Assessment of Changes in Glycaemic Control and Blood Viscosity Determinants: Does Glycaemia Impact on Haematocrit, Proteinaemia or Dyslipidaemia?
Abstract
1. Introduction
1.1. Statement of the Problem and Rationale of Study
1.2. Specific Objectives
1.3. Hypothesis
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kruchinina, M.V.; Gromov, A.A.; Generalov, V.M.; Kruchinin, V.N. Possible Differential Diagnosis of the Degrees of Rheological Disturbances in Patients with Type 2 Diabetes Mellitus by Dielectrophoresis of Erythrocytes. J. Pers. Med. 2020, 10, 60. [Google Scholar] [CrossRef]
- Sun, J.; Han, K.; Xu, M.; Li, L.; Qian, J.; Li, L.; Li, X. Blood Viscosity in Subjects With Type 2 Diabetes Mellitus: Roles of Hyperglycemia and Elevated Plasma Fibrinogen. Front. Physiol. 2022, 13, 827428. [Google Scholar] [CrossRef] [PubMed]
- Tulloch-Reid, M.K.; Hanson, R.L.; Saremi, A.; Looker, H.C.; Williams, D.E.; Krakoff, J.; Knowler, W.C. Hematocrit and the incidence of type 2 diabetes in the pima indians. Diabetes Care 2004, 27, 2245–2246. [Google Scholar] [CrossRef][Green Version]
- Tamariz, L.J.; Young, J.H.; Pankow, J.S.; Yeh, H.C.; Schmidt, M.I.; Astor, B.; Brancati, F.L. Blood Viscosity and Hematocrit as Risk Factors for Type 2 Diabetes Mellitus: The Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Epidemiol. 2008, 168, 1153–1160. [Google Scholar] [CrossRef]
- Succurro, E.; Vizza, P.; Cicone, F.; Rubino, M.; Fiorentino, T.V.; Perticone, M.; Mannino, G.C.; Sciacqua, A.; Guzzi, P.H.; Veltri, P.; et al. Elevated whole blood viscosity is associated with an impaired insulin-stimulated myocardial glucose metabolism. Cardiovasc. Diabetol. 2024, 23, 431. [Google Scholar] [CrossRef]
- Sacks, D.B. A1C versus glucose testing: A comparison. Diabetes Care 2011, 34, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Obeagu, E.I. Red blood cells as biomarkers and mediators in complications of diabetes mellitus: A review. Medicine 2024, 103, e37265. [Google Scholar] [CrossRef] [PubMed]
- Turczyński, B.; Michalska-Małecka, K.; Słowińska, L.; Szczesny, S.; Romaniuk, W. Correlations between the severity of retinopathy in diabetic patients and whole blood and plasma viscosity. Clin. Hemorheol. Microcirc. 2003, 29, 129–137. [Google Scholar]
- Agrawal, R.; Smart, T.; Nobre-Cardoso, J.; Richards, C.; Bhatnagar, R.; Tufail, A.; Shima, D.; Jones, P.H.; Pavesio, C. Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique. Sci. Rep. 2016, 6, 15873. [Google Scholar] [CrossRef]
- Ercan, M.; Konukoğlu, D.; Erdem, T.; Onen, S. The effects of cholesterol levels on hemorheological parameters in diabetic patients. Clin. Hemorheol. Microcirc. 2002, 26, 257–263. [Google Scholar]
- Mbata, C.; Adegoke, A.; Chinyere, N.; A, N. Some Haematological Parameters in Diabetic Patients in Port Harcourt Nigeria. Asian J. Multidiscip. Stud. 2015, 3, 21–25. [Google Scholar]
- Gkrania-Klotsas, E.; Ye, Z.; Cooper, A.J.; Sharp, S.J.; Luben, R.; Biggs, M.L.; Chen, L.K.; Gokulakrishnan, K.; Hanefeld, M.; Ingelsson, E.; et al. Differential white blood cell count and type 2 diabetes: Systematic review and meta-analysis of cross-sectional and prospective studies. PLoS ONE 2010, 5, e13405. [Google Scholar] [CrossRef]
- Mullugeta, Y.; Chawla, R.; Kebede, T.; Worku, Y. Dyslipidemia Associated with Poor Glycemic Control in Type 2 Diabetes Mellitus and the Protective Effect of Metformin Supplementation. Indian J. Clin. Biochem. 2012, 27, 363–369. [Google Scholar] [CrossRef]
- Nwose, E.U.; Bwititi, P.T. Correlation between blood coagulation profile and viscosity: Clinical laboratory observational study. Med. Sci. 2025, 13, 20. [Google Scholar] [CrossRef]
- Gyawali, P.; Richards, R.S.; Bwititi, P.T.; Nwose, E.U. Association of abnormal erythrocyte morphology with oxidative stress and inflammation in metabolic syndrome. Blood Cells Mol. Dis. 2015, 54, 360–363. [Google Scholar] [CrossRef]
- Marini, M.A.; Fiorentino, T.V.; Andreozzi, F.; Mannino, G.C.; Succurro, E.; Sciacqua, A.; Perticone, F.; Sesti, G. Hemorheological alterations in adults with prediabetes identified by hemoglobin A1c levels. Nutrition, Metab. Cardiovasc. Dis. 2017, 27, 601–608. [Google Scholar] [CrossRef]
- Simmons, D. Increased red cell count in diabetes and pre-diabetes. Diabetes Res. Clin. Pract. 2010, 90, e50–e53. [Google Scholar] [CrossRef] [PubMed]
- Nwose, E.U.; Richards, R.S.; Bwititi, P.T. Cardiovascular risks in prediabetes: Preliminary data on “vasculopathy triad”. N. Am. J. Med. Sci. 2014, 6, 328–332. [Google Scholar] [CrossRef]
- Nwose, E.U.; Richards, R.S.; McDonald, S.; Jelinek, H.F.; Kerr, R.G.; Tinley, R. Assessment of diabetic macrovascular complications: A prediabetes model. Br. J. Biomed. Sci. 2010, 67, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, N.; Hu, H.; Nanri, A.; Mizoue, T.; Eguchi, M.; Kochi, T.; Nakagawa, T.; Honda, T.; Yamamoto, S.; Ogasawara, T.; et al. Associations of anemia and hemoglobin with hemoglobin A1c among non-diabetic workers in Japan. J. Diabetes Investig. 2020, 11, 719–725. [Google Scholar] [CrossRef]
- Katwal, P.C.; Jirjees, S.; Htun, Z.M.; Aldawudi, I.; Khan, S. The effect of anemia and the goal of optimal HbA1c control in diabetes and non-diabetes. Cureus 2020, 12, e8431. [Google Scholar] [CrossRef]
- Zheng, D.; Dou, J.; Liu, G.; Pan, Y.; Yan, Y.; Liu, F.; Gaisano, H.Y.; Lu, J.; He, Y. Association Between Triglyceride Level and Glycemic Control Among Insulin-Treated Patients With Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2019, 104, 1211–1220. [Google Scholar] [CrossRef]
- Tirosh, A.; Shai, I.; Bitzur, R.; Kochba, I.; Tekes-Manova, D.; Israeli, E.; Shochat, T.; Rudich, A. Changes in triglyceride levels over time and risk of type 2 diabetes in young men. Diabetes Care 2008, 31, 2032–2037. [Google Scholar] [CrossRef]
- Lin, S.X.; Berlin, I.; Younge, R.; Jin, Z.; Sibley, C.T.; Schreiner, P.; Szklo, M.; Bertoni, A.G. Does Elevated Plasma Triglyceride Level Independently Predict Impaired Fasting Glucose? Diabetes Care 2013, 36, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Nathan, D.M.; Kuenen, J.; Borg, R.; Zheng, H.; Schoenfeld, D.; Heine, R.J. Translating the A1C assay into estimated average glucose values. Diabetes Care 2008, 31, 1473–1478. [Google Scholar] [CrossRef]
- Ikramov, A.; Mukhtarova, S.; Trigulova, R.; Alimova, D.; Abdullaeva, S. Prediction of glycosylated hemoglobin level in patients with cardiovascular diseases and type 2 diabetes mellitus with respect to anti-diabetic medication. Front. Endocrinol. 2024, 15, 1305640. [Google Scholar] [CrossRef]
- Chehade, J.M.; Gladysz, M.; Mooradian, A.D. Dyslipidemia in type 2 diabetes: Prevalence, pathophysiology, and management. Drugs 2013, 73, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Al Quran, T.M.; Bataineh, Z.A.; Al-Mistarehi, A.-H.; Zein Alaabdin, A.M.; Allan, H.; Al Qura’An, A.; Weshah, S.M.; Alanazi, A.A.; Khader, Y.S. Prevalence and Pattern of Dyslipidemia and Its Associated Factors Among Patients with Type 2 Diabetes Mellitus in Jordan: A Cross-Sectional Study. Int. J. Gen. Med. 2022, 15, 7669–7683. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Cheng, Y.; Li, T.; Ma, Z.; Liu, J.; Zhang, Q.; Cheng, H. The utility of HbA1c combined with haematocrit for early screening of gestational diabetes mellitus. Diabetol. Metab. Syndr. 2018, 10, 14. [Google Scholar] [CrossRef]
- Alzahrani, B.A.; Salamatullah, H.K.; Alsharm, F.S.; Baljoon, J.M.; Abukhodair, A.O.; Ahmed, M.E.; Malaikah, H.; Radi, S. The effect of different types of anemia on HbA1c levels in non-diabetics. BMC Endocr. Disord. 2023, 23, 24. [Google Scholar] [CrossRef]
- Arnetz, B.B.; Kallner, A.; Theorell, T. The influence of aging on hemoglobin A1c (HbA1c). J. Gerontol. 1982, 37, 648–650. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Futamura, A.; Ikushima, M. Effect of aging on HbA1c in a working male Japanese population. Diabetes Care 1995, 18, 1337–1340. [Google Scholar] [CrossRef]
- Wiener, K.; Roberts, N.B. Age does not influence levels of HbA1c in normal subject. Qjm 1999, 92, 169–173. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Vallée Polneau, S.; Lasserre, V.; Fonfrède, M.; Delattre, J.; Bénazeth, S. A different approach to analyzing age-related HbA1c values in non-diabetic subjects. Clin. Chem. Lab. Med. 2004, 42, 423–428. [Google Scholar] [CrossRef]
- Her, Q.L.; Wong, J. Significant correlation versus strength of correlation. Am. J. Health-Syst. Pharm. 2019, 77, 73–75. [Google Scholar] [CrossRef]
- Gülsen, Ş.; Deniz, K.E.; Başak, C.; Alper, G.; Yeşil, B.S.; Betül, E. The effect of age and gender on HbA1c levels in adults without diabetes mellitus. J. Med. Biochem. 2023, 42, 714–721. [Google Scholar] [CrossRef]
- Dubowitz, N.; Xue, W.; Long, Q.; Ownby, J.G.; Olson, D.E.; Barb, D.; Rhee, M.K.; Mohan, A.V.; Watson-Williams, P.I.; Jackson, S.L.; et al. Aging is associated with increased HbA1c levels, independently of glucose levels and insulin resistance, and also with decreased HbA1c diagnostic specificity. Diabet. Med. 2014, 31, 927–935. [Google Scholar] [CrossRef] [PubMed]
- Weidman, J.; Sloop, G.; St Cyr, J.A. Validated formulae for estimation of whole blood viscosity underestimate the influence of erythrocyte aggregation and deformability. Ther. Adv. Cardiovasc. Dis. 2016, 10, 271–273. [Google Scholar] [CrossRef] [PubMed]
- Muldoon, M.F.; Herbert, T.B.; Patterson, S.M.; Kameneva, M.; Raible, R.; Manuck, S.B. Effects of acute psychological stress on serum lipid levels, hemoconcentration, and blood viscosity. Arch. Intern. Med. 1995, 155, 615–620. [Google Scholar] [CrossRef]
- Celik, T.; Balta, S.; Ozturk, C.; Iyisoy, A. Whole blood viscosity and cardiovascular diseases: A forgotten old player of the game. Med. Princ. Pract. 2016, 25, 499–500. [Google Scholar] [CrossRef]
| Variable | N * | Mean | SD | Skewness | Kurt | Minimum | Maximum |
|---|---|---|---|---|---|---|---|
| Age (years) | 12,986 | 61.35 | 13.78 | −0.51 | 0.12 | 8.00 | 97.00 |
| Total cholesterol (mmol/L) | 12,985 | 4.94 | 1.10 | 0.74 | 3.19 | 1.30 | 16.60 |
| Triglyceride (mmol/L) | 12,968 | 1.96 | 1.61 | 9.75 | 230.07 | 0.17 | 62.09 |
| HDL-C (mmol/L) | 12,986 | 1.22 | 0.38 | 1.05 | 2.02 | 0.08 | 3.70 |
| HbA1c % | 12,986 | 6.78 | 1.61 | 1.52 | 3.49 | 2.40 | 18.60 |
| Serum protein (g/dL) | 12,982 | 72.11 | 5.20 | 0.04 | 0.99 | 44.00 | 109.00 |
| Haematocrit % | 12,986 | 0.43 | 0.04 | −0.43 | 1.11 | 0.18 | 0.58 |
| Variables | Group | Mean | Std. Deviation | N |
|---|---|---|---|---|
| Total Cholesterol (mmol/L) | Good control | 5.0765 | 1.04695 | 2694 |
| Moderate control | 5.0113 | 1.08434 | 4075 | |
| Poor control | 4.8395 | 1.12299 | 6194 | |
| Serum Triglyceride (mmol/L) | Good control | 1.6959 | 1.20017 | 2694 |
| Moderate control | 1.8378 | 1.30699 | 4075 | |
| Poor control | 2.1506 | 1.86713 | 6194 | |
| Serum HDL-C (mmol/L) | Good control | 1.2960 | 0.39682 | 2694 |
| Moderate control | 1.2581 | 0.38399 | 4075 | |
| Poor control | 1.1566 | 0.35245 | 6194 | |
| HbA1c (%) | Good control | 5.1361 | 0.37934 | 2694 |
| Moderate control | 5.9853 | 0.25307 | 4075 | |
| Poor control | 8.0084 | 1.49391 | 6194 | |
| Serum Protein (g/L) | Good control | 72.8615 | 5.10591 | 2694 |
| Moderate control | 72.3801 | 5.20583 | 4075 | |
| Poor control | 71.6015 | 5.19413 | 6194 | |
| Haematocrit (%) | Good control | 0.4321 | 0.03733 | 2694 |
| Moderate control | 0.4318 | 0.03907 | 4075 | |
| Poor control | 0.4267 | 0.04217 | 6194 | |
| Age (years) | Good control | 55.1778 | 15.03154 | 2694 |
| Moderate control | 62.7448 | 13.10084 | 4075 | |
| Poor control | 63.1182 | 12.84780 | 6194 |
| Independent Variable | Sig. | 95% Confidence Interval | |||
|---|---|---|---|---|---|
| Lower | Upper | ||||
| Total cholesterol (mmol/L) | Good control | Moderate control | 0.017 | 0.012 | 0.118 |
| Poor control | 0.000 | 0.187 | 0.287 | ||
| Moderate control | Good control | 0.017 | −0.118 | −0.012 | |
| Poor control | 0.000 | 0.129 | 0.215 | ||
| Poor control | Good control | 0.000 | −0.287 | −0.187 | |
| Serum triglyceride (mmol/L) | Good control | Moderate control | 0.000 | −0.215 | −0.129 |
| Moderate control | 0.000 | −0.219 | −0.065 | ||
| Poor control | 0.000 | −0.526 | −0.383 | ||
| Moderate control | Good control | 0.000 | 0.065 | 0.219 | |
| Poor control | 0.000 | −0.375 | −0.250 | ||
| Poor control | Good control | 0.000 | 0.383 | 0.526 | |
| Moderate control | 0.000 | 0.250 | 0.375 | ||
| Serum HDL-C (mmol/L) | Good control | Moderate control | 0.000 | 0.020 | 0.056 |
| Poor control | 0.000 | 0.123 | 0.156 | ||
| Moderate control | Good control | 0.000 | −0.056 | −0.020 | |
| Poor control | 0.000 | 0.087 | 0.116 | ||
| Poor control | Good control | 0.000 | −0.156 | −0.123 | |
| Moderate control | 0.000 | −0.116 | −0.087 | ||
| Serum protein (g/L) | Good control | Moderate control | 0.000 | 0.229 | 0.734 |
| Poor control | 0.000 | 1.026 | 1.494 | ||
| Moderate control | Good control | 0.000 | −0.734 | −0.229 | |
| Poor control | 0.000 | 0.574 | 0.983 | ||
| Poor control | Good control | 0.000 | −1.494 | −1.026 | |
| Moderate control | 0.000 | −0.983 | −0.574 | ||
| Haematocrit (%) | Good control | Moderate control | 0.722 | −0.002 | 0.002 |
| Poor control | 0.000 | 0.004 | 0.007 | ||
| Moderate control | Good control | 0.722 | −0.002 | 0.002 | |
| Poor control | 0.000 | 0.003 | 0.007 | ||
| Poor control | Good control | 0.000 | −0.007 | −0.004 | |
| Moderate control | 0.000 | −0.007 | −0.003 | ||
| Age (years) | Good control | Moderate control | 0.000 | −8.220 | −6.914 |
| Poor control | 0.000 | −8.547 | −7.334 | ||
| Moderate control | Good control | 0.000 | 6.914 | 8.220 | |
| Poor control | 0.167 | −0.904 | 0.157 | ||
| Poor control | Good control | 0.000 | 7.334 | 8.547 | |
| Moderate control | 0.167 | −0.157 | 0.904 | ||
| Age | TCHOL | TRIG | HDL-C | HBA1C | PROT | HCT | |
|---|---|---|---|---|---|---|---|
| Age | 1 | ||||||
| TCHOL | −0.114 | 1 | |||||
| TRIG | −0.04 | 0.305 | 1 | ||||
| HDL-C | 0.013 | 0.264 | −0.264 | 1 | |||
| HBA1C | 0.048 | −0.006 | 0.177 | −0.143 | 1 | ||
| PROT | −0.105 | 0.153 | 0.064 | 0.086 | −0.103 | 1 | |
| HCT | −0.151 | 0.112 | 0.047 | −0.045 | −0.009 | 0.203 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mbah, J.I.; Bwititi, P.T.; Gyawali, P.; Nwose, E.U. Assessment of Changes in Glycaemic Control and Blood Viscosity Determinants: Does Glycaemia Impact on Haematocrit, Proteinaemia or Dyslipidaemia? Med. Sci. 2025, 13, 303. https://doi.org/10.3390/medsci13040303
Mbah JI, Bwititi PT, Gyawali P, Nwose EU. Assessment of Changes in Glycaemic Control and Blood Viscosity Determinants: Does Glycaemia Impact on Haematocrit, Proteinaemia or Dyslipidaemia? Medical Sciences. 2025; 13(4):303. https://doi.org/10.3390/medsci13040303
Chicago/Turabian StyleMbah, Jovita Igwebuike, Phillip Taderera Bwititi, Prajwal Gyawali, and Ezekiel Uba Nwose. 2025. "Assessment of Changes in Glycaemic Control and Blood Viscosity Determinants: Does Glycaemia Impact on Haematocrit, Proteinaemia or Dyslipidaemia?" Medical Sciences 13, no. 4: 303. https://doi.org/10.3390/medsci13040303
APA StyleMbah, J. I., Bwititi, P. T., Gyawali, P., & Nwose, E. U. (2025). Assessment of Changes in Glycaemic Control and Blood Viscosity Determinants: Does Glycaemia Impact on Haematocrit, Proteinaemia or Dyslipidaemia? Medical Sciences, 13(4), 303. https://doi.org/10.3390/medsci13040303

