Bayesian Space–Time Analysis of Brain Cancer Incidence in Southern Ontario, Canada: 2010–2013
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Spatio-Temporal Bayesian Modeling
3. Results
3.1. Model Fitting and Prior Sensitivity Analysis
3.2. Spatio-Temporal Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Aldape, K.; Brindle, K.M.; Chesler, L.; Chopra, R.; Gajjar, A.; Gilbert, M.R.; Gottardo, N.; Gutmann, D.H.; Hargrave, D.; Holland, E.C. Challenges to curing primary brain tumours. Nat. Rev. Clin. Oncol. 2019, 16, 509–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, Y.; Desmeules, M.; Semenciw, R.; Hill, G.; Gaudette, L.; Wigle, D. Increasing brain cancer rates in Canada. CMAJ Can. Med. Assoc. J. 1991, 145, 1583–1591. [Google Scholar]
- Leece, R.; Xu, J.; Ostrom, Q.T.; Chen, Y.; Kruchko, C.; Barnholtz-Sloan, J.S. Global incidence of malignant brain and other central nervous system tumors by histology, 2003–2007. Neuro Oncol. 2017, 19, 1553–1564. [Google Scholar] [CrossRef] [PubMed]
- Kotwa, J.D.; Isaksson, M.; Jardine, C.M.; Campbell, G.D.; Berke, O.; Pearl, D.L.; Mercer, N.J.; Osterman-Lind, E.; Peregrine, A.S. Echinococcus multilocularis Infection, Southern Ontario, Canada. Emerg. Infect. Dis. 2019, 25, 265. [Google Scholar] [CrossRef] [Green Version]
- Colantonio, A.; Moldofsky, B.; Escobar, M.; Vernich, L.; Chipman, M.; McLellan, B. Using geographical information systems mapping to identify areas presenting high risk for traumatic brain injury. Emerg. Themes Epidemiol. 2011, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Dean, J.A.; Elliott, S.J. Prioritizing obesity in the city. J. Urban Health 2012, 89, 196–213. [Google Scholar] [CrossRef] [Green Version]
- Spallone, A.; Izzo, C.; Orlandi, A. Posttraumatic glioma: Report of a case. Case Rep. Oncol. 2013, 6, 403–409. [Google Scholar] [CrossRef]
- Zampieri, P.; Meneghini, F.; Grigoletto, F.; Gerosa, M.; Licata, C.; Casentini, L.; Longatti, P.L.; Padoan, A.; Mingrino, S. Risk factors for cerebral glioma in adults: A case-control study in an Italian population. J. Neuro Oncol. 1994, 19, 61–67. [Google Scholar] [CrossRef]
- Nygren, C.; Adami, J.; Ye, W.; Bellocco, R.; af Geijerstam, J.-L.; Borg, J.; Nyrén, O. Primary brain tumors following traumatic brain injury—A population-based cohort study in Sweden. Cancer Causes Control 2001, 12, 733–737. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Keller, J.J.; Kang, J.-H.; Lin, H.-C. Association between traumatic brain injury and the subsequent risk of brain cancer. J. Neurotrauma 2012, 29, 1328–1333. [Google Scholar] [CrossRef]
- Hu, J.; Johnson, K.C.; Mao, Y.; Guo, L.; Zhao, X.; Jia, X.; Bi, D.; Huang, G.; Liu, R. Risk factors for glioma in adults: A case-control study in northeast China. Cancer Detect. Prev. 1998, 22, 100–108. [Google Scholar] [CrossRef]
- Disney-Hogg, L.; Sud, A.; Law, P.J.; Cornish, A.J.; Kinnersley, B.; Ostrom, Q.T.; Labreche, K.; Eckel-Passow, J.E.; Armstrong, G.N.; Claus, E.B. Influence of obesity-related risk factors in the aetiology of glioma. Br. J. Cancer 2018, 118, 1020. [Google Scholar] [CrossRef]
- Patel, A.P.; Fisher, J.L.; Nichols, E.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; Abraha, H.N.; Agius, D.; Alahdab, F.; Alam, T. Global, regional, and national burden of brain and other CNS cancer, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 376–393. [Google Scholar] [CrossRef] [Green Version]
- Cote, D.J.; Downer, M.K.; Smith, T.R.; Smith-Warner, S.A.; Egan, K.M.; Stampfer, M.J. Height, waist circumference, body mass index, and body somatotype across the life course and risk of glioma. Cancer Causes Control 2018, 29, 707–719. [Google Scholar] [CrossRef]
- Møller, H.; Mellemgaard, A.; Lindvig, K.; Olsen, J.H. Obesity and cancer risk: A Danish record-linkage study. Eur. J. Cancer 1994, 30, 344–350. [Google Scholar] [CrossRef]
- Wolk, A.; Gridley, G.; Svensson, M.; Nyrén, O.; McLaughlin, J.K.; Fraumeni, J.F.; Adami, H.-O. A prospective study of obesity and cancer risk (Sweden). Cancer Causes Control 2001, 12, 13–21. [Google Scholar] [CrossRef]
- López-Abente, G.; Pollán, M.; Ardanaz, E.; Errezola, M. Geographical pattern of brain cancer incidence in the Navarre and Basque Country regions of Spain. Occup. Environ. Med. 2003, 60, 504–508. [Google Scholar] [CrossRef] [Green Version]
- Lawson, A.B.; Rotejanaprasert, C. Childhood brain cancer in Florida: A Bayesian clustering approach. Stat. Public Policy 2014, 1, 99–107. [Google Scholar] [CrossRef]
- Ugarte, M.D.; Adin, A.; Goicoa, T.; Casado, I.; Ardanaz, E.; Larrañaga, N. Temporal evolution of brain cancer incidence in the municipalities of Navarre and the Basque Country, Spain. BMC Public Health 2015, 15, 1018. [Google Scholar] [CrossRef] [Green Version]
- Etxeberria, J.; Goicoa, T.; Ugarte, M. Joint modelling of brain cancer incidence and mortality using Bayesian age-and gender-specific shared component models. Stoch. Environ. Res. Risk Assess. 2018, 32, 2951–2969. [Google Scholar] [CrossRef]
- Lawson, A.B. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology; Chapman and Hall/CRC: Haverhill, MA, USA, 2018. [Google Scholar]
- Lawson, A.B.; Browne, W.J.; Rodeiro, C.L.V. Disease Mapping with Winbugs and Mlwin; John Wiley & Sons: Hoboken, NJ, USA, 2003; Volume 11. [Google Scholar]
- Lilienfeld, A.M. Practical limitations of epidemiologic methods. Environ. Health Perspect. 1983, 52, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Statistics Canada. Health Region Boundary Files (Internet), 2011 [cited 1 July 2019]. Available online: https://www150.statcan.gc.ca/n1/pub/82-402-x/2011001/reg-eng.htm (accessed on 17 February 2019).
- Cancer Care Ontario. Ontario Cancer Profiles (Internet), 2018 [cited 15 July 2019]. Available online: www.cancercareontario.ca/ontariocancerprofiles (accessed on 12 February 2019).
- Statistics Canada. Canadian Community Health Survey (CCHS) Annual Component User Guide 2014 and 2013–2014 Microdata Files; Statistics Canada: Ottawa, ON, Canada, 2015.
- Survey-Annual Component User Guide: 2014 and 2013–2014 Microdata Files; [Internet]; Government of Canada: Ottawa, ON, Canada, 2015. Available online: http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=164081 (accessed on 5 December 2019).
- Bailey, T. An Introduction to Spatial and Spatio-Temporal Modelling of Small Area Disease Rates. Spring Course Organ. Pelos Inst. De Ciências Biomédicas De Abel SalazarFac. De Med. E Inst. De Saúde Pública Da Univ. Do Porto; (Internet) 2008 [cited 5 December 2019]. Available online: http://www.dpi.inpe.br/Miguel/Curso_Trevor/Course_STModellingSmallAreasDiseaseRates_Trevor_Bailey.pdf (accessed on 5 December 2019).
- Ontario Agency for Health Protection and Promotion (Public Health Ontario). Snapshots: Hospitalization for Neurotrauma Snapshot: Hospitalization for Neurotrauma Injuries–Age Standardized Rate (Both Sexes); [Internet]; Queen’s Printer for Ontario; Ontario Agency for Health Protection and Promotion: Toronto, ON, Canada, 2016; [updated 5 April 2019; cited 7 July 2019]. Available online: https://www.publichealthontario.ca/en/data-and-analysis/injuries-data/hos-neurotrauma (accessed on 10 May 2019).
- Tyagi, V.; Theobald, J.; Barger, J.; Bustoros, M.; Bayin, N.S.; Modrek, A.S.; Kader, M.; Anderer, E.G.; Donahue, B.; Fatterpekar, G. Traumatic brain injury and subsequent glioblastoma development: Review of the literature and case reports. Surg. Neurol. Int. 2016, 7, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardinelli, L.; Clayton, D.; Pascutto, C.; Montomoli, C.; Ghislandi, M.; Songini, M. Bayesian analysis of space—time variation in disease risk. Stat. Med. 1995, 14, 2433–2443. [Google Scholar] [CrossRef] [PubMed]
- Law, J.; Quick, M.; Chan, P. Bayesian spatio-temporal modeling for analysing local patterns of crime over time at the small-area level. J. Quant. Criminol. 2014, 30, 57–78. [Google Scholar] [CrossRef]
- Kleinschmidt, I.; Sharp, B.; Mueller, I.; Vounatsou, P. Rise in malaria incidence rates in South Africa: A small-area spatial analysis of variation in time trends. Am. J. Epidemiol. 2002, 155, 257–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahrmeir, L.; Kneib, T.; Lang, S. Penalized structured additive regression for space-time data: A Bayesian perspective. Stat. Sin. 2004, 731–761. [Google Scholar]
- Law, J.; Haining, R. A Bayesian approach to modeling binary data: The case of high-intensity crime areas. Geogr. Anal. 2004, 36, 197–216. [Google Scholar] [CrossRef]
- Lawson, A.B.; Banerjee, S.; Haining, R.P.; Ugarte, M.D. Handbook of Spatial Epidemiology; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Besag, J.; York, J.; Mollié, A. Bayesian image restoration, with two applications in spatial statistics. Ann. Inst. Stat. Math. 1991, 43, 1–20. [Google Scholar] [CrossRef]
- Lesaffre, E.; Lawson, A.B. Bayesian Biostatistics; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Jang, M.J.; Lee, Y.; Lawson, A.B.; Browne, W.J. A comparison of the hierarchical likelihood and Bayesian approaches to spatial epidemiological modelling. Environ. Off. J. Int. Environ. Soc. 2007, 18, 809–821. [Google Scholar] [CrossRef]
- Lunn, D.J.; Thomas, A.; Best, N.; Spiegelhalter, D. WinBUGS—A Bayesian modelling framework: Concepts, structure, and extensibility. Stat. Comput. 2000, 10, 325–337. [Google Scholar] [CrossRef]
- Sturtz, S.; Ligges, U.; Gelman, A. R2WinBUGS: A Package for Running WinBUGS from R. J. Stat. Softw. 2005, 12, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Spiegelhalter, D.; Thomas, A.; Best, N.; Lunn, D. Winbugs User Manual. Version 1.4, MRC Biostatistics Unit, Cambridge (Internet), 2003 [cited 5 December 2019]. Available online: https://www.mrc-bsu.cam.ac.uk/wp-content/uploads/manual14.pdf (accessed on 5 December 2019).
- Lunn, D.; Jackson, C.; Best, N.; Spiegelhalter, D.; Thomas, A. The BUGS Book: A Practical Introduction to Bayesian Analysis; Chapman and Hall/CRC: Boca Raton, FL, USA, 2012. [Google Scholar]
- Kéry, M.; Royle, J.A. Applied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance and Species Richness in R and BUGS Prelude and Static Models; Academic Press: Cambridge, MA, USA, 2015; Volume 1. [Google Scholar]
- Spiegelhalter, D.J.; Best, N.G.; Carlin, B.P.; Van Der Linde, A. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B 2002, 64, 583–639. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Gorman, D.M.; Horel, S. Hierarchical Bayesian spatial models for alcohol availability, drug “hot spots” and violent crime. Int. J. Health Geogr. 2006, 5, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffith, D.A. Interdependence in space and time: Numerical and interpretative considerations. Dyn. Spat. Models 1981, 1, 258–287. [Google Scholar]
- Mei, Z.; Xu, S.; Ouyang, J. Spatio-temporal association analysis of county potential in the Pearl River Delta during 1990–2009. J. Geogr. Sci. 2015, 25, 319–336. [Google Scholar] [CrossRef]
- Anderson, C.; Ryan, L. A comparison of spatio-temporal disease mapping approaches including an application to ischaemic heart disease in New South Wales, Australia. Int. J. Environ. Res. Public Health 2017, 14, 146. [Google Scholar] [CrossRef] [Green Version]
- Kelsall, J.; Wakefield, J. Modeling spatial variation in disease risk: A geostatistical approach. J. Am. Stat. Assoc. 2002, 97, 692–701. [Google Scholar] [CrossRef]
- Spiegelhalter, D.; Thomas, A.; Best, N.; Gilks, W. BUGS 0.5* Examples; (Version ii); MRC Biostatistics Unit, Cambridge University: Cambridge, UK, 1996; Volume 2. [Google Scholar]
- Maantay, J.A.; McLafferty, S. Geospatial Analysis of Environmental Health; Springer Science & Business Media: Berlin, Germany, 2011; Volume 4. [Google Scholar]
- Luan, H.; Quick, M.; Law, J. Analyzing local spatio-temporal patterns of police calls-for-service using Bayesian integrated nested Laplace approximation. ISPRS Int. J. Geo Inf. 2016, 5, 162. [Google Scholar] [CrossRef] [Green Version]
- Gracia, E.; López-Quílez, A.; Marco, M.; Lila, M. Mapping child maltreatment risk: A 12-year spatio-temporal analysis of neighborhood influences. Int. J. Health Geogr. 2017, 16, 38. [Google Scholar] [CrossRef]
- Marco, M.; Gracia, E.; López-Quílez, A. Linking neighborhood characteristics and drug-related police interventions: A Bayesian spatial analysis. ISPRS Int. J. Geo Inf. 2017, 6, 65. [Google Scholar] [CrossRef] [Green Version]
- Ward, C.; Oleson, J.; Jones, K.; Charlton, M. Showcasing Cancer Incidence and Mortality in Rural ZCTAs Using Risk Probabilities via Spatio-Temporal Bayesian Disease Mapping. Appl. Spat. Anal. Policy 2018, 12, 907–921. [Google Scholar] [CrossRef]
- Jafari-Koshki, T.; Schmid, V.J.; Mahaki, B. Trends of breast cancer incidence in Iran during 2004-2008: A Bayesian space-time model. Asian Pac. J. Cancer Prev. 2014, 15, 1557–1561. [Google Scholar] [CrossRef] [PubMed]
- Anselmi, E.; Vallisa, D.; Bertè, R.; Vanzo, C.; Cavanna, L. Post-traumatic glioma: Report of two cases. Tumori J. 2006, 92, 175–177. [Google Scholar] [CrossRef]
- Zhou, B.; Liu, W. Post-traumatic glioma: Report of one case and review of the literature. Int. J. Med. Sci. 2010, 7, 248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coskun, S.; Coskun, A.; Gursan, N.; Aydin, M.D. Post-traumatic glioblastoma multiforme: A case report. Eurasian J. Med. 2011, 43, 50. [Google Scholar] [CrossRef]
- Salvati, M.; Caroli, E.; Rocchi, G.; Frati, A.; Brogna, C.; Orlando, E.R. Post-traumatic glioma. Report of four cases and review of the literature. Tumori J. 2004, 90, 416–419. [Google Scholar] [CrossRef]
- Wee, H.-Y.; Ho, C.-H.; Chang, C.-H.; Chio, C.-C.; Wang, J.-J.; Wang, C.-C.; Kuo, J.-R. Probability of New-Onset Cancer between Patients with Traumatic Brain Injury and a Comparison General Population Cohort. World Neurosurg. 2019, 121, e817–e826. [Google Scholar] [CrossRef]
- Rao, D.P.; McFaull, S.; Thompson, W.; Jayaraman, G.C. Trends in self-reported traumatic brain injury among Canadians, 2005–2014: A repeated cross-sectional analysis. CMAJ Open 2017, 5, E301. [Google Scholar] [CrossRef]
- Burch, J.D.; Craib, K.J.; Choi, B.C.; Miller, A.B.; Risch, H.A.; Howe, G.R. An exploratory case-control study of brain tumors in adults. J. Natl. Cancer Inst. 1987, 78, 601–609. [Google Scholar]
- Benson, V.S.; Pirie, K.; Green, J.; Casabonne, D.; Beral, V. Lifestyle factors and primary glioma and meningioma tumours in the Million Women Study cohort. Br. J. Cancer 2008, 99, 185. [Google Scholar] [CrossRef]
- Moore, S.C.; Rajaraman, P.; Dubrow, R.; Darefsky, A.S.; Koebnick, C.; Hollenbeck, A.; Schatzkin, A.; Leitzmann, M.F. Height, body mass index, and physical activity in relation to glioma risk. Cancer Res. 2009, 69, 8349–8355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, E.M.; Nabors, L.B.; Thompson, R.C.; Olson, J.J.; Browning, J.E.; Madden, M.H.; Han, G.; Egan, K.M. Prediagnostic body weight and survival in high grade glioma. J. Neuro Oncol. 2013, 114, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Hursting, S.D.; Berger, N.A. Energy balance, host-related factors, and cancer progression. J. Clin. Oncol. 2010, 28, 4058. [Google Scholar] [CrossRef] [PubMed]
- Best, N.; Richardson, S.; Thomson, A. A comparison of Bayesian spatial models for disease mapping. Stat. Methods Med. Res. 2005, 14, 35–59. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.C.; Marco, M.; Maguire-Jack, K.; Kouros, C.D.; Im, W.; White, C.; Bailey, B.; Rao, U.; Garber, J. County-level socioeconomic and crime risk factors for substantiated child abuse and neglect. Child Abus. Negl. 2019, 90, 127–138. [Google Scholar] [CrossRef]
- Ntirampeba, D.; Neema, I.; Kazembe, L. Modelling spatial patterns of misaligned disease data: An application on measles incidence in Namibia. Clin. Epidemiol. Glob. Health 2017, 5, 190–195. [Google Scholar] [CrossRef] [Green Version]
- Khana, D.; Rossen, L.M.; Hedegaard, H.; Warner, M. A Bayesian spatial and temporal modeling approach to mapping geographic variation in mortality rates for subnational areas with R-INLA. J. Data Sci. JDS 2018, 16, 147–182. [Google Scholar]
- Wakefield, J.; Elliott, P. Issues in the statistical analysis of small area health data. Stat. Med. 1999, 18, 2377–2399. [Google Scholar] [CrossRef]
- McKinley, B.P.; Michalek, A.M.; Fenstermaker, R.A.; Plunkett, R.J. The impact of age and gender on the incidence of glial tumors in New York state from 1976–1995. J. Neurosurg. 2000, 93, 932–939. [Google Scholar] [CrossRef]
- Porter, A.B.; Lachance, D.H.; Johnson, D.R. Socioeconomic status and glioblastoma risk: A population-based analysis. Cancer Causes Control 2015, 26, 179–185. [Google Scholar] [CrossRef]
- Haining, R. The special nature of spatial data. In The Sage Handbook of Spatial Analysis; Sage: Thousand Oaks, CA, USA, 2009; pp. 5–24. [Google Scholar]
- Thompson, M.; Berke, O. Evaluation of the control of West Nile virus in Ontario: Did risk patterns change from 2005 to 2012? Zoonoses Public Health 2017, 64, 100–105. [Google Scholar] [CrossRef] [PubMed]
Minimum | Maximum | Mean | Standard. Deviation | |
---|---|---|---|---|
LHIN Population | 376,696 | 1,516,887 | 871,345 | 341,997 |
Dependent Variable | ||||
Brain Cancer Count | 30 | 140 | 80 | 30 |
Independent Variables | ||||
Traumatic Head Injury (rate per 100,000 persons) | 21.0 | 50.5 | 36.2 | 8.1 |
Excess Body Fat (%) | 50.1 | 68.5 | 62.6 | 4.9 |
Parameters | Mean (95% Credible Interval) | Standard Deviation | Monte Carlo Error |
---|---|---|---|
0.066 (−0.014, 0.146) | 0.041 | 0.00013 | |
0.038 (−0.017, 0.094) | 0.028 | 0.00008 | |
0.081 (0.027, 0.132) | 0.027 | 0.00008 | |
−0.021 (−0.050, 0.007) | 0.015 | 0.00005 | |
0.035 (0.013, 0.091) | 0.021 | 0.00007 | |
0.030 (0.012, 0.070) | 0.015 | 0.00005 | |
0.026 (0.012, 0.055) | 0.011 | 0.00003 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Persad, R.A. Bayesian Space–Time Analysis of Brain Cancer Incidence in Southern Ontario, Canada: 2010–2013. Med. Sci. 2019, 7, 110. https://doi.org/10.3390/medsci7120110
Persad RA. Bayesian Space–Time Analysis of Brain Cancer Incidence in Southern Ontario, Canada: 2010–2013. Medical Sciences. 2019; 7(12):110. https://doi.org/10.3390/medsci7120110
Chicago/Turabian StylePersad, Ravi Ancil. 2019. "Bayesian Space–Time Analysis of Brain Cancer Incidence in Southern Ontario, Canada: 2010–2013" Medical Sciences 7, no. 12: 110. https://doi.org/10.3390/medsci7120110
APA StylePersad, R. A. (2019). Bayesian Space–Time Analysis of Brain Cancer Incidence in Southern Ontario, Canada: 2010–2013. Medical Sciences, 7(12), 110. https://doi.org/10.3390/medsci7120110