Sarcopenia and Functional Decline in Postmenopausal Women: The Roles of Type 2 Diabetes and Physical Activity
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Approval
2.2. Participants and Recruitment
2.3. Group Stratification
- Group 1 (G1): Physically active women with T2DM. These participants were enrolled in the “Doce Vida” program, engaging in supervised combined (resistance and aerobic) training sessions three times per week, with each session lasting approximately 90 min.
- Group 2 (G2): Insufficiently active women with T2DM who did not engage in regular, structured physical activity.
- Group 3 (G3): Physically active normoglycemic women. Their activity consisted of unsupervised walking (average 20 min/session) combined with a supervised water-based exercise program (approximately 50 min/session), performed three times per week.
- Group 4 (G4): Insufficiently active normoglycemic women who did not participate in regular physical activity.
2.4. Procedures and Data Collection
2.5. Outcome Measures and Definitions
2.5.1. Anthropometric and Body Composition
- (a)
- Appendicular Skeletal Muscle Index (ASMI): Calculated by dividing appendicular lean mass (kg) by the square height (m2). Low muscle mass was defined as an ASMI < 5.4 kg/m2.
- (b)
- Fat Mass Index (FMI): Calculated by dividing total fat mass (kg) by the square of height (m2). Obesity was defined as an FMI ≥ 13.0 kg/m2.
- (c)
- Fat Mass Percentage (FM%).
2.5.2. Functional Performance
2.5.3. Sarcopenia Diagnosis
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Study Sample
3.2. The Confounding Role of Obesity in the Association Between T2DM and Low Muscle Mass
3.3. Physical Inactivity as a Primary Driver of Functional Decline
3.4. Independent Predictors of Sarcopenia
4. Discussion
4.1. The Sarcopenia Paradox: Associational Profiles of Obesity and Exercise Modality
4.2. Physical Inactivity: The Primary Predictor of Functional Decline
4.3. Integrating Metabolic and Neuromuscular Pathways
4.4. Clinical and Public Health Implications
4.5. Strengths, Limitations, and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ADLs | Activities of Daily Living |
| ANOVA | Analysis of Variance |
| ASMI | Appendicular Skeletal Muscle Index |
| AWGS | Asian Working Group for Sarcopenia |
| BMI | Body Mass Index |
| CI | Confidence Interval |
| Doce Vida | Supervised Physical Exercise Program for Diabetics |
| DXA | Dual-Energy X-ray Absorptiometry |
| FM% | Fat Mass Percentage |
| FMI | Fat Mass Index |
| G1 | Physically Active Postmenopausal Women with Type 2 Diabetes Mellitus |
| G2 | Insufficiently Active Postmenopausal Women with Type 2 Diabetes Mellitus |
| G3 | Physically Active Normoglycemic Postmenopausal Women |
| G4 | Insufficiently Active Normoglycemic Postmenopausal Women |
| HIV | Human Immunodeficiency Virus |
| LABi | Biomechanics Laboratory |
| LapH | Human Performance Assessment Laboratory |
| OR | Odds Ratio |
| SD | Standard Deviation |
| STROBE | Strengthening the Reporting of Observational Studies in Epidemiology |
| T2DM | Type 2 Diabetes Mellitus |
| UPE | University of Pernambuco |
| χ2 | Chi-squared test |
References
- Davis, S.R.; Pinkerton, J.; Santoro, N.; Simoncini, T. Menopause-Biology, Consequences, Supportive Care, and Therapeutic Options. Cell 2023, 186, 4038–4058. [Google Scholar] [CrossRef]
- Zakerinasab, F.; Al Saraireh, T.H.; Amirbeik, A.; Zadeh, R.H.; Mojeni, F.A.; Behfar, Q. Association of Age at Menopause with Type 2 Diabetes Mellitus in Postmenopausal Women: A Systematic Review and Meta-Analysis. Menopausal Rev. 2024, 23, 205–217. [Google Scholar] [CrossRef]
- Marlatt, K.L.; Pitynski-Miller, D.R.; Gavin, K.M.; Moreau, K.L.; Melanson, E.L.; Santoro, N.; Kohrt, W.M. Body Composition and Cardiometabolic Health across the Menopause Transition. Obesity 2022, 30, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Rodacki, M.; Zajdenverg, L.; da Silva Júnior, W.S.; Giacaglia, L.; Negrato, C.A.; Cobas, R.A.; de Almeida-Pititto, B.; Bertoluci, M.C. Brazilian Guideline for Screening and Diagnosis of Type 2 Diabetes: A Position Statement from the Brazilian Diabetes Society. Diabetol. Metab. Syndr. 2025, 17, 78. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Peng, W.; Ren, R.; Wang, Y.; Wang, G. Sarcopenia and Mild Cognitive Impairment among Elderly Adults: The First Longitudinal Evidence from CHARLS. J. Cachexia Sarcopenia Muscle 2022, 13, 2944–2952. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Tong, X.; Ma, Y.; Bao, T.; Yue, J. Prevalence of Depression in Patients with Sarcopenia and Correlation between the Two Diseases: Systematic Review and Meta-Analysis. J. Cachexia Sarcopenia Muscle 2022, 13, 128–144. [Google Scholar] [CrossRef]
- Tsekoura, M.; Kastrinis, A.; Katsoulaki, M.; Billis, E.; Gliatis, J. Sarcopenia and Its Impact on Quality of Life. Adv. Exp. Med. Biol. 2017, 987, 213–218. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, P.; Wang, Y.; Zhang, W.; Zhao, J.; Liu, Y.; Liu, J.; He, S. Relationship between Body Composition and Bone Mineral Density in Postmenopausal Women with Type 2 Diabetes Mellitus. BMC Musculoskelet. Disord. 2022, 23, 893. [Google Scholar] [CrossRef]
- Al-Sofiani, M.E.; Ganji, S.S.; Kalyani, R.R. Body Composition Changes in Diabetes and Aging. J. Diabetes Complicat. 2019, 33, 451–459. [Google Scholar] [CrossRef]
- Mori, H.; Kuroda, A.; Ishizu, M.; Ohishi, M.; Takashi, Y.; Otsuka, Y.; Taniguchi, S.; Tamaki, M.; Kurahashi, K.; Yoshida, S.; et al. Association of Accumulated Advanced Glycation End-products with a High Prevalence of Sarcopenia and Dynapenia in Patients with Type 2 Diabetes. J. Diabetes Investig. 2019, 10, 1332–1340. [Google Scholar] [CrossRef]
- Anagnostis, P.; Dimopoulou, C.; Karras, S.; Lambrinoudaki, I.; Goulis, D.G. Sarcopenia in Post-Menopausal Women: Is There Any Role for Vitamin D? Maturitas 2015, 82, 56–64. [Google Scholar] [CrossRef]
- Pereira, W.V.C.; Vancea, D.M.M.; de Andrade Oliveira, R.; de Freitas, Y.G.P.C.; Lamounier, R.N.; Silva Júnior, W.S.; Fioretti, A.M.B.; Macedo, C.L.D.; Bertoluci, M.C.; Zagury, R.L. 2022: Position of Brazilian Diabetes Society on Exercise Recommendations for People with Type 1 and Type 2 Diabetes. Diabetol. Metab. Syndr. 2023, 15, 2. [Google Scholar] [CrossRef]
- Ribeiro, J.N.S.; Lima, A.M.B.; França, J.A.L.; Silva, V.N.S.; Cavalcanti, C.B.S.; Vancea, D.M.M. Doce Vida—Programa de Exercício Físico Supervisionado Para Diabéticos. Rev. Andal. Med. Deport. 2017, 10, 158–162. [Google Scholar] [CrossRef]
- Rossi, F.E.; Diniz, T.A.; Neves, L.M.; Fortaleza, A.C.S.; Gerosa-Neto, J.; Inoue, D.S.; Buonani, C.; Cholewa, J.M.; Lira, F.S.; Freitas, I.F. The Beneficial Effects of Aerobic and Concurrent Training on Metabolic Profile and Body Composition after Detraining: A 1-Year Follow-up in Postmenopausal Women. Eur. J. Clin. Nutr. 2017, 71, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Khalafi, M.; Habibi Maleki, A.; Sakhaei, M.H.; Rosenkranz, S.K.; Pourvaghar, M.J.; Ehsanifar, M.; Bayat, H.; Korivi, M.; Liu, Y. The Effects of Exercise Training on Body Composition in Postmenopausal Women: A Systematic Review and Meta-Analysis. Front Endocrinol 2023, 14, 1183765. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Cano, V.M.; Gómez-Luque, A.; Robles-Alonso, V.; Ramírez-Durán, M.V.; Basilio-Fernández, B.; Alfageme-García, P.; Hidalgo-Ruiz, S.; Fabregat-Fernández, J.; Torres-Pérez, A. Emotional Eating Patterns, Nutritional Status, and the Risk of Developing Type 2 Diabetes Among University Students: A Preliminary Assessment. Healthcare 2025, 13, 2186. [Google Scholar] [CrossRef]
- Sardinha, L.B.; Cyrino, E.S.; dos Santos, L.; Ekelund, U.; Santos, D.A. Fitness but Not Weight Status Is Associated with Projected Physical Independence in Older Adults. Age 2016, 38, 54. [Google Scholar] [CrossRef]
- Lavie, I.; Schnaider Beeri, M.; Schwartz, Y.; Soleimani, L.; Heymann, A.; Azuri, J.; Ravona-Springer, R. Decrease in Gait Speed Over Time Is Associated With Increase in Number of Depression Symptoms in Older Adults With Type 2 Diabetes. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 1504–1512. [Google Scholar] [CrossRef]
- Donini, L.M.; Busetto, L.; Bischoff, S.C.; Cederholm, T.; Ballesteros-Pomar, M.D.; Batsis, J.A.; Bauer, J.M.; Boirie, Y.; Cruz-Jentoft, A.J.; Dicker, D.; et al. Definition and Diagnostic Criteria for Sarcopenic Obesity: ESPEN and EASO Consensus Statement. Obes. Facts 2022, 15, 321–335. [Google Scholar] [CrossRef]
- Malta, M.; Cardoso, L.O.; Bastos, F.I.; Magnanini, M.M.F.; Silva, C.M.F.P. da STROBE Initiative: Guidelines on Reporting Observational Studies. Rev. Saude Publica 2010, 44, 559–565. [Google Scholar] [CrossRef]
- Sullivan, K.M.; Dean, A.; Soe, M.M. On Academics: OpenEpi: A Web-Based Epidemiologic and Statistical Calculator for Public Health. Public Health Rep. 2009, 124, 471–474. [Google Scholar] [CrossRef]
- Chen, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Chou, M.-Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Bentes, C.M.; Costa, P.B.; Resende, M.; Miranda, H.L.; Silva, C.M.V.; Netto, C.C.; Marinheiro, L.P.F. Association between Muscle Function and Body Composition, Vitamin D Status, and Blood Glucose in Postmenopausal Women with Type 2 Diabetes. Diabetes Metab. Syndr. 2017, 11 (Suppl. 2), S679–S684. [Google Scholar] [CrossRef] [PubMed]
- Khalafi, M.; Sakhaei, M.H.; Habibi Maleki, A.; Rosenkranz, S.K.; Pourvaghar, M.J.; Fang, Y.; Korivi, M. Influence of Exercise Type and Duration on Cardiorespiratory Fitness and Muscular Strength in Post-Menopausal Women: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2023, 10, 1190187. [Google Scholar] [CrossRef]
- Wu, H.; Gu, Y.; Wang, X.; Meng, G.; Rayamajhi, S.; Thapa, A.; Zhang, Q.; Liu, L.; Zhang, S.; Zhang, T.; et al. Association Between Handgrip Strength and Type 2 Diabetes: A Prospective Cohort Study and Systematic Review With Meta-Analysis. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 1383–1391. [Google Scholar] [CrossRef]
- Chou, M.-Y.; Nishita, Y.; Nakagawa, T.; Tange, C.; Tomida, M.; Shimokata, H.; Otsuka, R.; Chen, L.-K.; Arai, H. Role of Gait Speed and Grip Strength in Predicting 10-Year Cognitive Decline among Community-Dwelling Older People. BMC Geriatr. 2019, 19, 186. [Google Scholar] [CrossRef]
- Jayedi, A.; Zargar, M.S.; Emadi, A.; Aune, D. Walking Speed and the Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis. Br. J. Sports Med. 2023, 58, 334–342. [Google Scholar] [CrossRef]
- Middleton, A.; Fritz, S.L.; Lusardi, M. Walking Speed: The Functional Vital Sign. J. Aging Phys. Act. 2015, 23, 314–322. [Google Scholar] [CrossRef]
- Fritz, S.; Lusardi, M. White Paper: “Walking Speed: The Sixth Vital Sign”. J. Geriatr. Phys. Ther. 2009, 32, 46–49. [Google Scholar] [CrossRef]
- Lusardi, M.M. Is Walking Speed a Vital Sign? Absolutely! Top. Geriatr. Rehabil. 2012, 28, 67–76. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee 13. Older Adults: Standards of Medical Care in Diabetes—2022. Diabetes Care 2022, 45, S195–S207. [Google Scholar] [CrossRef]
- Sprung, J.; Laporta, M.; Knopman, D.S.; Petersen, R.C.; Mielke, M.M.; Weingarten, T.N.; Vassilaki, M.; Martin, D.P.; Schulte, P.J.; Hanson, A.C.; et al. Gait Speed and Instrumental Activities of Daily Living in Older Adults After Hospitalization: A Longitudinal Population-Based Study. J. Gerontol. Ser. A 2021, 76, e272–e280. [Google Scholar] [CrossRef] [PubMed]
- Studenski, S. Gait Speed and Survival in Older Adults. JAMA 2011, 305, 50. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tam, W.W.S.; Hounsri, K.; Kusuyama, J.; Wu, V.X. Effectiveness of Combined Aerobic and Resistance Exercise on Cognition, Metabolic Health, Physical Function, and Health-Related Quality of Life in Middle-Aged and Older Adults with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Arch. Phys. Med. Rehabil. 2024, 105, 1585–1599. [Google Scholar] [CrossRef] [PubMed]
- Tarp, J.; Støle, A.P.; Blond, K.; Grøntved, A. Cardiorespiratory Fitness, Muscular Strength and Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis. Diabetologia 2019, 62, 1129–1142. [Google Scholar] [CrossRef]
- Bärg, M.; Idiart-Borda Polotto, V.; Geiger, S.; Held, S.; Brinkmann, C. Effects of Home- and Gym-Based Resistance Training on Glycemic Control in Patients with Type 2 Diabetes Mellitus—A Systematic Review and Meta-Analysis. Diabetol. Metab. Syndr. 2025, 17, 228. [Google Scholar] [CrossRef]
- Jayedi, A.; Soltani, S.; Motlagh, S.Z.; Emadi, A.; Shahinfar, H.; Moosavi, H.; Shab-Bidar, S. Anthropometric and Adiposity Indicators and Risk of Type 2 Diabetes: Systematic Review and Dose-Response Meta-Analysis of Cohort Studies. BMJ 2022, 376, e067516. [Google Scholar] [CrossRef]
- Dias Damasceno, C.M.; de Sá Pereira Guimarães, F.J.; Costa, K.B.; Morais Godoy Figueiredo, A.C.; de Araújo, R.C.; da Cunha Costa, M. Variations in Postmenopausal Body Composition: A Cross-Sectional Comparison between Physical Activity Practitioners and Sedentary Individuals. J. Funct. Morphol. Kinesiol. 2023, 9, 12. [Google Scholar] [CrossRef]

| Variables | G1 (n = 45) Mean ± SD | G2 (n = 29) Mean ± SD | G3 (n = 42) Mean ± SD | G4 (n = 59) Mean ± SD | p |
|---|---|---|---|---|---|
| Age, years | 64.5 ± 9.5 | 65.1 ± 9.2 | 61.3 ± 10.4 | 62.1 ± 8.1 | 0.200 |
| Body mass index, kg/m2 | 27.6 ± 4.2 | 28.7 ± 4.4 | 26.7 ± 4.1 | 26.5 ± 5.1 | 0.170 |
| Appendicular skeletal muscle index, kg/m2 | 6.5 ± 0.8 | 6.1 ± 0.8 | 5.7 ± 0.8 | 5.7 ± 0.8 | 0.002 |
| Fat mass index, kg/m2 | 11.0 ± 3.0 | 11.9 ± 2.8 | 11.2 ± 4.9 | 11.4 ± 3.3 | 0.670 |
| Fat mass, % | 39.6 ± 5.7 | 41.6 ± 3.6 | 41.6 ± 7.2 | 42.2 ± 7.3 | 0.200 |
| Handgrip strength, kgf | 21.9 ± 3.7 | 22.9 ± 5.1 | 23.8 ± 4.2 | 21.1 ± 3.6 | 0.008 |
| Gait speed, m/s | 1.4 ± 0.3 | 1.1 ± 0.3 | 1.4 ± 0.3 | 1.4 ± 0.4 | 0.002 |
| Variables | G1 (n = 45) n (%) | G2 (n = 29) n (%) | G3 (n = 42) n (%) | G4 (n = 59) n (%) | p |
|---|---|---|---|---|---|
| Obesity (FMI > 13.0 kg/m2) | 13 (28.9%) | 8 (27.8%) | 10 (23.8%) | 18 (30.5%) | 0.900 |
| Low muscle mass (ASMI < 5.4 kg/m2) | 7 (15.6%) | 6 (20.7%) | 14 (33.3%) | 19 (32.2%) | 0.150 |
| Low handgrip strength (<18 kgf) | 15 (33.3%) | 6 (20.7%) | 5 (11.9%) | 18 (30.5%) | 0.080 |
| Slow gait speed (<1.0 m/s) | 0 (0.0%) | 10 (34.5%) | 4 (9.5%) | 4 (6.8%) | <0.001 |
| Sarcopenia diagnosis [22] | 5 (11.1%) | 3 (10.3%) | 11 (26.2%) | 21 (35.6%) | 0.008 |
| Variables | Low Muscle Mass | p | OR (95% CI) | |
|---|---|---|---|---|
| No (n = 129) n (%) | Yes (n = 46) n (%) | |||
| Type 2 Diabetes Mellitus | ||||
| No (n = 101) | 68 (67.3) | 33 (32.7) | 0.025 | 0.44 (0.21–0.91) |
| Yes (n = 74) | 61 (82.4) | 13 (17.6) | ||
| Variables | Slow Gait Speed | p | OR (95% CI) | |
|---|---|---|---|---|
| No (n = 157) n (%) | Yes (n = 18) n (%) | |||
| Physical Activity Level | ||||
| Physically active (n = 87) | 83 (95.4) | 4 (4.6) | 0.014 | 3.93 (1.24–12.45) |
| Insufficiently active (n = 88) | 74 (84.1) | 14 (15.9) | ||
| Variables | Sarcopenia Diagnosis | p | OR (95% CI) | |
|---|---|---|---|---|
| No (n = 135) n (%) | Yes (n = 40) n (%) | |||
| Type 2 Diabetes Mellitus | ||||
| Yes (n = 101) | 69 (68.3) | 32 (31.7) | <0.001 | 0.26 (0.11–0.61) |
| No (n = 74) | 66 (89.2) | 8 (10.8) | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasconcelos, A.R.d.; Guimarães, F.J.d.S.P.; Cruz, P.W.d.S.; Carvalho, M.J.M.C.B.d.; Brito, A.d.F.; Costa, K.B.; Figueiredo, L.S.; Schwingel, P.A.; Vancea, D.M.M.; Costa, M.d.C. Sarcopenia and Functional Decline in Postmenopausal Women: The Roles of Type 2 Diabetes and Physical Activity. Med. Sci. 2025, 13, 268. https://doi.org/10.3390/medsci13040268
Vasconcelos ARd, Guimarães FJdSP, Cruz PWdS, Carvalho MJMCBd, Brito AdF, Costa KB, Figueiredo LS, Schwingel PA, Vancea DMM, Costa MdC. Sarcopenia and Functional Decline in Postmenopausal Women: The Roles of Type 2 Diabetes and Physical Activity. Medical Sciences. 2025; 13(4):268. https://doi.org/10.3390/medsci13040268
Chicago/Turabian StyleVasconcelos, Anthony Rodrigues de, Fernando José de Sá Pereira Guimarães, Pedro Weldes da Silva Cruz, Maria Joana Mesquita Cruz Barbosa de Carvalho, Aline de Freitas Brito, Keyla Brandão Costa, Lucas Savassi Figueiredo, Paulo Adriano Schwingel, Denise Maria Martins Vancea, and Manoel da Cunha Costa. 2025. "Sarcopenia and Functional Decline in Postmenopausal Women: The Roles of Type 2 Diabetes and Physical Activity" Medical Sciences 13, no. 4: 268. https://doi.org/10.3390/medsci13040268
APA StyleVasconcelos, A. R. d., Guimarães, F. J. d. S. P., Cruz, P. W. d. S., Carvalho, M. J. M. C. B. d., Brito, A. d. F., Costa, K. B., Figueiredo, L. S., Schwingel, P. A., Vancea, D. M. M., & Costa, M. d. C. (2025). Sarcopenia and Functional Decline in Postmenopausal Women: The Roles of Type 2 Diabetes and Physical Activity. Medical Sciences, 13(4), 268. https://doi.org/10.3390/medsci13040268

