New Insights in Bladder Cancer Diagnosis: Urinary miRNAs and Proteins
Abstract
:1. Introduction
2. Urinary Proteins for Bladder Cancer Diagnosis
3. Urinary micro RNAs for Bladder Cancer Diagnosis
4. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- NICE. Bladder cancer: Diagnosis and management of bladder cancer. BJU Int. 2017, 120, 755–765. [Google Scholar] [CrossRef] [PubMed]
- Antoni, S.; Ferlay, J.; Soerjomataram, I.; Znaor, A.; Jemal, A.; Bray, F. Bladder Cancer Incidence and Mortality: A Global Overview and Recent Trends. Eur. Urol. 2017, 71, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, C.; Chen, H.; Chung, T.; Wu, C.; Chen, C.; Hsu, C.; Chen, M.; Tsui, K.; Chang, P.; et al. Discovery of Novel Bladder Cancer Biomarkers by Comparative Urine Proteomics Using iTRAQ Technology research articles. J. Proteome Res. 2010, 9, 5803–5815. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, C.; Wu, H.; Zhang, T.; Wang, J.; Wang, S.; Chang, J. Identification of Apo-A1 as a biomarker for early diagnosis of bladder transitional cell carcinoma. Proteome Sci. 2011, 9, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, W.S.; Tan, W.P.; Tan, M.Y.; Khetrapal, P.; Dong, L.; DeWinter, P.; Feber, A.; Kelly, J.D. Novel urinary biomarkers for the detection of bladder cancer: A systematic review. Cancer Treat. Rev. 2018, 69, 39–52. [Google Scholar] [CrossRef]
- Mbeutcha, A.; Lucca, I.; Mathieu, R.; Lotan, Y.; Shariat, S.F. Current Status of Urinary Biomarkers for Detection and Surveillance of Bladder Cancer. Urol. Clin. N. Am. 2016, 43, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Yeung, C.; Dinh, T.; Lee, J. The Health Economics of Bladder Cancer: An Updated Review of the Published Literature. PharmacoEconomics 2014, 32, 1093–1104. [Google Scholar] [CrossRef] [PubMed]
- Lavery, H.J.; Zaharieva, B.; McFaddin, A.; Heerema, N.; Pohar, K.S. A prospective comparison of UroVysion FISH and urine cytology in bladder cancer detection. BMC Cancer 2017, 17, 247. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, X.; Wu, Y.; Wu, Q.; Wang, Q.; Yang, Z.; Li, L. MicroRNAs in biofluids are novel tools for bladder cancer screening. Oncotarget 2017, 8, 32370–32379. [Google Scholar] [CrossRef]
- Goodison, S.; Chang, M.; Dai, Y.; Urquidi, V.; Rosser, C.J. A multi-analyte assay for the non-invasive detection of bladder cancer. PLoS ONE 2012, 7, e47469. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.E.; Quek, S.-I.; True, L.D.; Seiler, R.; Fleischmann, A.; Bagryanova, L.; Kim, S.R.; Chia, D.; Goodglick, L.; Shimizu, Y.; et al. Bladder cancer cells secrete while normal bladder cells express but do not secrete AGR2. Oncotarget 2016, 7, 15747–15756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanca, A.; Requena, M.J.; Alvarez, J.; Cheng, L.; Montironi, R.; Raspollini, M.R.; Reymundo, C.; Lopez-Beltran, A. FGFR3 and Cyclin D3 as urine biomarkers of bladder cancer recurrence. Biomark. Med. 2016, 10, 243–253. [Google Scholar] [CrossRef] [PubMed]
- D’Costa, J.J.; Goldsmith, J.C.; Wilson, J.S.; Bryan, R.T.; Ward, D.G. A Systematic Review of the Diagnostic and Prognostic Value of Urinary Protein Biomarkers in Urothelial Bladder Cancer. Bladder Cancer 2016, 2, 301–317. [Google Scholar] [CrossRef] [PubMed]
- Heit, C.; Jackson, B.C.; McAndrews, M.; Wright, M.W.; Thompson, D.C.; Silverman, G.A.; Nebert, D.W.; Vasiliou, V. Update of the human and mouse SERPIN gene superfamily. Hum. Genom. 2013, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Furuya, H.; Bryant Greenwood, P.; Chan, O.; Dai, Y.; Thornquist, M.D.; Goodison, S.; Rosser, C.J. A multiplex immunoassay for the non-invasive detection of bladder cancer. J. Transl. Med. 2016, 14, 31. [Google Scholar] [CrossRef] [PubMed]
- Chatzileontiadou, D.S.M.; Samiotaki, M.; Alexopoulou, A.N.; Cotsiki, M.; Panayotou, G.; Stamatiadi, M.; Balatsos, N.A.A.; Leonidas, D.D.; Kontou, M. Proteomic analysis of human angiogenin interactions reveals cytoplasmic PCNA as a putative binding partner. J. Proteome Res. 2017, 16, 3606–3622. [Google Scholar] [CrossRef]
- Rosser, C.J.; Ross, S.; Chang, M.; Dai, Y.; Mengual, L.; Zhang, G.; Kim, J.; Urquidi, V.; Alcaraz, A.; Goodison, S. Multiplex protein signature for the detection of bladder cancer in voided urine samples. J. Urol. 2013, 190, 2257–2262. [Google Scholar] [CrossRef]
- Mangaraj, M.; Nanda, R.; Panda, S. Apolipoprotein A-I: A Molecule of Diverse Function. Indian J. Clin. Biochem. 2016, 31, 253–259. [Google Scholar] [CrossRef]
- Mahley, R.W. Apolipoprotein E: Cholesterol transport protein with expanding role in cell biology. Science 1988, 240, 622–630. [Google Scholar] [CrossRef]
- Chen, L.M.; Chang, M.; Dai, Y.; Chai, K.X.; Dyrskjøt, L.; Sanchez-Cabayo, M.; Szarvas, T.; Zwarthoff, E.C.; Lokeswhar, V.; Jeronimo, C.; et al. External validation of a multiplex urinary protein panel for the detection of bladder cancer in a multicenter cohort. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1804–1812. [Google Scholar] [CrossRef] [PubMed]
- Urquidi, V.; Kim, J.; Chang, M.; Dai, Y.; Rosser, C.J.; Goodison, S. CCL18 in a multiplex urine-based assay for the detection of bladder cancer. PLoS ONE 2012, 7, e37797. [Google Scholar] [CrossRef]
- Urquidi, V.; Goodison, S.; Ross, S.; Chang, M.; Dai, Y.; Rosser, C.J. Diagnostic Potential of Urinary α1-Antitrypsin and Apolipoprotein E in the Detection of Bladder Cancer. J. Urol. 2012, 188, 2377–2383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urquidi, V.; Goodison, S.; Kim, J.; Chang, M.; Dai, Y.; Rosser, C.J. Vascular endothelial growth factor, carbonic anhydrase 9, and angiogenin as urinary biomarkers for bladder cancer detection. Urology 2012, 79, 1185.e1–1185.e6. [Google Scholar] [CrossRef] [PubMed]
- Urquidi, V.; Chang, M.; Dai, Y.; Kim, J.; Wolfson, E.D.; Goodison, S.; Rosser, C.J. IL-8 as a urinary biomarker for the detection of bladder cancer. BMC Urol. 2012, 12, 12. [Google Scholar] [CrossRef] [PubMed]
- Andreucci, E.; Peppicelli, S.; Carta, F.; Brisotto, G.; Biscontin, E.; Ruzzolini, J.; Bianchini, F.; Biagioni, A.; Supuran, C.T.; Calorini, L. Carbonic anhydrase IX inhibition affects viability of cancer cells adapted to extracellular acidosis. J. Mol. Med. 2017, 95, 1341–1353. [Google Scholar] [CrossRef] [PubMed]
- Adema, G.J.; Hartgers, F.; Verstraten, R.; Vries, E.; Marland, G.; Menon, S.; Foster, J.; Xu, Y.; Nooyen, P.; McClanahan, T.; et al. A dendritic-cell-derived C-C chemokine that preferentially attracts naive T cells. Nature 1997, 387, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Basakran, N.S. CD44 as a potential diagnostic tumor marker. Saudi Med. J. 2015, 36, 273–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfaro, C.; Sanmamed, M.F.; Rodríguez-Ruiz, M.E.; Teijeira, Á.; Oñate, C.; González, Á.; Ponz, M.; Schalper, K.A.; Pérez-Gracia, J.L.; Melero, I. Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treat. Rev. 2017, 60, 24–31. [Google Scholar] [CrossRef]
- Rodriguez, J.A. Metalloproteinases and atherothrombosis: MMP-10 mediates vascular remodeling promoted by inflammatory stimuli. Front. Biosci. 2008, 13, 2916. [Google Scholar] [CrossRef]
- Nossier, A.I.; Mohammed, O.S.; Fakhr El-deen, R.R.; Zaghloul, A.S.; Eissa, S. Gelatin-modified gold nanoparticles for direct detection of urinary total gelatinase activity: Diagnostic value in bladder cancer. Talanta 2016, 161, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Coppola, D.; Szabo, M.; Boulware, D.; Muraca, P.; Alsarraj, M.; Chambers, A.F.; Yeatman, T.J. Correlation of Osteopontin Protein Expression and Pathological Stage across a Wide Variety of Tumor Histologies. Clin. Cancer Res. 2004, 10, 184–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaughan, D.E.; Rai, R.; Khan, S.S.; Eren, M.; Ghosh, A.K. Plasminogen Activator Inhibitor-1 Is a Marker and a Mediator of Senescence. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1446–1452. [Google Scholar] [CrossRef] [PubMed]
- Wingfield, P.T.; Palmer, I.; Liang, S.M. Folding and purification of insoluble (inclusion body) proteins from Escherichia coli. Curr. Protoc. Protein Sci. 2014, 2014, 6.5.1–6.5.30. [Google Scholar] [CrossRef]
- Baietti, M.F.; Zhang, Z.; Mortier, E.; Melchior, A.; Degeest, G.; Geeraerts, A.; Ivarsson, Y.; Depoortere, F.; Coomans, C.; Vermeiren, E.; et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat. Cell Biol. 2012, 14, 677–685. [Google Scholar] [CrossRef]
- Miyake, M.; Lawton, A.; Dai, Y.; Chang, M.; Mengual, L.; Alcaraz, A.; Goodison, S.; Rosser, C.J. Clinical implications in the shift of syndecan-1 expression from the cell membrane to the cytoplasm in bladder cancer. BMC Cancer 2014, 14, 86. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Z.; Guo, Y.; Wang, Z. Correlation and Significance of Urinary Soluble Fas and Vascular Endothelial Growth Factor in Bladder Urothelial Cancer. Dis. Markers 2015, 2015, 1–5. [Google Scholar] [CrossRef]
- Yang, H.; Guo, Y.; Wang, Z.; Wang, Z. Value of detection of preoperative urinary soluble Fas expression in predicting the recurrence of non-muscle invasive bladder cancer. J. Cent. South Univ. Med. Sci. 2016, 41, 24–29. [Google Scholar]
- Meiron, M.; Anunu, R.; Scheinman, E.J.; Hashmueli, S.; Levi, B.Z. New isoforms of VEGF are translated from alternative initiation CUG codons located in its 5′UTR. Biochem. Biophys. Res. Commun. 2001, 282, 1053–1060. [Google Scholar] [CrossRef]
- Kośliński, P.; Daghir-Wojtkowiak, E.; Szatkowska-Wandas, P.; Markuszewski, M.; Markuszewski, M.J. The metabolic profiles of pterin compounds as potential biomarkers of bladder cancer—Integration of analytical-based approach with biostatistical methodology. J. Pharm. Biomed. Anal. 2016, 127, 256–262. [Google Scholar] [CrossRef]
- Chen, Y.T.; Chen, H.W.; Domanski, D.; Smith, D.S.; Liang, K.H.; Wu, C.C.; Chen, C.L.; Chung, T.; Chen, M.C.; Chang, Y.S.; et al. Multiplexed quantification of 63 proteins in human urine by multiple reaction monitoring-based mass spectrometry for discovery of potential bladder cancer biomarkers. J. Proteom. 2012, 75, 3529–3545. [Google Scholar] [CrossRef]
- Chen, C.L.; Lin, T.S.; Tsai, C.H.; Wu, C.C.; Chung, T.; Chien, K.Y.; Wu, M.; Chang, Y.S.; Yu, J.S.; Chen, Y.T. Identification of potential bladder cancer markers in urine by abundant-protein depletion coupled with quantitative proteomics. J. Proteom. 2013, 85, 28–43. [Google Scholar] [CrossRef] [PubMed]
- Goodison, S.; Ogawa, O.; Matsui, Y.; Kobayashi, T.; Miyake, M.; Ohnishi, S.; Fujimoto, K.; Dai, Y.; Shimizu, Y.; Tsukikawa, K.; et al. A multiplex urinary immunoassay for bladder cancer detection: Analysis of a Japanese cohort. J. Transl. Med. 2016, 14, 287. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yu, Z.; Chen, P.; Lin, G.; Li, T.; Hou, L.; Du, Y.; Tan, W. The increased excretion of urinary orosomucoid 1 as a useful biomarker for bladder cancer. World Health 2016, 6, 331–340. [Google Scholar]
- Choi, S.; Shin, J.H.; Lee, Y.R.; Joo, H.K.; Song, K.H.; Na, Y.G.; Chang, S.J.; Lim, J.S.; Jeon, B.H. Urinary APE1/Ref-1: A Potential Bladder Cancer Biomarker. Dis. Markers 2016, 2016. [Google Scholar] [CrossRef] [PubMed]
- Jamshidian, H.; Kor, K.; Djalali, M. Urine concentration of nuclear matrix protein 22 for diagnosis of transitional cell carcinoma of bladder. Urol. J. 2008, 5, 243–247. [Google Scholar]
- Lotan, Y.; Capitanio, U.; Shariat, S.F.; Hutterer, G.C.; Karakiewicz, P.I. Impact of clinical factors, including a point-of-care nuclear matrix protein-22 assay and cytology, on bladder cancer detection. BJU Int. 2009, 103, 1368–1374. [Google Scholar] [CrossRef] [Green Version]
- Shariat, S.F.; Savage, C.; Chromecki, T.F.; Sun, M.; Scherr, D.S.; Lee, R.K.; Lughezzani, G.; Remzi, M.; Marberger, M.J.; Karakiewicz, P.I.; et al. Assessing the clinical benefit of nuclear matrix protein 22 in the surveillance of patients with nonmuscle-invasive bladder cancer and negative cytology. Cancer 2011, 117, 2892–2897. [Google Scholar] [CrossRef] [Green Version]
- Kinders, R.; Jones, T.; Root, R.; Bruce, C.; Murchison, H.; Corey, M.; Williams, L.; Enfield, D.; Hass, G.M. Complement factor H or a related protein is a marker for transitional cell cancer of the bladder. Clin. Cancer Res. 1998, 4, 2511–2520. [Google Scholar]
- Rhijn, B.W.G.; Poel, H.G.; Kwast, T.H. Urine markers for bladder cancer surveillance: A systematic review. Eur. Urol. 2005, 47, 736–748. [Google Scholar] [CrossRef]
- Ricci, S.; Bruzzese, D.; Carlo, A. Evaluation of MMP-2, MMP-9, TIMP-1, TIMP-2, NGAL and MMP-9/NGAL complex in urine and sera from patients with bladder cancer. Oncol. Lett. 2015, 10, 2527–2532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svatek, R.S.; Herman, M.P.; Lotan, Y.; Casella, R.; Hsieh, J.-T.; Sagalowsky, A.I.; Shariat, S.F. Soluble Fas—A promising novel urinary marker for the detection of recurrent superficial bladder cancer. Cancer 2006, 106. [Google Scholar] [CrossRef] [PubMed]
- Arikan, O.; Yýldýrým, A.; Ýsbilen, B.; Canakci, C.; Atýs, G.; Gurbuz, C.; Erol, B.; Ýsman, F.K.; Ozkanli, S.; Caskurlu, T. Clinical significance of serum and urinary HER2/neu protein levels in primary non-muscle invasive bladder cancer. Int. Braz. J. Urol. 2015, 41, 1080–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Ren, B.; Li, Z.; Niu, W.; Wang, Y. Expression of N-Myc Downstream-Regulated Gene 2 in Bladder Cancer and Its Potential Utility as a Urinary Diagnostic Biomarker. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2017, 23, 4644–4649. [Google Scholar] [CrossRef]
- Miyake, M.; Morizawa, Y.; Hori, S.; Tatsumi, Y.; Onishi, S.; Owari, T.; Iida, K.; Onishi, K.; Gotoh, D.; Nakai, Y.; et al. Diagnostic and prognostic role of urinary collagens in primary human bladder cancer. Cancer Sci. 2017, 108, 2221–2228. [Google Scholar] [CrossRef] [Green Version]
- Ambros, V. The functions of animal microRNAs. Nature 2004, 431, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Fendler, A.; Stephan, C.; Yousef, G.M.; Kristiansen, G.; Jung, K. The translational potential of microRNAs as biofluid markers of urological tumours. Nat. Rev. Urol. 2016, 13, 734–752. [Google Scholar] [CrossRef] [Green Version]
- Andreu, Z.; Oshiro, R.O.; Redruello, A.; López-Martín, S.; Gutiérrez-Vázquez, C.; Morato, E.; Marina, A.I.; Gómez, C.O.; Yáñez-Mó, M. Extracellular vesicles as a source for non-invasive biomarkers in bladder cancer progression. Eur. J. Pharm. Sci. 2016, 98, 70–79. [Google Scholar] [CrossRef]
- Krabbe, L.M.; Woldu, S.L.; Shariat, S.F.; Lotan, Y. Improving diagnostic molecular tests to monitor urothelial carcinoma recurrence. Expert Rev. Mol. Diagn. 2016, 16, 1189–1199. [Google Scholar] [CrossRef]
- Chen, X.; Ba, Y.; Ma, L.; Cai, X.; Yin, Y.; Wang, K.; Guo, J.; Zhang, Y.; Chen, J.; Guo, X.; et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008, 18, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.J.; Jeong, P.; Kim, W.T.; Kim, T.H.; Lee, Y.S.; Song, P.H.; Choi, Y.H.; Kim, I.Y.; Moon, S.K.; Kim, W.J. Cell-free microRNAs in urine as diagnostic and prognostic biomarkers of bladder cancer. Int. J. Oncol. 2012, 41, 1871–1878. [Google Scholar] [CrossRef] [Green Version]
- Sapre, N.; Macintyre, G.; Clarkson, M.; Naeem, H.; Cmero, M.; Kowalczyk, A.; Anderson, P.D.; Costello, A.J.; Corcoran, N.M.; Hovens, C.M. A urinary microRNA signature can predict the presence of bladder urothelial carcinoma in patients undergoing surveillance. Br. J. Cancer 2016, 114, 454–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, H.; Yoshiike, M.; Nozawa, S.; Usuba, W.; Katsuoka, Y.; Aida, K.; Kitajima, K.; Kudo, H.; Hoshikawa, M.; Yoshioka, Y.; et al. Expression Level of Urinary MicroRNA-146a-5p Is Increased in Patients with Bladder Cancer and Decreased in Those After Transurethral Resection. Clin. Genitourin. Cancer 2016, 14, e493–e499. [Google Scholar] [CrossRef] [PubMed]
- Pospisilova, S.; Pazzourkova, E.; Horinek, A.; Brisuda, A.; Svobodova, I.; Soukup, V.; Hrbacek, J.; Capoun, O.; Hanus, T.; Mares, J.; et al. MicroRNAs in urine supernatant as potential non-invasive markers for bladder cancer detection. Neoplasma 2016, 63, 799–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Qi, L.; Lv, H.; Zu, X.; Chen, M.; Wang, J.; Liu, L.; Zeng, F.; Li, Y. MiRNA-141 and miRNA-200b are closely related to invasive ability and considered as decision-making biomarkers for the extent of PLND during cystectomy. BMC cancer 2015, 15, 92. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, X.; Wang, L.; Dong, Z.; Du, L.; Yang, Y.; Guo, Y.; Wang, C. Downregulation of urinary cell-free microRNA-214 as a diagnostic and prognostic biomarker in bladder cancer. J. Surg. Oncol. 2015, 111, 992–999. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Y.; Liu, X.; Fang, A.; Wang, J.; Yang, Y.; Wang, L.; Du, L.; Wang, C. Direct quantitative detection for cell-free miR-155 in urine: A potential role in diagnosis and prognosis for non-muscle invasive bladder cancer. Oncotarget 2016, 7, 3255–3266. [Google Scholar] [CrossRef]
- Urquidi, V.; Netherton, M.; Gomes-Giacoia, E.; Serie, D.J.; Eckel-Passow, J.; Rosser, C.J.; Goodison, S. A microRNA biomarker panel for the non-invasive detection of bladder cancer. Oncotarget 2016, 5. [Google Scholar] [CrossRef]
- Juracek, J.; Peltanova, B.; Dolezel, J.; Fedorko, M.; Pacik, D.; Radova, L.; Vesela, P.; Svoboda, M.; Slaby, O.; Stanik, M. Genome-wide identification of urinary cell-free microRNAs for non-invasive detection of bladder cancer. J. Cell. Mol. Med. 2018, 22, 2033–2038. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Ping, J.; Wen, D. MicroRNA-186 regulates the invasion and metastasis of bladder cancer via vascular endothelial growth factor C. Exp. Ther. Med. 2017, 14, 3253–3258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, L.; Duan, W.; Jiang, X.; Zhao, L.; Li, J.; Wang, R.; Yan, S.; Xie, Y.; Yan, K.; Wang, Q.; et al. Cell-free lncRNA expression signatures in urine serve as novel non-invasive biomarkers for diagnosis and recurrence prediction of bladder cancer. J. Cell. Mol. Med. 2018, 22, 2838–2845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingelmo-Torres, M.; Lozano, J.J.; Izquierdo, L.; Carrion, A.; Costa, M.; Gómez, L.; Ribal, M.J.; Alcaraz, A.; Mengual, L. Urinary cell microRNA-based prognostic classifier for non-muscle invasive bladder cancer. Oncotarget 2017, 8, 18238–18247. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Xu, T.; Shen, Y.; Zhong, S.; Chen, S.; Ding, Q.; Shen, Z. Dysregulation of miRNAs in bladder cancer: Altered expression with aberrant biogenesis procedure. Oncotarget 2015, 8, 27547–27568. [Google Scholar] [CrossRef] [PubMed]
- Enokida, H.; Yoshino, H.; Matsushita, R.; Nakagawa, M. The role of microRNAs in bladder cancer. Cell 2016, 57, 60–76. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-Y.; Ryu, D.-S.; Kim, W.-J.; Kim, S.-J. Aberrantly expressed microRNAs in the context of bladder tumorigenesis. Investig. Clin. Urol. 2016, 57 (Suppl. 1), S52–S59. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.H.; Shrestha, S.; Yang, C.D.; Chang, N.W.; Lin, Y.L.; Liao, K.W.; Huang, W.C.; Sun, T.H.; Tu, S.J.; Lee, W.H.; et al. MiRTarBase update 2018: A resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 2018, 46, D296–D302. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.; Huang, X.; Muruganujan, A.; Tang, H.; Mills, C.; Kang, D.; Thomas, P.D. PANTHER version 11: Expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2017, 45, D183–D189. [Google Scholar] [CrossRef] [PubMed]
- Kutwin, P.; Konecki, T.; Borkowska, E.M.; Traczyk-Borszyńska, M.; Jabłonowski, Z. Urine miRNA as a potential biomarker for bladder cancer detection—A meta-analysis. Cent. Eur. J. Urol. 2018, 71, 177–185. [Google Scholar] [CrossRef]
- Tölle, A.; Jung, M.; Rabenhorst, S.; Kilic, E.; Jung, K.; Weikert, S. Identification of microRNAs in blood and urine as tumour markers for the detection of urinary bladder cancer. Oncol. Rep. 2013, 30, 1949–1956. [Google Scholar] [CrossRef] [PubMed]
- Snowdon, J.; Boag, S.; Feilotter, H.; Izard, J.; Siemens, D.R. A pilot study of urinary microRNA as a biomarker for urothelial cancer. J. Can. Urol. Assoc. 2013, 7, 28–32. [Google Scholar] [CrossRef]
- Hanke, M.; Hoefig, K.; Merz, H.; Feller, A.C.; Kausch, I.; Jocham, D.; Warnecke, J.M.; Sczakiel, G. A robust methodology to study urine microRNA as tumor marker: MicroRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol. Oncol. 2010, 28, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Enokida, H.; Kojima, S.; Kawakami, K.; Chiyomaru, T.; Tatarano, S.; Yoshino, H.; Kawahara, K.; Nishiyama, K.; Seki, N.; et al. MiR-96 and miR-183 detection in urine serve as potential tumor markers of urothelial carcinoma: Correlation with stage and grade, and comparison with urinary cytology. Cancer Sci. 2011, 102, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Miah, S.; Dudziec, E.; Drayton, R.M.; Zlotta, A.R.; Morgan, S.L.; Rosario, D.J.; Hamdy, F.C.; Catto, J.W.F. An evaluation of urinary microRNA reveals a high sensitivity for bladder cancer. Br. J. Cancer 2012, 107, 123–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Chan, E.S.Y.; Kwan, B.C.H.; Li, P.K.T.; Yip, S.K.H.; Szeto, C.C.; Ng, C.F. Expression of microRNAs in the urine of patients with bladder cancer. Clin. Genitourin. Cancer 2012, 10, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Mengual, L.; Lozano, J.J.; Ingelmo-Torres, M.; Gazquez, C.; Ribal, M.J.; Alcaraz, A. Using microRNA profiling in urine samples to develop a non-invasive test for bladder cancer. Int. J. Cancer 2013, 133, 2631–2641. [Google Scholar]
Abbreviation | Name | Cellular Function and Pathway | Concentration in BC Urine Samples |
---|---|---|---|
A1AT/(SERPINA1) | Serpin family A member 1 | Complement and coagulation cascades [15]. | Both ELISA and Multi-array assay revealed that candidates including A1AT could discriminate BC patients from controls, NMIBC from MIBC [16]. Strongly correlated with urinary hemoglobin (Spearman’s correlation coefficient >0.8), so the increase in concentration in BC patients’ urine samples may be due to hematuria [11]. |
ANG | Angiogenin | Angiogenesis [17]. | Urinary concentrations of ANG were significantly elevated in subjects with BC compared to controls [18]. Both ELISA and Multi-array assay revealed that candidates including ANG could discriminate BC patients from controls, NMIBC from MIBC [16]. |
Apo-A1 | Apolipoprotein A1 | Lipid metabolism and transport [19]. | Increased in urine samples of aggressive Bladder transitional cell carcinoma (BTCC) compared to low malignant BTCC [5]. Western blot analysis and ELISA assays also revealed that candidates including Apo-A1 levels in urine samples of BC patients were significantly elevated [4]. |
APOE | Apolipoprotein E | Transport of cholesterol and other lipids [20] | Urinary concentrations of APOE were significantly elevated in subjects with BC compared with controls but diagnostic performance of APOE as a single biomarker was not sufficient [11,21]. APOE levels were significantly increased in high compared to low grade tumors as well as in MIBC compared to NMIBC, both ELISA and Multi-array assay revealed that APOE could discriminate BC patients from controls [16,18]. |
BTA/hCFHrp | complement factor H-related protein | Involved in complement regulation. | Urinary concentrations of BTA were significantly elevated in subjects with BC [10,11,22,23,24,25]. |
CA9 | carbonic anhydrase 9 | Involved in pH regulation, control of cell proliferation and transformation [26]. There are also studies advocating axiom. | Urinary concentrations of CA9 were significantly elevated in subjects with BC [11,24]. But some studies advocating the opposite [18]. |
CCL18 | C-C motif chemokine ligand 18 | Involved in immunoregulatory and inflammatory processes [27]. | Urinary concentrations were significantly elevated in subjects with BC [22]. The concentrations of CCL18 in urine samples are correlated with hemoglobin, so the increase in concentration in BC patients’ urine samples may be due to hematuria [11]. |
CD44 | CD44 antigen (Epican) | Cell-surface glycoprotein, involved in cell–cell interactions, cell adhesion and migration [28]. | Urinary concentrations of CD44 were significantly decreased in subjects with BC [11]. CD44 improved the prediction power of CCL18, PAI-1 (AUC = 0.938) [22]. |
IL-8 | Interleukin-8 | Chemotactic factor, released from several cell types in response to an inflammatory stimulus [29]. | Group of proteins, including IL-8, had significantly higher expression in BC subjects, IL-8 was the most consistent one, multivariate regression analysis revealed that only IL-8 was an independent factor for the detection of BC [25]. Urine IL-8 levels were significantly increased in high compared to low-grade tumors as well as in MIBC compared to NMIBC. IL8 could discriminate BC patients from controls, low grade BC from high grade BC, NMIBC from MIBC [18]. |
MMP-10 | Stromelysin-2/Matrix metalloproteinase-10 | Breakdown of extracellular matrix [30]. | Significantly higher expression was detected in urine samples of bladder cancer patients compared to healthy controls [11,18]. Both ELISA and Multi-array assay revealed that MMP-10 could discriminate BC patients from controls, low grade BC from high grade BC, NMIBC from MIBC [16]. |
MMP-9 | Matrix metalloproteinase-9 | Involved in breakdown of extracellular matrix and in leukocyte migration [31]. | Significantly higher expression was detected by ELISA in urine samples of bladder cancer patients compared to healthy controls [11]. Both ELISA and Multi-array assay revealed that MMP-9 could discriminate BC patients from controls, NMIBC from MIBC [16]. Biomarker levels were also compared with respect to tumor grade and stage. IL-8, MMP-9, PAI-1 and APOE were significantly increased in high compared to low grade tumors as well as in MIBC compared to non-MIBC [18]. |
OPN (SPP1) | Osteopontin | Appears to be involved in tumorigenesis, metastasis, Cell-matrix interaction and type 1 immunity [32]. | Urinary concentrations of OPN were significantly elevated in subjects with BC [11]. |
PAI-1 (SERPINE1) | Plasminogen activator inhibitor-1 | Inhibitor of fibrinolysis. High expressions are associated with thrombophilia [33]. | Urinary concentrations of CCL18, PAI-1, and BTA were significantly elevated in subjects with BC [22]. Urinary concentrations of 14 biomarkers including PAI-1 were significantly elevated in subjects with BC [11]. Both ELISA and Multi-array assay revealed that PAI1 could discriminate BC patients from controls, low grade BC from high grade BC, NMIBC from MIBC, PAI-1 was the most accurate single biomarker for BC followed closely by urinary IL8 [16]. |
PTX3 | Pentraxin 3 | Expressed in numerous tissues, such as monocytes, dendritic cells, takes role in inflammation [34]. | Urinary concentrations of PTX3 were significantly elevated in subjects with BC [11]. PTX concentration in urine samples analyzed by ELISA but no significant difference found between BC and controls [23]. |
Scd-1 | Syndecan-1 | Involved in cytoskeleton regulation and exosome biogenesis [35]. | Elevated in the urine samples of BC patients but results were not consistent. Any significant association between cancer, control or stage found [11,16,36]. |
sFAS | Soluble Fas | Prevents apoptosis induction, and enhances the immunosuppressive effects of tumors [37]. | The urinary sFas levels were significantly higher in the patients with UC than in those without cancer [37], significantly elevated in the NMIBC cases with a higher stage or grade or high-risk group category than in those with a lower stage or grade or low-risk group category [38]. |
VEGF | Vascular endothelial growth factor | Active in angiogenesis, vasculogenesis and endothelial cell growth [39]. | Urinary concentrations significantly elevated in subjects with BC [11]. VEGF was the most accurate urinary biomarker [24] and could discriminate BC patients from controls, NMIBC from MIBC [16]. |
let-7b | miR-27b | miR-125b | miR-182 | miR-222 | miR-515 |
let-7i | miR-29a | miR-126-5p | miR-183 | miR-223 | miR-520e |
miR-1 | miR-29a-3p | miR-133a | miR-187 | miR-302d | miR-545 |
miR-7-5p | miR-34a | miR-133b | miR-191 | miR-325 | miR-556 |
miR-9-3 | miR-92a | miR-134 | miR-192 | miR-328 | miR-589 |
miR-10a | miR-93 | miR-135b | miR-193a-3p | miR-328 | miR-616 |
miR-10b | miR-96 | miR-137 | miR-200a | miR-335 | miR-618 |
miR-15a | miR-99a | miR-140-5p | miR-200a-3p | miR-338-3p | miR-873 |
miR-15b | miR-100 | miR-141 | miR-200b | miR-375 | miR-890 |
miR-16 | miR-101 | miR-142-3p | miR-200c | miR-377 | miR-892a |
miR-18a | miR-106b | miR-143 | miR-203 | miR-423-5p | miR-923 |
miR-18a-3p | miR-122-3p | miR-145 | miR-204 | miR-424 | miR-940 |
miR-21 | miR-122-5p | miR-146a-5p | miR-205 | miR-429 | miR-1207-5p |
miR-22-3p | miR-124-2 | miR-148a | miR-210 | miR-451a | miR-1224 |
miR-24-1 | miR-124-3 | miR-149 | miR-211 | miR-452 | miR-1224-3p |
miR-25 | miR-1255b | miR-152 | miR-212 | miR-483-5p | miR-1225-5p |
miR-26a | miR-1255b-5p | miR-155 | miR-214 | miR-505 | |
miR-27a | miR-125a | miR-156 | miR-221 | miR-509 |
Validated Target Gene | miRNA |
---|---|
BCL2 | hsa-miR-100-5p hsa-miR-122-5p hsa-miR-155-5p hsa-miR-29a-3p hsa-miR-429 hsa-miR-21-5p |
CCND1 | |
CCND2 | |
CDK6 | |
CDKN1A | |
ERBB2 | |
IGF1R | |
MYB | |
MYC | |
PTEN | |
RECK | |
RHOA | |
SMAD4 | |
SP1 | |
TP53 | |
VEGFA | |
WEE1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Güllü Amuran, G.; Peker Eyuboglu, I.; Tinay, I.; Akkiprik, M. New Insights in Bladder Cancer Diagnosis: Urinary miRNAs and Proteins. Med. Sci. 2018, 6, 113. https://doi.org/10.3390/medsci6040113
Güllü Amuran G, Peker Eyuboglu I, Tinay I, Akkiprik M. New Insights in Bladder Cancer Diagnosis: Urinary miRNAs and Proteins. Medical Sciences. 2018; 6(4):113. https://doi.org/10.3390/medsci6040113
Chicago/Turabian StyleGüllü Amuran, Gökçe, Irem Peker Eyuboglu, Ilker Tinay, and Mustafa Akkiprik. 2018. "New Insights in Bladder Cancer Diagnosis: Urinary miRNAs and Proteins" Medical Sciences 6, no. 4: 113. https://doi.org/10.3390/medsci6040113
APA StyleGüllü Amuran, G., Peker Eyuboglu, I., Tinay, I., & Akkiprik, M. (2018). New Insights in Bladder Cancer Diagnosis: Urinary miRNAs and Proteins. Medical Sciences, 6(4), 113. https://doi.org/10.3390/medsci6040113