Incretin-Based Therapies Through the Decades: Molecular Innovations and Clinical Impact
Abstract
1. Introduction
2. The Evolution of the Incretin Concept: From Discovery to Modern Physiological Understanding
2.1. Early Premises
2.2. Discovery of GIP
2.3. Physiology and Functions of GIP
2.4. Discovery of GLP-1
2.5. Physiology and Functions of GLP-1
3. From Concept to Clinic: The Development of Incretin-Based Drugs
3.1. Main Strategies for Peptide Modification and Synthesis
3.2. Clinically Approved Drugs
3.3. Exendin-4–Based Drugs
3.4. GLP-1-Based Drugs
3.5. Dual GIP/GLP-1 Agonists
4. Incretins and Incretinomimetics in the Pathogenesis and Treatment of Cardiometabolic Diseases
4.1. Obesity and Type 2 Diabetes
4.2. Cardiometabolic Health and MACE Reduction
4.3. MASLD/MASH: The Hepatic Component
4.4. Kidney Protection
4.5. Beyond Glycemia
5. Comparative Therapeutic Perspectives: Integrative Role of Incretins
6. Adverse Events Associated with GLP-1RA Therapy
7. Future Prospects
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AC | Adenylate Cyclase |
| ACE | Angiotensin-Converting Enzyme |
| ADA | American Diabetes Association |
| Akt | Protein Kinase B |
| ALT | Alanine Aminotransferase |
| ASCVD | Atherosclerotic Cardiovascular Disease |
| AST | Aspartate Aminotransferase |
| cAMP | Cyclic Adenosine Monophosphate |
| CNS | Central Nervous System |
| COPD | Chronic Obstructive Pulmonary Disease |
| CRMS | Cardio–Renal–Metabolic Syndrome |
| CVOT | Cardiovascular Outcome Trial |
| DKD | Diabetic Kidney Disease |
| DN | Diabetic Nephropathy |
| DPP-4 | Dipeptidyl Peptidase-4 |
| EPAC | Exchange Protein Directly Activated By Camp |
| FDA | Food And Drug Administration |
| GCGR | Glucagon Receptor |
| GFR | Glomerular Filtration Rate |
| GIP | Glucose-Dependent Insulinotropic Polypeptide |
| GIPR | GIP Receptor |
| GLP-1 | Glucagon-Like Peptide-1 |
| GLP-1R | GLP-1 Receptor |
| GLP-1RA | GLP-1 Receptor Agonist |
| GLUT-4 | Glucose Transporter Type 4 |
| GPCR | G Protein-Coupled Receptor |
| HbA1c | Glycated Hemoglobin |
| HDL | High-Density Lipoprotein |
| HFpEF | Heart Failure With Preserved Ejection Fraction |
| HSA | Human Serum Albumin |
| IR | Insulin Resistance |
| IRS-1 | Insulin Receptor Substrate 1 |
| LDL | Low-Density Lipoprotein |
| MACE | Major Adverse Cardiovascular Events |
| MASH | Metabolic Dysfunction-Associated Steatohepatitis |
| MASLD | Dysfunction-Associated Steatotic Liver Disease |
| MI | Myocardial Infarction |
| NAFLD | Non-Alcoholic Fatty Liver Disease |
| NAION | Non-Arteritic Anterior Ischemic Optic Neuropathy |
| PEG | Polyethylene Glycol |
| PI3K | Phosphoinositide 3-Kinase |
| PLGA | Poly(Lactic-Co-Glycolic Acid) |
| PKA | Protein Kinase A |
| PKCβ | Protein Kinase C Beta |
| PPAR-α | Peroxisome Proliferator-Activated Receptor Alpha |
| RAAS | Renin–Angiotensin–Aldosterone System |
| Ro5 | Lipinski’s Rule Of Five |
| SGLT2 | Sodium-Glucose Cotransporter 2 |
| SGLT2i | Sodium–Glucose Cotransporter 2 Inhibitors |
| SNAC | Sodium N-[8-(2-Hydroxybenzoyl)Aminocaprylate] |
| SPPS | Solid-Phase Peptide Synthesis |
| T2DM | Type 2 Diabetes Mellitus |
| WHO | World Health Organization |
| (AEEA)2 | [2-(2-(2-aminoethoxy) ethoxy) acetic acid]2 |
| (Oda)2 | (2,2′-Oxydiacetic acid)2 |
References
- Kaplan, J.M.; Zaman, A.; Abushamat, L.A. Curbing the Obesity Epidemic: Should GLP-1 Receptor Agonists Be the Standard of Care for Obesity? Curr. Cardiol. Rep. 2024, 26, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. IDF Diabetes Atlas, 11th ed.; International Diabetes Federation: Brussels, Belgium, 2025; Available online: https://diabetesatlas.org (accessed on 10 November 2025).
- Chong, B.; Jayabaskaran, J.; Jauhari, S.M.; Chan, S.P.; Goh, R.; Kueh, M.T.W.; Li, H.; Chin, Y.H.; Kong, G.; Anand, V.V.; et al. Global Burden of Cardiovascular Diseases: Projections from 2025 to 2050. Eur. J. Prev. Cardiol. 2025, 32, 1001–1015. [Google Scholar] [CrossRef] [PubMed]
- Bayliss, W.M.; Starling, E.H. The Mechanism of Pancreatic Secretion. J. Physiol. 1902, 28, 325–353. [Google Scholar] [CrossRef]
- Moore, B. On the Treatment of Diabetus mellitus by Acid Extract of Duodenal Mucous Membrane. Biochem. J. 1906, 1, 28–38. [Google Scholar] [CrossRef]
- Zunz, E.; Barre, J.L. Contributions A L’Étude Des Variations Physiologiques De La Sécrétion Interne Du Pancréas. Arch. Int. De Physiol. 1929, 31, 162–179. [Google Scholar] [CrossRef]
- Heller, H. Über das insulotrope Hormon der Darmschleimhaut (Duodenin). Arch. Experiment. Pathol. Pharmakol. 1934, 177, 127–133. [Google Scholar] [CrossRef]
- Berson, S.A.; Yalow, R.S.; Bauman, A.; Rothschild, M.A.; Newerly, K. Insulin-I131 Metabolism in Human Subjects: Demonstration of Insulin Binding Globulin in the Circulation of Insulin Treated Subjects. J. Clin. Investig. 1956, 35, 170–190. [Google Scholar] [CrossRef]
- Elrick, H.; Stimmler, L.; Hlad, C.J., Jr.; Arai, Y. Plasma Insulin Response to Oral and Intravenous Glucose Administration1. J. Clin. Endocrinol. Metab. 1964, 24, 1076–1082. [Google Scholar] [CrossRef]
- Mcintyre, N.; Holdsworth, C.D.; Turner, D.S. New Interpretation of Oral Glucose Tolerance. Lancet 1964, 284, 20–21. [Google Scholar] [CrossRef]
- Perley, M.J.; Kipnis, D.M. Plasma Insulin Responses to Oral and Intravenous Glucose: Studies in Normal and Diabetic Subjects. J. Clin. Investig. 1967, 46, 1954–1962. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.C.; Mutt, V.; Pederson, R.A. Further Purification of a Polypeptide Demonstrating Enterogastrone Activity. J. Physiol. 1970, 209, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Lauritsen, B.; Holst, J.J.; Moody, A.J. Depression of Insulin Release by Anti-GIP Serum after Oral Glucose in Rats. Scand. J. Gastroenterol. 1981, 16, 417–420. [Google Scholar] [CrossRef]
- Dupre, J.; Ross, S.A.; Watson, D.; Brown, J.C. Stimulation of Insulin Secretion By Gastric Inhibitory Polypeptide in Man.1. J. Clin. Endocrinol. Metab. 1973, 37, 826–828. [Google Scholar] [CrossRef]
- Ebert, R.; Unger, H.; Creutzfeldt, W. Preservation of Incretin Activity after Removal of Gastric Inhibitory Polypeptide (GIP) from Rat Gut Extracts by Immunoadsorption. Diabetologia 1983, 24, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Lauritsen, K.B.; Moody, A.J.; Christensen, K.C.; Lindkaer Jensen, S. Gastric Inhibitory Polypeptide (GIP) and Insulin Release after Small-Bowel Resection in Man. Scand. J. Gastroenterol. 1980, 15, 833–840. [Google Scholar] [CrossRef]
- Marks, V. The Early History of GIP 1969–2000: From Enterogastrone to Major Metabolic Hormone. Peptides 2019, 122, 170155. [Google Scholar] [CrossRef]
- Seino, Y.; Fukushima, M.; Yabe, D. GIP and GLP-1, the Two Incretin Hormones: Similarities and Differences. J. Diabetes Investig. 2010, 1, 8–23. [Google Scholar] [CrossRef]
- Müller, T.D.; Adriaenssens, A.; Ahrén, B.; Blüher, M.; Birkenfeld, A.L.; Campbell, J.E.; Coghlan, M.P.; D’Alessio, D.; Deacon, C.F.; DelPrato, S.; et al. Glucose-Dependent Insulinotropic Polypeptide (GIP). Mol. Metab. 2025, 95, 102118. [Google Scholar] [CrossRef]
- Yabe, D.; Seino, Y. Two Incretin Hormones GLP-1 and GIP: Comparison of Their Actions in Insulin Secretion and β Cell Preservation. Prog. Biophys. Mol. Biol. 2011, 107, 248–256. [Google Scholar] [CrossRef]
- Wolfe, M.M.; Boylan, M.O.; Chin, W.W. Glucose-Dependent Insulinotropic Polypeptide in Incretin Physiology: Role in Health and Disease. Endocr. Rev. 2025, 46, 479–500. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, M. The Role of GIP Receptor in the CNS for the Pathogenesis of Obesity. Diabetes 2021, 70, 1929–1937. [Google Scholar] [CrossRef]
- Usdin, T.B.; Mezey, E.; Button, D.C.; Brownstein, M.J.; Bonner, T.I. Gastric Inhibitory Polypeptide Receptor, a Member of the Secretin-Vasoactive Intestinal Peptide Receptor Family, Is Widely Distributed in Peripheral Organs and the Brain. Endocrinology 1993, 133, 2861–2870. [Google Scholar] [CrossRef]
- Hansen, M.S.; Søe, K.; Christensen, L.L.; Fernandez-Guerra, P.; Hansen, N.W.; Wyatt, R.A.; Martin, C.; Hardy, R.S.; Andersen, T.L.; Olesen, J.B.; et al. GIP Reduces Osteoclast Activity and Improves Osteoblast Survival in Primary Human Bone Cells. Eur. J. Endocrinol. 2023, 188, 144–157. [Google Scholar] [CrossRef]
- Lewis, J.E.; Nuzzaci, D.; James-Okoro, P.-P.; Montaner, M.; O’Flaherty, E.; Darwish, T.; Hayashi, M.; Liberles, S.D.; Hornigold, D.; Naylor, J.; et al. Stimulating Intestinal GIP Release Reduces Food Intake and Body Weight in Mice. Mol. Metab. 2024, 84, 101945. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Chen, S.; Funcke, J.-B.; Straub, L.G.; Pirro, V.; Emont, M.P.; Droz, B.A.; Collins, K.A.; Joung, C.; Pearson, M.J.; et al. The GIP Receptor Activates Futile Calcium Cycling in White Adipose Tissue to Increase Energy Expenditure and Drive Weight Loss in Mice. Cell Metab. 2025, 37, 187–204.e7. [Google Scholar] [CrossRef] [PubMed]
- Pechmann, L.M.; Pinheiro, F.I.; Andrade, V.F.C.; Moreira, C.A. The Multiple Actions of Dipeptidyl Peptidase 4 (DPP-4) and Its Pharmacological Inhibition on Bone Metabolism: A Review. Diabetol. Metab. Syndr. 2024, 16, 175. [Google Scholar] [CrossRef] [PubMed]
- Lund, P.K. The Discovery of Glucagon-like Peptide 1. Regul. Pept. 2005, 128, 93–96. [Google Scholar] [CrossRef]
- Mojsov, S.; Weir, G.C.; Habener, J.F. Insulinotropin: Glucagon-like Peptide I (7-37) Co-Encoded in the Glucagon Gene Is a Potent Stimulator of Insulin Release in the Perfused Rat Pancreas. J. Clin. Investig. 1987, 79, 616–619. [Google Scholar] [CrossRef]
- Ørskov, C.; Holst, J.J.; Knuhtsen, S.; Baldissera, F.G.A.; Poulsen, S.S.; Nielsen, O.V. Glucagon-Like Peptides GLP-1 and GLP-2, Predicted Products of the Glucagon Gene, Are Secreted Separately from Pig Small Intestine but Not Pancreas*. Endocrinology 1986, 119, 1467–1475. [Google Scholar] [CrossRef]
- Holst, J.J.; Orskov, C.; Nielsen, O.V.; Schwartz, T.W. Truncated Glucagon-like Peptide I, an Insulin-Releasing Hormone from the Distal Gut. FEBS Lett. 1987, 211, 169–174. [Google Scholar] [CrossRef]
- Drucker, D.J.; Erlich, P.; Asa, S.L.; Brubaker, P.L. Induction of Intestinal Epithelial Proliferation by Glucagon-like Peptide 2. Proc. Natl. Acad. Sci. USA 1996, 93, 7911–7916. [Google Scholar] [CrossRef]
- Schmidt, W.E.; Siegel, E.G.; Creutzfeldt, W. Glucagon-like Peptide-1 but Not Glucagon-like Peptide-2 Stimulates Insulin Release from Isolated Rat Pancreatic Islets. Diabetologia 1985, 28, 704–707. [Google Scholar] [CrossRef]
- McLean, B.A.; Wong, C.K.; Campbell, J.E.; Hodson, D.J.; Trapp, S.; Drucker, D.J. Revisiting the Complexity of GLP-1 Action from Sites of Synthesis to Receptor Activation. Endocr. Rev. 2021, 42, 101–132. [Google Scholar] [CrossRef]
- Brierley, D.I.; de Lartigue, G. Reappraising the Role of the Vagus Nerve in GLP-1-mediated Regulation of Eating. Br. J. Pharmacol. 2022, 179, 584–599. [Google Scholar] [CrossRef]
- Holmes, G.M.; Browning, K.N.; Tong, M.; Qualls-Creekmore, E.; Travagli, R.A. Vagally Mediated Effects of Glucagon-like Peptide 1: In Vitro and in Vivo Gastric Actions. J. Physiol. 2009, 587, 4749–4759. [Google Scholar] [CrossRef] [PubMed]
- Ahrén, B.; Holst, J.J.; Mari, A. Characterization of GLP-1 Effects on Beta-Cell Function after Meal Ingestion in Humans. Diabetes Care 2003, 26, 2860–2864. [Google Scholar] [CrossRef]
- Ramracheya, R.; Chapman, C.; Chibalina, M.; Dou, H.; Miranda, C.; González, A.; Moritoh, Y.; Shigeto, M.; Zhang, Q.; Braun, M.; et al. GLP-1 Suppresses Glucagon Secretion in Human Pancreatic Alpha-cells by Inhibition of P/Q-type Ca2+ Channels. Physiol. Rep. 2018, 6, e13852. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.L. Neural Integration of Satiation and Food Reward: Role of GLP-1 and Orexin Pathways. Physiol. Behav. 2014, 136, 194–199. [Google Scholar] [CrossRef]
- Marathe, C.S.; Rayner, C.K.; Jones, K.L.; Horowitz, M. Glucagon-like Peptides 1 and 2 in Health and Disease: A Review. Peptides 2013, 44, 75–86. [Google Scholar] [CrossRef]
- Chang, M.G.; Ripoll, J.G.; Lopez, E.; Krishnan, K.; Bittner, E.A. A Scoping Review of GLP-1 Receptor Agonists: Are They Associated with Increased Gastric Contents, Regurgitation, and Aspiration Events? J. Clin. Med. 2024, 13, 6336. [Google Scholar] [CrossRef] [PubMed]
- Jalleh, R.J.; Rayner, C.K.; Hausken, T.; Jones, K.L.; Camilleri, M.; Horowitz, M. Gastrointestinal Effects of GLP-1 Receptor Agonists: Mechanisms, Management, and Future Directions. Lancet Gastroenterol. Hepatol. 2024, 9, 957–964. [Google Scholar] [CrossRef]
- Kawakita, E.; Koya, D.; Kanasaki, K. CD26/DPP-4: Type 2 Diabetes Drug Target with Potential Influence on Cancer Biology. Cancers 2021, 13, 2191. [Google Scholar] [CrossRef]
- Moiz, A.; Filion, K.B.; Tsoukas, M.A.; Yu, O.H.Y.; Peters, T.M.; Eisenberg, M.J. Mechanisms of GLP-1 Receptor Agonist-Induced Weight Loss: A Review of Central and Peripheral Pathways in Appetite and Energy Regulation. Am. J. Med. 2025, 138, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.K.; Hackett, T.A.; Galli, A.; Flynn, C.R. GLP-1: Molecular Mechanisms and Outcomes of a Complex Signaling System. Neurochem. Int. 2019, 128, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Zong, Y.; Ma, Y.; Tian, Y.; Pang, Y.; Zhang, C.; Gao, J. Glucagon-like Peptide-1 Receptor: Mechanisms and Advances in Therapy. Sig. Transduct. Target. Ther. 2024, 9, 234. [Google Scholar] [CrossRef] [PubMed]
- Kaihara, K.A.; Dickson, L.M.; Jacobson, D.A.; Tamarina, N.; Roe, M.W.; Philipson, L.H.; Wicksteed, B. β-Cell-Specific Protein Kinase A Activation Enhances the Efficiency of Glucose Control by Increasing Acute-Phase Insulin Secretion. Diabetes 2013, 62, 1527–1536. [Google Scholar] [CrossRef]
- Erckes, V.; Steuer, C. A Story of Peptides, Lipophilicity and Chromatography—Back and Forth in Time. RSC Med. Chem. 2022, 13, 676–687. [Google Scholar] [CrossRef]
- Feng, Z.; Xu, B. Inspiration from the Mirror: D-Amino Acid Containing Peptides in Biomedical Approaches. Biomol. Concepts 2016, 7, 179–187. [Google Scholar] [CrossRef]
- Pei, J.; Gao, X.; Pan, D.; Hua, Y.; He, J.; Liu, Z.; Dang, Y. Advances in the Stability Challenges of Bioactive Peptides and Improvement Strategies. Curr. Res. Food Sci. 2022, 5, 2162–2170. [Google Scholar] [CrossRef]
- Fang, P.; Pang, W.-K.; Xuan, S.; Chan, W.-L.; Cham-Fai Leung, K. Recent Advances in Peptide Macrocyclization Strategies. Chem. Soc. Rev. 2024, 53, 11725–11771. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, M.; Lai, R.; Zhang, Z. Chemical Modifications to Increase the Therapeutic Potential of Antimicrobial Peptides. Peptides 2021, 146, 170666. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, L.; Genio, V.D.; Albericio, F.; Williams, D.R. Advances in Peptidomimetics for Next-Generation Therapeutics: Strategies, Modifications, and Applications. Chem. Rev. 2025, 125, 7099–7166. [Google Scholar] [CrossRef]
- Zorzi, A.; Linciano, S.; Angelini, A. Non-Covalent Albumin-Binding Ligands for Extending the Circulating Half-Life of Small Biotherapeutics. MedChemComm 2019, 10, 1068–1081. [Google Scholar] [CrossRef] [PubMed]
- Al Musaimi, O. Unlocking the Potential of Retro-Inverso (RI) Peptides as Future Drug Candidates. Int. J. Pept. Res. Ther. 2024, 30, 56. [Google Scholar] [CrossRef]
- Dohm, M.T.; Kapoor, R.; Barron, A.E. Peptoids: Bio-Inspired Polymers as Potential Pharmaceuticals. Curr. Pharm. Des. 2011, 17, 2732–2747. [Google Scholar] [CrossRef]
- Hansen, P.R.; Oddo, A. Fmoc Solid-Phase Peptide Synthesis. Methods Mol. Biol. 2015, 1348, 33–50. [Google Scholar] [CrossRef]
- Baumruck, A.C.; Yang, J.; Thomas, G.-F.; Beyer, L.I.; Tietze, D.; Tietze, A.A. Native Chemical Ligation of Highly Hydrophobic Peptides in Ionic Liquid-Containing Media. J. Org. Chem. 2021, 86, 1659–1666. [Google Scholar] [CrossRef]
- Gourgari, E.; Wilhelm, E.E.; Hassanzadeh, H.; Aroda, V.R.; Shoulson, I. A Comprehensive Review of the FDA-Approved Labels of Diabetes Drugs: Indications, Safety, and Emerging Cardiovascular Safety Data. J. Diabetes Complicat. 2017, 31, 1719–1727. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.K. Mechanisms of Action and Therapeutic Applications of GLP-1 and Dual GIP/GLP-1 Receptor Agonists. Front. Endocrinol. 2024, 15, 1431292. [Google Scholar] [CrossRef]
- Long, B.; Pelletier, J.; Koyfman, A.; Bridwell, R.E. GLP-1 Agonists: A Review for Emergency Clinicians. Am. J. Emerg. Med. 2024, 78, 89–94. [Google Scholar] [CrossRef]
- Briones, M.; Bajaj, M. Exenatide: A GLP-1 Receptor Agonist as Novel Therapy for Type 2 Diabetes Mellitus. Expert Opin. Pharmacother. 2006, 7, 1055–1064. [Google Scholar] [CrossRef]
- Knudsen, L.B.; Lau, J. The Discovery and Development of Liraglutide and Semaglutide. Front. Endocrinol. 2019, 10, 155. [Google Scholar] [CrossRef]
- Rosenstock, J.; Stewart, M.W. Albiglutide. Drugs Future 2010, 35, 701. [Google Scholar] [CrossRef]
- Scott, L.J. Dulaglutide: A Review in Type 2 Diabetes. Drugs 2020, 80, 197–208. [Google Scholar] [CrossRef]
- Baker, D.E.; Walley, K.; Levien, T.L. Tirzepatide. Hosp. Pharm. 2023, 58, 227–243. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.A.; D’Alessio, D.A. Tirzepatide, a Dual GIP/GLP-1 Receptor Co-Agonist for the Treatment of Type 2 Diabetes with Unmatched Effectiveness Regrading Glycaemic Control and Body Weight Reduction. Cardiovasc. Diabetol. 2022, 21, 169. [Google Scholar] [CrossRef]
- Eng, J. Exendin Peptides. Mt. Sinai J. Med. 1992, 59, 147–149. [Google Scholar] [PubMed]
- Barnett, A. Exenatide. Expert Opin. Pharmacother. 2007, 15, 2593–2608. [Google Scholar] [CrossRef] [PubMed]
- Joy, S.V.; Rodgers, P.T.; Scates, A.C. Incretin Mimetics as Emerging Treatments for Type 2 Diabetes. Ann. Pharmacother. 2005, 39, 110–118. [Google Scholar] [CrossRef]
- Garber, A.J. Long-Acting Glucagon-like Peptide 1 Receptor Agonists: A Review of Their Efficacy and Tolerability. Diabetes Care 2011, 34 (Suppl. S2), S279–S284. [Google Scholar] [CrossRef]
- Genovese, S.; Mannucci, E.; Ceriello, A. A Review of the Long-Term Efficacy, Tolerability, and Safety of Exenatide Once Weekly for Type 2 Diabetes. Adv. Ther. 2017, 34, 1791–1814. [Google Scholar] [CrossRef]
- Tibble, C.A.; Cavaiola, T.S.; Henry, R.R. Longer Acting GLP-1 Receptor Agonists and the Potential for Improved Cardiovascular Outcomes: A Review of Current Literature. Expert Rev. Endocrinol. Metab. 2013, 8, 247–259. [Google Scholar] [CrossRef]
- Rosenstock, J.; Aronson, R.; Grunberger, G.; Hanefeld, M.; Piatti, P.; Serusclat, P.; Cheng, X.; Zhou, T.; Niemoeller, E.; Souhami, E.; et al. Benefits of LixiLan, a Titratable Fixed-Ratio Combination of Insulin Glargine Plus Lixisenatide, Versus Insulin Glargine and Lixisenatide Monocomponents in Type 2 Diabetes Inadequately Controlled on Oral Agents: The LixiLan-O Randomized Trial. Diabetes Care 2016, 39, 2026–2035. [Google Scholar] [CrossRef]
- Haluzík, M.; Seufert, J.; Guja, C.; Bonnemaire, M.; Bigot, G.; Tournay, M.; Kis, J.T.; Freemantle, N. Effectiveness and Safety of iGlarLixi (Insulin Glargine 100 U/mL Plus Lixisenatide) in Type 2 Diabetes According to the Timing of Daily Administration: Data from the REALI Pooled Analysis. Diabetes Ther. 2023, 14, 639–652. [Google Scholar] [CrossRef]
- Meissner, W.G.; Remy, P.; Giordana, C.; Maltête, D.; Derkinderen, P.; Houéto, J.-L.; Anheim, M.; Benatru, I.; Boraud, T.; Brefel-Courbon, C.; et al. Trial of Lixisenatide in Early Parkinson’s Disease. N. Engl. J. Med. 2024, 390, 1176–1185. [Google Scholar] [CrossRef]
- Yunsen, L. Advances of N-Terminal Modifications of GLP-1 and Their Applications for the Treatment of Type 2 Diabetes. J. Chin. Pharm. Sci. 2015, 24, 701–711. [Google Scholar] [CrossRef]
- Green, B.D.; Mooney, M.H.; Gault, V.A.; Irwin, N.; Bailey, C.J.; Harriott, P.; Greer, B.; O’Harte, F.P.M.; Flatt, P.R. N-Terminal His(7)-Modification of Glucagon-like Peptide-1(7-36) Amide Generates Dipeptidyl Peptidase IV-Stable Analogues with Potent Antihyperglycaemic Activity. J. Endocrinol. 2004, 180, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Moon, M.J.; Kim, H.Y.; Park, S.; Kim, D.-K.; Cho, E.B.; Park, C.R.; You, D.-J.; Hwang, J.-I.; Kim, K.; Choe, H.; et al. Evolutionarily Conserved Residues at Glucagon-like Peptide-1 (GLP-1) Receptor Core Confer Ligand-Induced Receptor Activation. J. Biol. Chem. 2012, 287, 3873–3884. [Google Scholar] [CrossRef] [PubMed]
- Drucker, D.J.; Dritselis, A.; Kirkpatrick, P. Liraglutide. Nat. Rev. Drug Discov. 2010, 9, 267–268. [Google Scholar] [CrossRef] [PubMed]
- Buse, J.B.; Rosenstock, J.; Sesti, G.; Schmidt, W.E.; Montanya, E.; Brett, J.H.; Zychma, M.; Blonde, L.; LEAD-6 Study Group. Liraglutide Once a Day versus Exenatide Twice a Day for Type 2 Diabetes: A 26-Week Randomised, Parallel-Group, Multinational, Open-Label Trial (LEAD-6). Lancet 2009, 374, 39–47. [Google Scholar] [CrossRef]
- Jimenez-Solem, E.; Rasmussen, M.H.; Christensen, M.; Knop, F.K. Dulaglutide, a Long-Acting GLP-1 Analog Fused with an Fc Antibody Fragment for the Potential Treatment of Type 2 Diabetes. Curr. Opin. Mol. Ther. 2010, 12, 790–797. [Google Scholar]
- Kim, D.-M.; Chu, S.-H.; Kim, S.; Park, Y.-W.; Kim, S.-S. Fc Fusion to Glucagon-like Peptide-1 Inhibits Degradation by Human DPP-IV, Increasing Its Half-Life in Serum and Inducing a Potent Activity for Human GLP-1 Receptor Activation. BMB Rep. 2009, 42, 212–216. [Google Scholar] [CrossRef]
- Fala, L. Tanzeum (Albiglutide): A Once-Weekly GLP-1 Receptor Agonist Subcutaneous Injection Approved for the Treatment of Patients with Type 2 Diabetes. Am. Health Drug Benefits 2015, 8, 126–130. [Google Scholar] [PubMed]
- Matthews, J.E.; Stewart, M.W.; De Boever, E.H.; Dobbins, R.L.; Hodge, R.J.; Walker, S.E.; Holland, M.C.; Bush, M.A. Pharmacodynamics, Pharmacokinetics, Safety, and Tolerability of Albiglutide, a Long-Acting Glucagon-Like Peptide-1 Mimetic, in Patients with Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2008, 93, 4810–4817. [Google Scholar] [CrossRef] [PubMed]
- Smits, M.M.; Van Raalte, D.H. Safety of Semaglutide. Front. Endocrinol. 2021, 12, 645563. [Google Scholar] [CrossRef]
- Aroda, V.R.; Rosenstock, J.; Terauchi, Y.; Altuntas, Y.; Lalic, N.M.; Morales Villegas, E.C.; Jeppesen, O.K.; Christiansen, E.; Hertz, C.L.; Haluzík, M.; et al. PIONEER 1: Randomized Clinical Trial of the Efficacy and Safety of Oral Semaglutide Monotherapy in Comparison with Placebo in Patients with Type 2 Diabetes. Diabetes Care 2019, 42, 1724–1732. [Google Scholar] [CrossRef] [PubMed]
- Aroda, V.R.; Blonde, L.; Pratley, R.E. A New Era for Oral Peptides: SNAC and the Development of Oral Semaglutide for the Treatment of Type 2 Diabetes. Rev. Endocr. Metab. Disord. 2022, 23, 979–994. [Google Scholar] [CrossRef] [PubMed]
- Meier, J.J. Efficacy of Semaglutide in a Subcutaneous and an Oral Formulation. Front. Endocrinol. 2021, 12, 645617. [Google Scholar] [CrossRef]
- Blüher, M. Obesity: Global Epidemiology and Pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef]
- Cao, X.; Wang, M.; Zhou, M.; Mi, Y.; Fazekas-Pongor, V.; Major, D.; Lehoczki, A.; Guo, Y. Trends in Prevalence, Mortality, and Risk Factors of Dementia among the Oldest-Old Adults in the United States: The Role of the Obesity Epidemic. GeroScience 2024, 46, 4761–4778. [Google Scholar] [CrossRef]
- Devericks, E.N.; Carson, M.S.; McCullough, L.E.; Coleman, M.F.; Hursting, S.D. The Obesity-Breast Cancer Link: A Multidisciplinary Perspective. Cancer Metastasis Rev. 2022, 41, 607–625. [Google Scholar] [CrossRef] [PubMed]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.-P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef]
- Welsh, A.; Hammad, M.; Piña, I.L.; Kulinski, J. Obesity and Cardiovascular Health. Eur. J. Prev. Cardiol. 2024, 31, 1026–1035. [Google Scholar] [CrossRef]
- De Fano, M.; Malara, M.; Vermigli, C.; Murdolo, G. Adipose Tissue: A Novel Target of the Incretin Axis? A Paradigm Shift in Obesity-Linked Insulin Resistance. Int. J. Mol. Sci. 2024, 25, 8650. [Google Scholar] [CrossRef] [PubMed]
- Engin, A. Adiponectin Resistance in Obesity: Adiponectin Leptin/Insulin Interaction. Adv. Exp. Med. Biol. 2024, 1460, 431–462. [Google Scholar] [CrossRef]
- Liu, J.; Lai, F.; Hou, Y.; Zheng, R. Leptin Signaling and Leptin Resistance. Med. Rev. 2022, 2, 363–384. [Google Scholar] [CrossRef]
- Asmar, M.; Simonsen, L.; Asmar, A.; Holst, J.J.; Dela, F.; Bülow, J. Insulin Plays a Permissive Role for the Vasoactive Effect of GIP Regulating Adipose Tissue Metabolism in Humans. J. Clin. Endocrinol. Metab. 2016, 101, 3155–3162. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Aronne, L.J.; Ahmad, N.N.; Wharton, S.; Connery, L.; Alves, B.; Kiyosue, A.; Zhang, S.; Liu, B.; Bunck, M.C.; et al. Tirzepatide Once Weekly for the Treatment of Obesity. N. Engl. J. Med. 2022, 387, 205–216. [Google Scholar] [CrossRef]
- Salamah, H.M.; Marey, A.; Abugdida, M.; Abualkhair, K.A.; Elshenawy, S.; Elhassan, W.A.F.; Naguib, M.M.; Malnev, D.; Durrani, J.; Bailey, R.; et al. Efficacy and Safety of Glucagon-like Peptide-1 Receptor Agonists on Prediabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Diabetol. Metab. Syndr. 2024, 16, 129. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, H.; Liu, M.; Lin, W.; Yu, P.; Liu, X.; Wang, J. Abstract 13450: Clinical Outcomes with GLP-1 Receptor Agonists in Patients with Heart Failure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Circulation 2023, 148, A13450. [Google Scholar] [CrossRef]
- Hosseinpour, A.; Sood, A.; Kamalpour, J.; Zandi, E.; Pakmehr, S.; Hosseinpour, H.; Sood, A.; Agrawal, A.; Gupta, R. Glucagon-Like Peptide-1 Receptor Agonists and Major Adverse Cardiovascular Events in Patients with and Without Diabetes: A Meta-Analysis of Randomized-Controlled Trials. Clin. Cardiol. 2024, 47, e24314. [Google Scholar] [CrossRef]
- Uneda, K.; Kawai, Y.; Yamada, T.; Kinguchi, S.; Azushima, K.; Kanaoka, T.; Toya, Y.; Wakui, H.; Tamura, K. Systematic Review and Meta-Analysis for Prevention of Cardiovascular Complications Using GLP-1 Receptor Agonists and SGLT-2 Inhibitors in Obese Diabetic Patients. Sci. Rep. 2021, 11, 10166. [Google Scholar] [CrossRef]
- Gomes, D.; Presume, J.; Ferreira, J.; De Araujo Goncalves, P.; Sousa Almeida, M.; Mendes, M. Association between Intensity of Glycemic Control with GLP-1 Receptor Agonists and Risk of Atherosclerotic Cardiovascular Disease: A Systematic Review and Meta-Regression. Eur. Heart J. 2023, 44, ehad655.2542. [Google Scholar] [CrossRef]
- Wu, R.; Xing, B.; Huang, Y.; Zhou, Z.; Sun, B.; Yu, L.; Wang, H. Effect of Semaglutide on Arrhythmic, Major Cardiovascular, and Microvascular Outcomes in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2025, 16, 1554795. [Google Scholar] [CrossRef]
- Holman, R.R.; Bethel, M.A.; Mentz, R.J.; Thompson, V.P.; Lokhnygina, Y.; Buse, J.B.; Chan, J.C.; Choi, J.; Gustavson, S.M.; Iqbal, N.; et al. Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 1228–1239. [Google Scholar] [CrossRef]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef]
- Lincoff, A.M.; Brown-Frandsen, K.; Colhoun, H.M.; Deanfield, J.; Emerson, S.S.; Esbjerg, S.; Hardt-Lindberg, S.; Hovingh, G.K.; Kahn, S.E.; Kushner, R.F.; et al. Semaglutide and Cardiovascular Outcomes in Obesity without Diabetes. N. Engl. J. Med. 2023, 389, 2221–2232. [Google Scholar] [CrossRef]
- McGuire, D.K.; Marx, N.; Mulvagh, S.L.; Deanfield, J.E.; Inzucchi, S.E.; Pop-Busui, R.; Mann, J.F.E.; Emerson, S.S.; Poulter, N.R.; Engelmann, M.D.M.; et al. Oral Semaglutide and Cardiovascular Outcomes in High-Risk Type 2 Diabetes. N. Engl. J. Med. 2025, 392, 2001–2012. [Google Scholar] [CrossRef]
- Min, T.; Bain, S.C. The Role of Tirzepatide, Dual GIP and GLP-1 Receptor Agonist, in the Management of Type 2 Diabetes: The SURPASS Clinical Trials. Diabetes Ther. 2021, 12, 143–157. [Google Scholar] [CrossRef]
- Cleto, A.S.; Schirlo, J.M.; Beltrame, M.; Gomes, V.H.O.; Acras, I.H.; Neiverth, G.S.; Silva, B.B.; Juliatto, B.M.S.; Machozeki, J.; Martins, C.M. Semaglutide Effects on Safety and Cardiovascular Outcomes in Patients with Overweight or Obesity: A Systematic Review and Meta-Analysis. Int. J. Obes. 2025, 49, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.-T.; Sun, Q.-M.; Xin, X.; Ng, C.H.; Valenti, L.; Hu, Y.-Y.; Zheng, M.-H.; Feng, Q. Comparative Efficacy of THR-β Agonists, FGF-21 Analogues, GLP-1R Agonists, GLP-1-Based Polyagonists, and Pan-PPAR Agonists for MASLD: A Systematic Review and Network Meta-Analysis. Metabolism 2024, 161, 156043. [Google Scholar] [CrossRef] [PubMed]
- Alfawaz, S.; Burzangi, A.; Esmat, A. Mechanisms of Non-Alcoholic Fatty Liver Disease and Beneficial Effects of Semaglutide: A Review. Cureus 2024, 16, e67080. [Google Scholar] [CrossRef] [PubMed]
- Ayesh, H.; Beran, A.; Suhail, S.; Ayesh, S.; Niswender, K. Comparative Analysis of Resmetirom vs. FGF21 Analogs vs. GLP-1 Agonists in MASLD and MASH: Network Meta-Analysis of Clinical Trials. Biomedicines 2024, 12, 2328. [Google Scholar] [CrossRef]
- Singh, A.; Sohal, A.; Batta, A. GLP-1, GIP/GLP-1, and GCGR/GLP-1 Receptor Agonists: Novel Therapeutic Agents for Metabolic Dysfunction-Associated Steatohepatitis. World J. Gastroenterol. 2024, 30, 5205–5211. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, S.; Das, S.; Samajdar, S.S.; Joshi, S.R. Role of Semaglutide in the Treatment of Nonalcoholic Fatty Liver Disease or Non-Alcoholic Steatohepatitis: A Systematic Review and Meta-Analysis. Diabetes Metab. Syndr. Clin. Res. Rev. 2023, 17, 102849. [Google Scholar] [CrossRef]
- Mantovani, A.; Morandin, R.; Fiorio, V.; Lando, M.G.; Stefan, N.; Tilg, H.; Byrne, C.D.; Targher, G. Glucagon-Like Peptide-1 Receptor Agonists Improve MASH and Liver Fibrosis: A Meta-Analysis of Randomised Controlled Trials. Liver Int. 2025, 45, e70256. [Google Scholar] [CrossRef]
- Newsome, P.N.; Buchholtz, K.; Cusi, K.; Linder, M.; Okanoue, T.; Ratziu, V.; Sanyal, A.J.; Sejling, A.-S.; Harrison, S.A.; NN9931-4296 Investigators. A Placebo-Controlled Trial of Subcutaneous Semaglutide in Nonalcoholic Steatohepatitis. N. Engl. J. Med. 2021, 384, 1113–1124. [Google Scholar] [CrossRef]
- Liu, L.; Yan, H.; Xia, M.; Zhao, L.; Lv, M.; Zhao, N.; Rao, S.; Yao, X.; Wu, W.; Pan, B.; et al. Efficacy of Exenatide and Insulin Glargine on Nonalcoholic Fatty Liver Disease in Patients with Type 2 Diabetes. Diabetes Metab. Res. Rev. 2020, 36, e3292. [Google Scholar] [CrossRef]
- Sanyal, A.J.; Newsome, P.N.; Kliers, I.; Østergaard, L.H.; Long, M.T.; Kjær, M.S.; Cali, A.M.G.; Bugianesi, E.; Rinella, M.E.; Roden, M.; et al. Phase 3 Trial of Semaglutide in Metabolic Dysfunction-Associated Steatohepatitis. N. Engl. J. Med. 2025, 392, 2089–2099. [Google Scholar] [CrossRef]
- Newsome, P.N.; Ambery, P. Incretins (GLP-1 Receptor Agonists and Dual/Triple Agonists) and the Liver. J. Hepatol. 2023, 79, 1557–1565. [Google Scholar] [CrossRef]
- Loomba, R.; Hartman, M.L.; Lawitz, E.J.; Vuppalanchi, R.; Boursier, J.; Bugianesi, E.; Yoneda, M.; Behling, C.; Cummings, O.W.; Tang, Y.; et al. Tirzepatide for Metabolic Dysfunction–Associated Steatohepatitis with Liver Fibrosis. N. Engl. J. Med. 2024, 391, 299–310. [Google Scholar] [CrossRef]
- Greco, E.V.; Russo, G.; Giandalia, A.; Viazzi, F.; Pontremoli, R.; De Cosmo, S. GLP-1 Receptor Agonists and Kidney Protection. Medicina 2019, 55, 233. [Google Scholar] [CrossRef]
- Boima, V.; Agyekum, A.B.; Ganatra, K.; Agyekum, F.; Kwakyi, E.; Inusah, J.; Ametefe, E.N.; Adu, D. Advances in Kidney Disease: Pathogenesis and Therapeutic Targets. Front. Med. 2025, 12, 1526090. [Google Scholar] [CrossRef]
- Bansal, A.; Chonchol, M. Metabolic Dysfunction–Associated Kidney Disease: Pathogenesis and Clinical Manifestations. Kidney Int. 2025, 108, 194–200. [Google Scholar] [CrossRef]
- Alicic, R.Z.; Neumiller, J.J. Incretin Therapies for Patients with Type 2 Diabetes and Chronic Kidney Disease. J. Clin. Med. 2024, 13, 201. [Google Scholar] [CrossRef]
- Tuttle, K.R.; Lakshmanan, M.C.; Rayner, B.; Busch, R.S.; Zimmermann, A.G.; Woodward, D.B.; Botros, F.T. Dulaglutide versus Insulin Glargine in Patients with Type 2 Diabetes and Moderate-to-Severe Chronic Kidney Disease (AWARD-7): A Multicentre, Open-Label, Randomised Trial. Lancet Diabetes Endocrinol. 2018, 6, 605–617. [Google Scholar] [CrossRef] [PubMed]
- Bisgaard, L.S.; Bosteen, M.H.; Fink, L.N.; Sørensen, C.M.; Rosendahl, A.; Mogensen, C.K.; Rasmussen, S.E.; Rolin, B.; Nielsen, L.B.; Pedersen, T.X. Liraglutide Reduces Both Atherosclerosis and Kidney Inflammation in Moderately Uremic LDLr-/- Mice. PLoS ONE 2016, 11, e0168396. [Google Scholar] [CrossRef] [PubMed]
- Perkovic, V.; Tuttle, K.R.; Rossing, P.; Mahaffey, K.W.; Mann, J.F.E.; Bakris, G.; Baeres, F.M.M.; Idorn, T.; Bosch-Traberg, H.; Lausvig, N.L.; et al. Effects of Semaglutide on Chronic Kidney Disease in Patients with Type 2 Diabetes. N. Engl. J. Med. 2024, 391, 109–121. [Google Scholar] [CrossRef]
- Mazzieri, A.; Porcellati, F.; Timio, F.; Reboldi, G. Molecular Targets of Novel Therapeutics for Diabetic Kidney Disease: A New Era of Nephroprotection. Int. J. Mol. Sci. 2024, 25, 3969. [Google Scholar] [CrossRef]
- Watanabe, K.; Sato, E.; Mishima, E.; Miyazaki, M.; Tanaka, T. What’s New in the Molecular Mechanisms of Diabetic Kidney Disease: Recent Advances. Int. J. Mol. Sci. 2022, 24, 570. [Google Scholar] [CrossRef] [PubMed]
- Moiz, A.; Filion, K.B.; Tsoukas, M.A.; Yu, O.H.Y.; Peters, T.M.; Eisenberg, M.J. The Expanding Role of GLP-1 Receptor Agonists: A Narrative Review of Current Evidence and Future Directions. eClinicalMedicine 2025, 86, 103363. [Google Scholar] [CrossRef]
- Kopp, K.O.; Li, Y.; Glotfelty, E.J.; Tweedie, D.; Greig, N.H. Incretin-Based Multi-Agonist Peptides Are Neuroprotective and Anti-Inflammatory in Cellular Models of Neurodegeneration. Biomolecules 2024, 14, 872. [Google Scholar] [CrossRef]
- Moaket, O.S.; Obaid, S.E.; Obaid, F.E.; Shakeeb, Y.A.; Elsharief, S.M.; Tania, A.; Darwish, R.; Butler, A.E.; Moin, A.S.M. GLP-1 and the Degenerating Brain: Exploring Mechanistic Insights and Therapeutic Potential. Int. J. Mol. Sci. 2025, 26, 10743. [Google Scholar] [CrossRef] [PubMed]
- Manavi, M.A. Neuroprotective Effects of Glucagon-like Peptide-1 (GLP-1) Analogues in Epilepsy and Associated Comorbidities. Neuropeptides 2022, 94, 102250. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, O.; Kelemu, T. Incretin-Based Therapies in Alzheimer’s and Parkinson’s Disease: Advancing Neuroprotection with Dual and Triple Agonists—A Review. Health Sci. Rep. 2025, 8, e71065. [Google Scholar] [CrossRef] [PubMed]
- Reich, N.; Hölscher, C. The Neuroprotective Effects of Glucagon-like Peptide 1 in Alzheimer’s and Parkinson’s Disease: An in-Depth Review. Front. Neurosci. 2022, 16, 970925. [Google Scholar] [CrossRef]
- Alonso, N.; Julián, M.T.; Vives-Pi, M.; Puig-Domingo, M. Incretin Hormones as Immunomodulators of Atherosclerosis. Front. Endocrinol. 2012, 3, 112. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Jun, H.-S. Anti-Inflammatory Effects of GLP-1-Based Therapies beyond Glucose Control. Mediat. Inflamm. 2016, 2016, 3094642. [Google Scholar] [CrossRef]
- Radbakhsh, S.; Atkin, S.L.; Simental-Mendia, L.E.; Sahebkar, A. The Role of Incretins and Incretin-Based Drugs in Autoimmune Diseases. Int. Immunopharmacol. 2021, 98, 107845. [Google Scholar] [CrossRef]
- Yang, F.; Zeng, F.; Luo, X.; Lei, Y.; Li, J.; Lu, S.; Huang, X.; Lan, Y.; Liu, R. GLP-1 Receptor: A New Target for Sepsis. Front. Pharmacol. 2021, 12, 706908. [Google Scholar] [CrossRef]
- Pantanetti, P.; Cangelosi, G.; Ambrosio, G. Potential Role of Incretins in Diabetes and COVID-19 Infection: A Hypothesis Worth Exploring. Intern. Emerg. Med. 2020, 15, 779–782. [Google Scholar] [CrossRef]
- Stoian, A.P.; Papanas, N.; Prazny, M.; Rizvi, A.A.; Rizzo, M. Incretin-Based Therapies Role in COVID-19 Era: Evolving Insights. J. Cardiovasc. Pharmacol. Ther. 2020, 25, 494–496. [Google Scholar] [CrossRef] [PubMed]
- Davey, M.G.; Donlon, N.E.; Fearon, N.M.; Heneghan, H.M.; Conneely, J.B. Evaluating the Impact of Enhanced Recovery After Surgery Protocols on Surgical Outcomes Following Bariatric Surgery—A Systematic Review and Meta-Analysis of Randomised Clinical Trials. Obes. Surg. 2024, 34, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Elder, K.A.; Wolfe, B.M. Bariatric Surgery: A Review of Procedures and Outcomes. Gastroenterology 2007, 132, 2253–2271. [Google Scholar] [CrossRef] [PubMed]
- Budny, A.; Janczy, A.; Szymanski, M.; Mika, A. Long-Term Follow-Up After Bariatric Surgery: Key to Successful Outcomes in Obesity Management. Nutrients 2024, 16, 4399. [Google Scholar] [CrossRef]
- Lewis, K.H.; Gudzune, K.A.; Ard, J.D. Phentermine in the Modern Era of Obesity Pharmacotherapy: Does It Still Have a Role in Treatment? Curr. Obes. Rep. 2024, 13, 132–140. [Google Scholar] [CrossRef]
- Lei, X.-G.; Ruan, J.-Q.; Lai, C.; Sun, Z.; Yang, X. Efficacy and Safety of Phentermine/Topiramate in Adults with Overweight or Obesity: A Systematic Review and Meta-Analysis. Obesity 2021, 29, 985–994. [Google Scholar] [CrossRef]
- Sørensen, K.K.; Gerds, T.A.; Køber, L.; Fosbøl, E.L.; Poulsen, H.E.; Møller, A.L.; Andersen, M.P.; Pedersen-Bjergaard, U.; Torp-Pedersen, C.; Zareini, B. Comparing Glucagon-like Peptide-1 Receptor Agonists versus Metformin in Drug-Naive Patients: A Nationwide Cohort Study. J. Diabetes 2024, 16, e70000. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, L.; Li, N.; Cao, J.; Pi, J. Comparison of GLP-1 Receptor Agonists Combined with Metformin Versus Metformin Alone in the Management of PCOS: A Comprehensive Meta-Analysis. Reprod. Sci. 2025, 32, 1661–1675. [Google Scholar] [CrossRef]
- Kuang, Z.; Hou, N.; Kan, C.; Han, F.; Qiu, H.; Sun, X. The Protective Effects of SGLT-2 Inhibitors, GLP-1 Receptor Agonists, and RAAS Blockers against Renal Injury in Patients with Type 2 Diabetes. Int. Urol. Nephrol. 2022, 55, 617–629. [Google Scholar] [CrossRef]
- Yaribeygi, H.; Maleki, M.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. Incretin-Based Therapies and Renin-Angiotensin System: Looking for New Therapeutic Potentials in the Diabetic Milieu. Life Sci. 2020, 256, 117916. [Google Scholar] [CrossRef]
- Basios, A.; Chatzi, C.A.; Markozannes, G.; Ntzani, E.E.; Barkas, F.; Tsilidis, K.K.; Rizzo, M.; Kalampoki, A.; Rizos, E.C. Adherence to Statins and Development of Atherosclerosis-Related Events. A Systematic Review and Meta-Analysis. J. Diabetes Its Complicat. 2025, 39, 109040. [Google Scholar] [CrossRef]
- Paparodis, R.D.; Bantouna, D.; Livadas, S.; Angelopoulos, N. Statin Therapy in Primary and Secondary Cardiovascular Disease Prevention. Curr. Atheroscler. Rep. 2024, 27, 21. [Google Scholar] [CrossRef]
- Lecis, D.; Prandi, F.R.; Barone, L.; Belli, M.; Sergi, D.; Longo, S.; Muscoli, S.; Romeo, F.; Federici, M.; Lerakis, S.; et al. Beyond the Cardiovascular Effects of Glucagon-like Peptide-1 Receptor Agonists: Body Slimming and Plaque Stabilization. Are New Statins Born? Biomolecules 2023, 13, 1695. [Google Scholar] [CrossRef]
- Karalliedde, J. The Role of SGLT2 Inhibitors beyond Glucose-Lowering to Cardio-Renal Protection. Russ. J. Cardiol. 2021, 26, 4323. [Google Scholar] [CrossRef]
- Lee, Y.; Lim, S.; Davies, M.J. Cardiometabolic and Renal Benefits of Sodium–Glucose Cotransporter 2 Inhibitors. Nat. Rev. Endocrinol. 2025, 21, 783–798. [Google Scholar] [CrossRef] [PubMed]
- Raparelli, V.; Elharram, M.; Moura, C.S.; Abrahamowicz, M.; Bernatsky, S.; Behlouli, H.; Pilote, L. Sex Differences in Cardiovascular Effectiveness of Newer Glucose-Lowering Drugs Added to Metformin in Type 2 Diabetes Mellitus. J. Am. Heart Assoc. 2020, 9, e012940. [Google Scholar] [CrossRef]
- Xie, Y.; Choi, T.; Al-Aly, Z. Mapping the Effectiveness and Risks of GLP-1 Receptor Agonists. Nat. Med. 2025, 31, 951–962. [Google Scholar] [CrossRef] [PubMed]
- Filippatos, T.D.; Panagiotopoulou, T.V.; Elisaf, M.S. Adverse Effects of GLP-1 Receptor Agonists. Rev. Diabet. Stud. 2014, 11, 202–230. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, J.; Wang, L.; Chen, C.; Chen, L. Association between Different GLP-1 Receptor Agonists and Gastrointestinal Adverse Reactions: A Real-World Disproportionality Study Based on FDA Adverse Event Reporting System Database. Front. Endocrinol. 2022, 13, 1043789. [Google Scholar] [CrossRef]
- Shetty, R.; Basheer, F.T.; Poojari, P.G.; Thunga, G.; Chandran, V.P.; Acharya, L.D. Adverse Drug Reactions of GLP-1 Agonists: A Systematic Review of Case Reports. Diabetes Metab. Syndr. 2022, 16, 102427. [Google Scholar] [CrossRef]
- Anderson, S.L.; Trujillo, J.M. Association of Pancreatitis with Glucagon-like Peptide-1 Agonist Use. Ann. Pharmacother. 2010, 44, 904–909. [Google Scholar] [CrossRef]
- Javed, H.; Kogilathota Jagirdhar, G.S.; Kashyap, R.; Vekaria, P.H. Liraglutide-Induced Pancreatitis: A Case Report and Literature Review. Cureus 2023, 15, e38263. [Google Scholar] [CrossRef]
- Yu, X.; Tang, H.; Huang, L.; Yang, Y.; Tian, B.; Yu, C. Exenatide-Induced Chronic Damage of Pancreatic Tissue in Rats. Pancreas 2012, 41, 1235–1240. [Google Scholar] [CrossRef] [PubMed]
- Alenzi, K.A.; Alsuhaibani, D.; Batarfi, B.; Alshammari, T.M. Pancreatitis with Use of New Diabetic Medications: A Real-World Data Study Using the Post-Marketing FDA Adverse Event Reporting System (FAERS) Database. Front. Pharmacol. 2024, 15, 1364110. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Wang, J.; Ping, F.; Yang, N.; Huang, J.; Li, Y.; Xu, L.; Li, W.; Zhang, H. Association of Glucagon-Like Peptide-1 Receptor Agonist Use with Risk of Gallbladder and Biliary Diseases: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. JAMA Intern. Med. 2022, 182, 513–519. [Google Scholar] [CrossRef]
- Pradhan, R.; Montastruc, F.; Rousseau, V.; Patorno, E.; Azoulay, L. Exendin-Based Glucagon-like Peptide-1 Receptor Agonists and Anaphylactic Reactions: A Pharmacovigilance Analysis. Lancet Diabetes Endocrinol. 2020, 8, 13–14. [Google Scholar] [CrossRef]
- Simó, R.; Hernández, C. GLP-1R as a Target for the Treatment of Diabetic Retinopathy: Friend or Foe? Diabetes 2017, 66, 1453–1460. [Google Scholar] [CrossRef]
- Vilsbøll, T.; Bain, S.C.; Leiter, L.A.; Lingvay, I.; Matthews, D.; Simó, R.; Helmark, I.C.; Wijayasinghe, N.; Larsen, M. Semaglutide, Reduction in Glycated Haemoglobin and the Risk of Diabetic Retinopathy. Diabetes Obes. Metab. 2018, 20, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Hathaway, J.T.; Shah, M.P.; Hathaway, D.B.; Zekavat, S.M.; Krasniqi, D.; Gittinger, J.W.; Cestari, D.; Mallery, R.; Abbasi, B.; Bouffard, M.; et al. Risk of Nonarteritic Anterior Ischemic Optic Neuropathy in Patients Prescribed Semaglutide. JAMA Ophthalmol. 2024, 142, 732–739. [Google Scholar] [CrossRef]
- Chou, C.-C.; Pan, S.-Y.; Sheen, Y.-J.; Lin, J.-F.; Lin, C.-H.; Lin, H.-J.; Wang, I.-J.; Weng, C.-H. Association between Semaglutide and Nonarteritic Anterior Ischemic Optic Neuropathy: A Multinational Population-Based Study. Ophthalmology 2025, 132, 381–388. [Google Scholar] [CrossRef]
- Hsu, A.Y.; Kuo, H.-T.; Wang, Y.-H.; Lin, C.-J.; Shao, Y.-C.; Chiang, C.-C.; Hsia, N.-Y.; Lai, C.-T.; Tseng, H.; Wu, B.-Q.; et al. Semaglutide and Nonarteritic Anterior Ischemic Optic Neuropathy Risk Among Patients with Diabetes. JAMA Ophthalmol. 2025, 143, 400–407. [Google Scholar] [CrossRef]
- Kornelius, E.; Huang, J.-Y.; Lo, S.-C.; Huang, C.-N.; Yang, Y.-S. The Risk of Depression, Anxiety, and Suicidal Behavior in Patients with Obesity on Glucagon like Peptide-1 Receptor Agonist Therapy. Sci. Rep. 2024, 14, 24433. [Google Scholar] [CrossRef]
- Johnstone, A.M.; Lonnie, M. Tackling Diet Inequalities in the UK Food System: Is Food Insecurity Driving the Obesity Epidemic? (The FIO Food Project). Proc. Nutr. Soc. 2024, 83, 133–141. [Google Scholar] [CrossRef]
- Smith, T.G.; Stillman, S.; Craig, S. “Rational Overeating” in a Feast-or-famine World: Economic Insecurity and the Obesity Epidemic. South. Econ. J. 2024, 90, 634–655. [Google Scholar] [CrossRef]
- Ghusn, W.; Hurtado, M.D. Glucagon-like Receptor-1 Agonists for Obesity: Weight Loss Outcomes, Tolerability, Side Effects, and Risks. Obes. Pillars 2024, 12, 100127. [Google Scholar] [CrossRef] [PubMed]
- Chakhtoura, M.; Haber, R.; Ghezzawi, M.; Rhayem, C.; Tcheroyan, R.; Mantzoros, C.S. Pharmacotherapy of Obesity: An Update on the Available Medications and Drugs under Investigation. eClinicalMedicine 2023, 58, 101882. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.M.; Guimarães, N.S.; Bocardi, V.B.; da Silva, T.P.R.; do Carmo, A.S.; de Menezes, M.C.; Duarte, C.K. Understanding Weight Regain after a Nutritional Weight Loss Intervention: Systematic Review and Meta-Analysis. Clin. Nutr. ESPEN 2022, 49, 138–153. [Google Scholar] [CrossRef]
- Murray, S.; Tulloch, A.; Gold, M.S.; Avena, N.M. Hormonal and Neural Mechanisms of Food Reward, Eating Behaviour and Obesity. Nat. Rev. Endocrinol. 2014, 10, 540–552. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings1. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Cárdenas, C.; Santana, P.; Álvarez, C.; Mercado, L.; Marshall, S.; Albericio, F.; Guzmán, F. Synthetic Peptides as Valuable and Versatile Tools for Research: Our 20 Year Journey in Chile. Explor. Drug Sci. 2024, 2, 701–718. [Google Scholar] [CrossRef]
- Isidro-Llobet, A.; Kenworthy, M.N.; Mukherjee, S.; Kopach, M.E.; Wegner, K.; Gallou, F.; Smith, A.G.; Roschangar, F. Sustainability Challenges in Peptide Synthesis and Purification: From R&D to Production. J. Org. Chem. 2019, 84, 4615–4628. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Hansen, L.; Badalassi, F. Investigation of On-Resin Disulfide Formation for Large-Scale Manufacturing of Cyclic Peptides: A Case Study. Org. Process Res. Dev. 2020, 24, 1281–1293. [Google Scholar] [CrossRef]
- Wang, L.; Chen, T.; Wang, H.; Wu, X.; Cao, Q.; Wen, K.; Deng, K.-Y.; Xin, H. Engineered Bacteria of MG1363-pMG36e-GLP-1 Attenuated Obesity-Induced by High Fat Diet in Mice. Front. Cell. Infect. Microbiol. 2021, 11, 595575. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shi, Y.; Peng, X.; Li, T.; Liang, C.; Wang, W.; Zhou, M.; Yang, J.; Cheng, J.; Zhang, Z.; et al. Biochemotaxis-Oriented Engineering Bacteria Expressing GLP-1 Enhance Diabetes Therapy by Regulating the Balance of Immune. Adv. Healthc. Mater. 2024, 13, e2303958. [Google Scholar] [CrossRef]
- Emanuel, E.J.; Dellgren, J.L.; McCoy, M.S.; Persad, G. Fair Allocation of GLP-1 and Dual GLP-1-GIP Receptor Agonists. N. Engl. J. Med. 2024, 390, 1839–1842. [Google Scholar] [CrossRef]



| Drug | Structural Features | Dosing Regimen |
|---|---|---|
| Exenatide (Byetta®) | Exendin-4–based, C-terminal amidation | Twice daily |
| Extended-release Exenatide (Bydureon®) | Exendin-4–based, C-terminal amidation, encapsulation in PLGA copolymer microspheres | Once weekly |
| Lixisenatide | Exendin-4–based, C-terminal polylysine chain | Used exclusively as part of a fixed-dose combination with insulin glargine (iGlarLixi®) |
| Liraglutide (Victoza®) | GLP-1–based, fatty acid modification at position 26, albumin binding | Once daily |
| Dulaglutide (Trulicity®) | GLP-1–based, G at position 8, 2 copies + IgG4 Fc-fragment | Once weekly |
| Albiglutide (Eperzan®) | GLP-1–based, G at position 8, 2 copies + albumin | Once weekly (withdrawn from the market) |
| Semaglutide (Ozempic®) | GLP-1–based, Aib at position 8, fatty acid modification at position 26, albumin binding | Once weekly |
| Semaglutide (oral) (Rybelsus®) | GLP-1–based, Aib at position 8, fatty acid modification at position 26, albumin binding, SNAC for absorption | Once daily |
| Tirzepatide (Mounjaro®) | Dual GIP/GLP-1 agonist, Aib at position 2, fatty acid modification at position 20 | Once weekly |
| Clinical Trial | Medication | Mechanism | Disease | Phase |
|---|---|---|---|---|
| NCT01720446—SUSTAIN-6 | Semaglutide | GLP-1RA | MACE, CKD | Phase III |
| NCT02692716—PIONEER-6 | Semaglutide | GLP-1RA | MACE, CKD | Phase III |
| NCT03574597—SELECT | Semaglutide | GLP-1RA | MACE | Phase III |
| NCT03914326—SOUL | Semaglutide | GLP-1RA | MACE, CKD | Phase III |
| NCT03819153—FLOW | Semaglutide | GLP-1RA | CKD | Phase III |
| NCT04788511—STEP-HFpEF | Semaglutide | GLP-1RA | CVD, HFpEF | Phase III |
| NCT04916470—STEP-HFpEF DM | Semaglutide | GLP-1RA | CVD, HFpEF | Phase III |
| NCT04822181—ESSENCE | Semaglutide | GLP-1RA | MASH, NASH | Phase III |
| NCT02970942—SEMA-NASH | Semaglutide | GLP-1RA | MASH, NASH | Phase II |
| NCT01179048—LEADER | Liraglutide | GLP-1RA | MACE | Phase III |
| NCT01237119—LEAN | Liraglutide | GLP-1RA | MASH, NASH | Phase II |
| NCT01394952—REWIND | Dulaglutide | GLP-1RA | MACE | Phase III |
| NCT01621178—AWARD-7 | Dulaglutide | GLP-1RA | CKD | Phase III |
| NCT02465515—Harmony Outcomes | Albiglutide | GLP-1RA | MACE | Phase IV |
| NCT01144338—EXSCEL | Exenatide | GLP-1RA | MACE | Phase III |
| NCT01147250—ELIXA | Lixisenatide | GLP-1RA | MACE | Phase III |
| NCT05869903—ATTAIN-1 | Orforglipron | GLP-1RA | CVD | Phase III |
| NCT03730662—SURPASS-4 | Tirzepatide | GLP-1/GIP RA | MACE, ASCVD | Phase III |
| NCT04255433—SURPASS-CVOT | Tirzepatide | GLP-1/GIP RA | MACE, CVD | Phase III |
| NCT04184622—SURMOUNT-1 | Tirzepatide | GLP-1/GIP RA | MACE, HFpEF, CVD MASH, CKD | Phase III Phase II |
| NCT04847557—SUMMIT | Tirzepatide | GLP-1/GIP RA | CVD, HFpEF | Phase III |
| NCT04166773—SYNERGY-NASH | Tirzepatide | GLP-1/GIP RA | MASH, NASH | Phase II |
| NCT05203237—VK2735 Study | VK2735 | GLP-1/GIP RA | MASH, NASH | Phase I |
| NCT04667377—Survodutide (BI 456906) Study | Survodutide | GLP-1/glucagon RA | MASH | Phase II |
| NCT06077864—SYNCHRONIZE-CVOT | Survodutide | GLP-1/glucagon RA | CVD, CKD | Phase III |
| NCT04771273—Survodutide (BI 456906) NASH and Fibrosis Study | Survodutide | GLP-1/glucagon RA | MASH, NASH | Phase II |
| NCT05295875—MOMENTUM | Pemvidutide | GLP-1/glucagon RA | MASH, MASLD | Phase II |
| NCT03496298—AMPLITUDE-O | Efpeglenatide | GLP-1/glucagon RA | MACE, CKD | Phase III |
| NCT03486392—JNJ-64565111 Study | Efinopegdutide | GLP-1/glucagon RA | MASH, MASLD | Phase II |
| NCT05607680—GLORY-1 | Mazdutide | GLP-1/glucagon RA | CKD | Phase I |
| NCT05929066—TRIUMPH-1 | Retatrutide | GLP-1/GIP/glucagon RA | CKD | Phase II |
| NCT06383390—TRIUMPH-Outcomes | Retatrutide | GLP-1/GIP/glucagon RA | CVD, CKD | Phase III |
| NCT03374241—HM15211 Study | Efocipegtrutide | GLP-1/GIP/glucagon RA | MASH | Phase II |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, A.A.; Khotina, V.A.; Kashirskikh, D.A.; Voronko, O.E.; Gasanov, V.A.o.; Vasiliev, A.V. Incretin-Based Therapies Through the Decades: Molecular Innovations and Clinical Impact. Med. Sci. 2025, 13, 269. https://doi.org/10.3390/medsci13040269
Lee AA, Khotina VA, Kashirskikh DA, Voronko OE, Gasanov VAo, Vasiliev AV. Incretin-Based Therapies Through the Decades: Molecular Innovations and Clinical Impact. Medical Sciences. 2025; 13(4):269. https://doi.org/10.3390/medsci13040269
Chicago/Turabian StyleLee, Arthur Anatolievich, Victoria Alexandrovna Khotina, Dmitry Alexandrovich Kashirskikh, Olga Evgenevna Voronko, Vagif Ali oglu Gasanov, and Andrey Valentinovich Vasiliev. 2025. "Incretin-Based Therapies Through the Decades: Molecular Innovations and Clinical Impact" Medical Sciences 13, no. 4: 269. https://doi.org/10.3390/medsci13040269
APA StyleLee, A. A., Khotina, V. A., Kashirskikh, D. A., Voronko, O. E., Gasanov, V. A. o., & Vasiliev, A. V. (2025). Incretin-Based Therapies Through the Decades: Molecular Innovations and Clinical Impact. Medical Sciences, 13(4), 269. https://doi.org/10.3390/medsci13040269

