515–531. [Google Scholar] [CrossRef] [PubMed]
- Fork, M.; Bartels, C.; Ebert, A.D.; Grubich, C.; Synowitz, H.; Wallesch, C.-W. Neuropsychological sequelae of diffuse traumatic brain injury. Brain Inj. 2005, 19, 101–108. [Google Scholar] [CrossRef]
- Scheid, R.; Walther, K.; Guthke, T.; Preul, C.; von Cramon, D.Y. Cognitive sequelae of diffuse axonal injury. Arch. Neurol. 2006, 63, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Sharp, D.J.; Scott, G.; Leech, R. Network dysfunction after traumatic brain injury. Nat. Rev. Neurol. 2014, 10, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.H. Review of motor recovery in patients with traumatic brain injury. NeuroRehabilitation 2009, 24, 349–353. [Google Scholar] [PubMed]
- Ponsford, J.L.; Downing, M.G.; Olver, J.; Ponsford, M.; Acher, R.; Carty, M.; Spitz, G. Longitudinal follow-up of patients with traumatic brain injury: Outcome at two, five, and ten years post-injury. J. Neurotrauma 2014, 31, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Ponsford, J.L.; Ziino, C.; Parcell, D.L.; Shekleton, J.A.; Roper, M.; Redman, J.R.; Phipps-Nelson, J.; Rajaratnam, S.M.W. Fatigue and sleep disturbance following traumatic brain injury--their nature, causes, and potential treatments. J. Head Trauma Rehabil. 2012, 27, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Alway, Y.; Gould, K.R.; Johnston, L.; McKenzie, D.; Ponsford, J. A prospective examination of Axis I psychiatric disorders in the first 5 years following moderate to severe traumatic brain injury. Psychol. Med. 2016, 46, 1331–1341. [Google Scholar] [CrossRef]
- Posner, J.B.; Plum, F.; Saper, C.B.; Schiff, N. Plum and Posner’s Diagnosis of Stupor and Coma; Oxford University Press: New York, NY, USA, 2007; ISBN 978-0-19-532131-9. [Google Scholar]
- Giacino, J.; Whyte, J. The Vegetative and Minimally Conscious States. J. Head Trauma Rehabil. 2005, 20, 30–50. [Google Scholar] [CrossRef] [PubMed]
- Laureys, S.; Celesia, G.G.; Cohadon, F.; Lavrijsen, J.; León-Carrión, J.; Sannita, W.G.; Sazbon, L.; Schmutzhard, E.; von Wild, K.R.; Zeman, A.; et al. Unresponsive wakefulness syndrome: A new name for the vegetative state or apallic syndrome. BMC Med. 2010, 8, 68. [Google Scholar] [CrossRef] [PubMed]
- Giacino, J.T.; Ashwal, S.; Childs, N.; Cranford, R.; Jennett, B.; Katz, D.I.; Kelly, J.P.; Rosenberg, J.H.; Whyte, J.; Zafonte, R.D.; et al. The minimally conscious state: Definition and diagnostic criteria. Neurology 2002, 58, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Giacino, J.T.; Kalmar, K.; Whyte, J. The JFK Coma Recovery Scale-Revised: Measurement characteristics and diagnostic utility. Arch. Phys. Med. Rehabil. 2004, 85, 2020–2029. [Google Scholar] [CrossRef] [PubMed]
- Mallinson, T.; Pape, T.L.-B.; Guernon, A. Responsiveness, Minimal Detectable Change, and Minimally Clinically Important Differences for the Disorders of Consciousness Scale. J. Head Trauma Rehabil. 2016, 31, E43–E51. [Google Scholar] [CrossRef]
- Pignat, J.-M.; Mauron, E.; Jöhr, J.; Gilart de Keranflec’h, C.; Van De Ville, D.; Preti, M.G.; Meskaldji, D.E.; Hömberg, V.; Laureys, S.; Draganski, B.; et al. Outcome Prediction of Consciousness Disorders in the Acute Stage Based on a Complementary Motor Behavioural Tool. PLoS ONE 2016, 11, e0156882. [Google Scholar] [CrossRef]
- Løvstad, M.; Andelic, N.; Knoph, R.; Jerstad, T.; Anke, A.; Skandsen, T.; Hauger, S.L.; Giacino, J.T.; Røe, C.; Schanke, A.-K. Rate of disorders of consciousness in a prospective population-based study of adults with traumatic brain injury. J. Head Trauma Rehabil. 2014, 29, E31–E43. [Google Scholar] [CrossRef]
- Whyte, J.; Katz, D.; Long, D.; DiPasquale, M.C.; Polansky, M.; Kalmar, K.; Giacino, J.; Childs, N.; Mercer, W.; Novak, P.; et al. Predictors of outcome in prolonged posttraumatic disorders of consciousness and assessment of medication effects: A multicenter study. Arch. Phys. Med. Rehabil. 2005, 86, 453–462. [Google Scholar] [CrossRef]
- Katz, D.I.; Polyak, M.; Coughlan, D.; Nichols, M.; Roche, A. Natural history of recovery from brain injury after prolonged disorders of consciousness: Outcome of patients admitted to inpatient rehabilitation with 1–4 year follow-up. In Progress in Brain Research; Laureys, S., Schiff, N.D., Owen, A.M., Eds.; Coma Science: Clinical and Ethical Implications; Elsevier: New York, NY, USA; Oxford, UK; Amsterdam, The Netherlands, 2009; Volume 177, pp. 73–88. [Google Scholar]
- Hammond, F.M.; Giacino, J.T.; Nakase Richardson, R.; Sherer, M.; Zafonte, R.D.; Whyte, J.; Arciniegas, D.B.; Tang, X. Disorders of Consciousness due to Traumatic Brain Injury: Functional Status Ten Years Post-Injury. J. Neurotrauma 2018. [Google Scholar] [CrossRef]
- The Multi-Society Task Force on PVS Medical Aspects of the Persistent Vegetative State. N. Engl. J. Med. 1994, 330, 1572–1579. [CrossRef]
- Lammi, M.H.; Smith, V.H.; Tate, R.L.; Taylor, C.M. The minimally conscious state and recovery potential: A follow-up study 2 to 5 years after traumatic brain injury. Arch. Phys. Med. Rehabil. 2005, 86, 746–754. [Google Scholar] [CrossRef]
- Choi, S.C.; Barnes, T.Y.; Bullock, R.; Germanson, T.A.; Marmarou, A.; Young, H.F. Temporal profile of outcomes in severe head injury. J. Neurosurg. 1994, 81, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Arts, W.; van Dongen, H.R.; van Hof-van Duin, J.; Lammens, E. Unexpected improvement after prolonged posttraumatic vegetative state. J. Neurol. Neurosurg. Psychiatry 1985, 48, 1300–1303. [Google Scholar] [CrossRef]
- Levin, H.S.; Saydjari, C.; Eisenberg, H.M.; Foulkes, M.; Marshall, L.F.; Ruff, R.M.; Jane, J.A.; Marmarou, A. Vegetative state after closed-head injury. A Traumatic Coma Data Bank Report. Arch. Neurol. 1991, 48, 580–585. [Google Scholar] [CrossRef]
- Childs, N.L.; Mercer, W.N. Brief report: Late improvement in consciousness after post-traumatic vegetative state. N. Engl. J. Med. 1996, 334, 24–25. [Google Scholar] [CrossRef] [PubMed]
- Godbolt, A.; DeBoussard, C.; Stenberg, M.; Lindgren, M.; Ulfarsson, T.; Borg, J. Disorders of consciousness after severe traumatic brain injury: A Swedish-Icelandic study of incidence, outcomes and implications for optimizing care pathways. J. Rehabil. Med. 2013, 45, 741–748. [Google Scholar] [CrossRef]
- Schnakers, C.; Monti, M.M. Disorders of consciousness after severe brain injury: Therapeutic options. Curr. Opin. Neurol. 2017, 30, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Giacino, J.T.; Kalmar, K.; Eifert, B.; Yablon, S.A.; Nordenbo, A.; Maurer-Karattup, P. Placebo-Controlled Trial of Amantadine for Severe Traumatic Brain Injury. N. Engl. J. Med. 2012, 8. [Google Scholar] [CrossRef]
- Whyte, J.; Myers, R. Incidence of Clinically Significant Responses to Zolpidem Among Patients with Disorders of Consciousness: A Preliminary Placebo Controlled Trial. Am. J. Phys. Med. Rehabil. 2009, 88, 410–418. [Google Scholar] [CrossRef]
- Thonnard, M.; Gosseries, O.; Demertzi, A.; Lugo, Z.; Vanhaudenhuyse, A.; Bruno, M.-A.; Chatelle, C.; Thibaut, A.; Charland-Verville, V.; Habbal, D.; et al. Effect of zolpidem in chronic disorders of consciousness: A prospective open-label study. Funct. Neurol. 2013, 28, 259. [Google Scholar]
- Meythaler, J.M.; Depalma, L.; Devivo, M.J.; Guin-Renfroe, S.; Novack, T.A. Sertraline to improve arousal and alertness in severe traumatic brain injury secondary to motor vehicle crashes. Brain Inj. 2001, 15, 321–331. [Google Scholar] [CrossRef]
- Pape, T.L.-B.; Rosenow, J.M.; Steiner, M.; Parrish, T.; Guernon, A.; Harton, B.; Patil, V.; Bhaumik, D.K.; McNamee, S.; Walker, M.; et al. Placebo-Controlled Trial of Familiar Auditory Sensory Training for Acute Severe Traumatic Brain Injury: A Preliminary Report. Neurorehabil. Neural Repair 2015, 29, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Megha, M.; Harpreet, S.; Nayeem, Z. Effect of frequency of multimodal coma stimulation on the consciousness levels of traumatic brain injury comatose patients. Brain Inj. 2013, 27, 570–577. [Google Scholar] [CrossRef]
- Cheng, L.; Cortese, D.; Monti, M.M.; Wang, F.; Riganello, F.; Arcuri, F.; Di, H.; Schnakers, C. Do Sensory Stimulation Programs Have an Impact on Consciousness Recovery? Front. Neurol. 2018, 9, 826. [Google Scholar] [CrossRef] [PubMed]
- Frazzitta, G.; Zivi, I.; Valsecchi, R.; Bonini, S.; Maffia, S.; Molatore, K.; Sebastianelli, L.; Zarucchi, A.; Matteri, D.; Ercoli, G.; et al. Effectiveness of a Very Early Stepping Verticalization Protocol in Severe Acquired Brain Injured Patients: A Randomized Pilot Study in ICU. PLoS ONE 2016, 11, e0158030. [Google Scholar] [CrossRef]
- Krewer, C.; Luther, M.; Koenig, E.; Müller, F. Tilt Table Therapies for Patients with Severe Disorders of Consciousness: A Randomized, Controlled Trial. PLoS ONE 2015, 10, e0143180. [Google Scholar] [CrossRef]
- Baguley, I.J.; Perkes, I.E.; Fernandez-Ortega, J.-F.; Rabinstein, A.A.; Dolce, G.; Hendricks, H.T. for the Consensus Working Group Paroxysmal Sympathetic Hyperactivity after Acquired Brain Injury: Consensus on Conceptual Definition, Nomenclature, and Diagnostic Criteria. J. Neurotrauma 2014, 31, 1515–1520. [Google Scholar] [CrossRef] [PubMed]
- Perkes, I.; Baguley, I.J.; Nott, M.T.; Menon, D.K. A review of paroxysmal sympathetic hyperactivity after acquired brain injury. Ann. Neurol. 2010, 68, 126–135. [Google Scholar] [CrossRef]
- Eapen, B.; Allred, D.; O’Rourke, J.; Cifu, D. Rehabilitation of Moderate-to-Severe Traumatic Brain Injury. Semin. Neurol. 2015, 35, e1–e13. [Google Scholar] [PubMed]
- Warden, D.L.; Gordon, B.; McAllister, T.W.; Silver, J.M.; Barth, J.T.; Bruns, J.; Drake, A.; Gentry, T.; Jagoda, A.; Katz, D.I.; et al. Guidelines for the Pharmacologic Treatment of Neurobehavioral Sequelae of Traumatic Brain Injury. J. Neurotrauma 2006, 23, 1468–1501. [Google Scholar] [CrossRef]
- Lombardi, F. Pharmacological treatment of neurobehavioural sequelae of traumatic brain injury. Eur. J. Anaesthesiol. Suppl. 2008, 42, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Luauté, J.; Plantier, D.; Wiart, L.; Tell, L. Care management of the agitation or aggressiveness crisis in patients with TBI. Systematic review of the literature and practice recommendations. Ann. Phys. Rehabil. Med. 2016, 59, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Fleminger, S.; Greenwood, R.R.; Oliver, D.L. Pharmacological management for agitation and aggression in people with acquired brain injury. Cochrane Database Syst. Rev. 2006. [Google Scholar] [CrossRef] [PubMed]
- Sessler, C.N.; Gosnell, M.S.; Grap, M.J.; Brophy, G.M.; O’Neal, P.V.; Keane, K.A.; Tesoro, E.P.; Elswick, R.K. The Richmond Agitation–Sedation Scale: Validity and Reliability in Adult Intensive Care Unit Patients. Am. J. Respir. Crit. Care Med. 2002, 166, 1338–1344. [Google Scholar] [CrossRef]
- Robinson, D.; Thompson, S.; Bauerschmidt, A.; Melmed, K.; Couch, C.; Park, S.; Agarwal, S.; Roh, D.; Connolly, E.S.; Claassen, J. Dispersion in Scores on the Richmond Agitation and Sedation Scale as a Measure of Delirium in Patients with Subdural Hematomas. Neurocrit. Care 2018. [Google Scholar] [CrossRef]
- Bogner, J.A.; Corrigan, J.D.; Bode, R.K.; Heinemann, A.W. Rating Scale Analysis of the Agitated Behavior Scale. J. Head Trauma Rehabil. 2000, 15, 656–669. [Google Scholar] [CrossRef]
- Guyot, L.L.; Michael, D.B. Post-traumatic hydrocephalus. Neurol. Res. 2000, 22, 25–28. [Google Scholar] [CrossRef]
- Mazzini, L.; Campini, R.; Angelino, E.; Rognone, F.; Pastore, I.; Oliveri, G. Posttraumatic hydrocephalus: A clinical, neuroradiologic, and neuropsychologic assessment of long-term outcome. Arch. Phys. Med. Rehabil. 2003, 84, 1637–1641. [Google Scholar] [CrossRef]
- Kammersgaard, L.P.; Linnemann, M.; Tibæk, M. Hydrocephalus following severe traumatic brain injury in adults. Incidence, timing, and clinical predictors during rehabilitation. NeuroRehabilitation 2013, 33, 473–480. [Google Scholar]
- Weintraub, A.H.; Gerber, D.J.; Kowalski, R.G. Posttraumatic Hydrocephalus as a Confounding Influence on Brain Injury Rehabilitation: Incidence, Clinical Characteristics, and Outcomes. Arch. Phys. Med. Rehabil. 2017, 98, 312–319. [Google Scholar] [CrossRef]
- Tian, H.-L.; Xu, T.; Hu, J.; Cui, Y.; Chen, H.; Zhou, L.-F. Risk factors related to hydrocephalus after traumatic subarachnoid hemorrhage. Surg. Neurol. 2008, 69, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Denes, Z.; Barsi, P.; Szel, I.; Boros, E.; Fazekas, G. Complication during postacute rehabilitation: Patients with posttraumatic hydrocephalus. Int. J. Rehabil. Res. 2011, 34, 222–226. [Google Scholar] [CrossRef]
- Daou, B.; Klinge, P.; Tjoumakaris, S.; Rosenwasser, R.H.; Jabbour, P. Revisiting secondary normal pressure hydrocephalus: Does it exist? A review. Neurosurg. Focus 2016, 41, E6. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Wan, S.; Zhan, R.Y.; Li, G.; Gong, J.B.; Liu, W.G.; Yang, X.F. Shunt implantation in a special sub-group of post-traumatic hydrocephalus–patients have normal intracranial pressure without clinical representations of hydrocephalus. Brain Inj. 2009, 23, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Webb, N.E.; Little, B.; Loupee-Wilson, S.; Power, E.M. Traumatic brain injury and neuro-endocrine disruption: Medical and psychosocial rehabilitation. NeuroRehabilitation 2014, 34, 625–636. [Google Scholar]
- Klose, M.; Feldt-Rasmussen, U. Chronic endocrine consequences of traumatic brain injury—What is the evidence? Nat. Rev. Endocrinol. 2017, 14, 57–62. [Google Scholar] [CrossRef]
- Agha, A.; Rogers, B.; Mylotte, D.; Taleb, F.; Tormey, W.; Phillips, J.; Thompson, C.J. Neuroendocrine dysfunction in the acute phase of traumatic brain injury. Clin. Endocrinol. 2004, 60, 584–591. [Google Scholar] [CrossRef]
- Schneider, H.J.; Schneider, M.; Kreitschmann-Andermahr, I.; Tuschy, U.; Wallaschofski, H.; Fleck, S.; Faust, M.; Renner, C.I.E.; Kopczak, A.; Saller, B.; et al. Structured assessment of hypopituitarism after traumatic brain injury and aneurysmal subarachnoid hemorrhage in 1242 patients: The German interdisciplinary database. J. Neurotrauma 2011, 28, 1693–1698. [Google Scholar] [CrossRef] [PubMed]
- Krewer, C.; Schneider, M.; Schneider, H.J.; Kreitschmann-Andermahr, I.; Buchfelder, M.; Faust, M.; Berg, C.; Wallaschofski, H.; Renner, C.; Uhl, E.; et al. Neuroendocrine Disturbances One to Five or More Years after Traumatic Brain Injury and Aneurysmal Subarachnoid Hemorrhage: Data from the German Database on Hypopituitarism. J. Neurotrauma 2016, 33, 1544–1553. [Google Scholar] [CrossRef] [PubMed]
- Quinn, M.; Agha, A. Post-Traumatic Hypopituitarism—Who Should Be Screened, When, and How? Front. Endocrinol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Hannon, M.J.; Crowley, R.K.; Behan, L.A.; O’Sullivan, E.P.; O’Brien, M.M.C.; Sherlock, M.; Rawluk, D.; O’Dwyer, R.; Tormey, W.; Thompson, C.J. Acute glucocorticoid deficiency and diabetes insipidus are common after acute traumatic brain injury and predict mortality. J. Clin. Endocrinol. Metab. 2013, 98, 3229–3237. [Google Scholar] [CrossRef]
- Shafi, S.; Barnes, S.A.; Millar, D.; Sobrino, J.; Kudyakov, R.; Berryman, C.; Rayan, N.; Dubiel, R.; Coimbra, R.; Magnotti, L.J.; et al. Suboptimal compliance with evidence-based guidelines in patients with traumatic brain injuries. J. Neurosurg. 2014, 120, 773–777. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, R.; Walder, B.; Delhumeau, C.; Müri, R.M. Predictors of inpatient (neuro)rehabilitation after acute care of severe traumatic brain injury: An epidemiological study. Brain Inj. 2016, 30, 1186–1193. [Google Scholar] [CrossRef]
- Sveen, U.; Røe, C.; Sigurdardottir, S.; Skandsen, T.; Andelic, N.; Manskow, U.; Berntsen, S.A.; Soberg, H.L.; Anke, A. Rehabilitation pathways and functional independence one year after severe traumatic brain injury. Eur. J. Phys. Rehabil. Med. 2016, 52, 650–661. [Google Scholar]
- Odgaard, L.; Poulsen, I.; Kammersgaard, L.P.; Johnsen, S.P.; Nielsen, J.F. Surviving severe traumatic brain injury in Denmark: Incidence and predictors of highly specialized rehabilitation. Clin. Epidemiol. 2015, 7, 225–234. [Google Scholar] [CrossRef]
- Greenwald, B.D.; Rigg, J.L. Neurorehabilitation in traumatic brain injury: Does it make a difference? Mt. Sinai J. Med. N. Y. 2009, 76, 182–189. [Google Scholar] [CrossRef]
- Lamontagne, M.-E.; Truchon, C.; Kagan, C.; Bayley, M.; Swaine, B.; Marshall, S.; Kua, A.; Allaire, A.-S.; Marier Deschenes, P.; Gargaro, J. INESSS-ONF Clinical Practice Guidelines for the Rehabilitation of Adults Having Sustained a Moderate-To-Severe TBI; Taylor & Francis Inc.: Philadelphia, PA, USA, 2016. [Google Scholar]
- Cnossen, M.C.; Lingsma, H.F.; Tenovuo, O.; Maas, A.I.R.; Menon, D.; Steyerberg, E.W.; Ribbers, G.M.; Polinder, S. Rehabilitation after traumatic brain injury: A survey in 70 European neurotrauma centres participating in the CENTER-TBI study. J. Rehabil. Med. 2017, 49, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, R.; Müri, R.M.; Walder, B. Integrated Health Care Management of Moderate to Severe TBI in Older Patients-A Narrative Review. Curr. Neurol. Neurosci. Rep. 2017, 17, 92. [Google Scholar] [CrossRef]
- Turner-Stokes, L.; Pick, A.; Nair, A.; Disler, P.B.; Wade, D.T. Multi-disciplinary rehabilitation for acquired brain injury in adults of working age. Cochrane Database Syst. Rev. 2015, 12, CD004170. [Google Scholar] [CrossRef] [PubMed]
- Turner-Stokes, L. Evidence for the effectiveness of multi-disciplinary rehabilitation following acquired brain injury: A synthesis of two systematic approaches. J. Rehabil. Med. 2008, 40, 691–701. [Google Scholar] [CrossRef]
- Atkins, D.; Briss, P.A.; Eccles, M.; Flottorp, S.; Guyatt, G.H.; Harbour, R.T.; Hill, S.; Jaeschke, R.; Liberati, A.; Magrini, N.; et al. Systems for grading the quality of evidence and the strength of recommendations II: Pilot study of a new system. BMC Health Serv. Res. 2005, 5, 25. [Google Scholar] [CrossRef] [PubMed]
- Andelic, N.; Bautz-Holter, E.; Ronning, P.; Olafsen, K.; Sigurdardottir, S.; Schanke, A.-K.; Sveen, U.; Tornas, S.; Sandhaug, M.; Roe, C. Does an Early Onset and Continuous Chain of Rehabilitation Improve the Long-Term Functional Outcome of Patients with Severe Traumatic Brain Injury? J. Neurotrauma 2012, 29, 66–74. [Google Scholar] [CrossRef]
- Königs, M.; Beurskens, E.A.; Snoep, L.; Scherder, E.J.; Oosterlaan, J. Effects of Timing and Intensity of Neurorehabilitation on Functional Outcome After Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Arch. Phys. Med. Rehabil. 2018, 99, 1149–1159. [Google Scholar] [CrossRef] [PubMed]
- Formisano, R.; Azicnuda, E.; Sefid, M.K.; Zampolini, M.; Scarponi, F.; Avesani, R. Early rehabilitation: Benefits in patients with severe acquired brain injury. Neurol. Sci. 2017, 38, 181–184. [Google Scholar] [CrossRef]
- Zhu, X.L.; Poon, W.S.; Chan, C.H.; Chan, S.H. Does intensive rehabilitation improve the functional outcome of patients with traumatic brain injury? Interim result of a randomized controlled trial. Br. J. Neurosurg. 2001, 15, 464–473. [Google Scholar] [CrossRef]
- Shiel, A.; Burn, J.P.; Henry, D.; Clark, J.; Wilson, B.A.; Burnett, M.E.; McLellan, D.L. The effects of increased rehabilitation therapy after brain injury: Results of a prospective controlled trial. Clin. Rehabil. 2001, 15, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Hart, T.; Whyte, J.; Poulsen, I.; Kristensen, K.S.; Nordenbo, A.M.; Chervoneva, I.; Vaccaro, M.J. How Do Intensity and Duration of Rehabilitation Services Affect Outcomes from Severe Traumatic Brain Injury? A Natural Experiment Comparing Health Care Delivery Systems in 2 Developed Nations. Arch. Phys. Med. Rehabil. 2016, 97, 2045–2053. [Google Scholar] [CrossRef] [PubMed]
- Slade, A.; Tennant, A.; Chamberlain, M.A. A randomised controlled trial to determine the effect of intensity of therapy upon length of stay in a neurological rehabilitation setting. J. Rehabil. Med. 2002, 34, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Formisano, R.; Contrada, M.; Aloisi, M.; Buzzi, M.G.; Cicinelli, P.; Vedova, C.D.; Laurenza, L.; Matteis, M.; Spanedda, F.; Vinicola, V.; et al. Improvement rate of patients with severe brain injury during post-acute intensive rehabilitation. Neurol. Sci. 2018, 39, 753–755. [Google Scholar] [CrossRef] [PubMed]
- McLafferty, F.S.; Barmparas, G.; Ortega, A.; Roberts, P.; Ko, A.; Harada, M.; Nuño, M.; Black, K.L.; Ley, E.J. Predictors of improved functional outcome following inpatient rehabilitation for patients with traumatic brain injury. NeuroRehabilitation 2016, 39, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Foy, C.M.L.; Somers, J.S. Increase in functional abilities following a residential educational and neurorehabilitation programme in young adults with acquired brain injury. NeuroRehabilitation 2013, 32, 671–678. [Google Scholar] [PubMed]
- Turner-Stokes, L. Cost-efficiency of longer-stay rehabilitation programmes: Can they provide value for money? Brain Inj. 2007, 21, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine. Cognitive Rehabilitation Therapy for Traumatic Brain Injury: Evaluating the Evidence; The National Academics Press: Washington, DC, USA, 2011; ISBN 978-0-309-21818-4. [Google Scholar]
- Brasure, M.; Lamberty, G.J.; Sayer, N.A.; Nelson, N.W.; MacDonald, R.; Ouellette, J.; Wilt, T.J. Participation After Multidisciplinary Rehabilitation for Moderate to Severe Traumatic Brain Injury in Adults: A Systematic Review. Arch. Phys. Med. Rehabil. 2013, 94, 1398–1420. [Google Scholar] [CrossRef] [PubMed]
- Cicerone, K.D.; Mott, T.; Azulay, J.; Sharlow-Galella, M.A.; Ellmo, W.J.; Paradise, S.; Friel, J.C. A randomized controlled trial of holistic neuropsychologic rehabilitation after traumatic brain injury. Arch. Phys. Med. Rehabil. 2008, 89, 2239–2249. [Google Scholar] [CrossRef]
- Cicerone, K.D.; Langenbahn, D.M.; Braden, C.; Malec, J.F.; Kalmar, K.; Fraas, M.; Felicetti, T.; Laatsch, L.; Harley, J.P.; Bergquist, T.; et al. Evidence-based cognitive rehabilitation: Updated review of the literature from 2003 through 2008. Arch. Phys. Med. Rehabil. 2011, 92, 519–530. [Google Scholar] [CrossRef]
- Bayley, M.T.; Tate, R.; Douglas, J.M.; Turkstra, L.S.; Ponsford, J.; Stergiou-Kita, M.; Kua, A.; Bragge, P. INCOG Expert Panel INCOG guidelines for cognitive rehabilitation following traumatic brain injury: Methods and overview. J. Head Trauma Rehabil. 2014, 29, 290–306. [Google Scholar] [CrossRef]
- Scottish Intercollegiate Guidelines Network (SIGN) Brain Injury Rehabilitation in Adults: A National Clinical Guideline; SIGN Publication No. 130; SIGN: Edinburgh, UK, 2013.
Quality of Evidence | Rehabilitation | Patient Category | Outcome | Potential of Cost Savings | Recommendation (GRADE System) |
---|---|---|---|---|---|
High | Intensive | Severe TBI | Earlier gain in independence Reduced length of stay (LOS) in hospital | + | Strongly recommended |
Moderate/high | Specialist | Very severe/severe TBI | Improved independence Reduced ongoing care | ++ | Recommended |
Specialist vocational programmes | Moderate/severe TBI | Gain in productivity | ++ | Strongly recommended | |
Moderate | Early | Severe TBI | Earlier gain in independence Reduced LOS in hospital | + | Recommended |
Community based | Moderate/severe TBI | Improved productivity | ++ | Recommended | |
Low/moderate | Behavioural management programmes | TBI with severe behavioural problems | Improved social behaviour reduced ongoing care support | + | Recommended |
Late and ongoing rehabilitation | Moderate/severe TBI with enduring disability | Maintenance of independence/productivity | +/− | Conditionally recommended |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oberholzer, M.; Müri, R.M. Neurorehabilitation of Traumatic Brain Injury (TBI): A Clinical Review. Med. Sci. 2019, 7, 47. https://doi.org/10.3390/medsci7030047
Oberholzer M, Müri RM. Neurorehabilitation of Traumatic Brain Injury (TBI): A Clinical Review. Medical Sciences. 2019; 7(3):47. https://doi.org/10.3390/medsci7030047
Chicago/Turabian StyleOberholzer, Michael, and René M. Müri. 2019. "Neurorehabilitation of Traumatic Brain Injury (TBI): A Clinical Review" Medical Sciences 7, no. 3: 47. https://doi.org/10.3390/medsci7030047