Sociodemographic, Lifestyle, and Social Isolation Correlates of TyG, METS-IR, and SPISE-IR Scores in a Large Spanish Working Population
Abstract
1. Introduction
2. Methods
2.1. Study Design and Population
2.2. Inclusion and Exclusion Criteria
2.3. Sociodemographic Variables
2.4. Lifestyle Habits
2.4.1. Anthropometric and Biochemical Measures
2.4.2. Insulin Resistance Indices
- Triglyceride–glucose (TyG) index = ln [fasting triglycerides (mg/dL) × fasting glucose (mg/dL)/2], originally described by Nayak et al. [47] and validated in different populations.
- METS-IR was calculated using the following formula: Metabolic score for insulin resistance (METS-IR). METS-IR = Ln (2 × glucose) + triglycerides × BMI)/(Ln (HDL-c). High values are defined as 50 and above.
- SPISE was obtained using the validated formula: Single-Point insulin Sensitivity estimator (SPISE-IR). SPISE (=600 × HDL0.185/triglycerides0.2 × BMI1.338).
- For interpretative consistency with TyG and METS-IR, we defined SPISE-IR as 10/SPISE, so that higher values indicate greater insulin resistance.
- SPISE-IR = 10/SPISE is considered high risk at 1.51.
- For harmonization with TyG and METS-IR, we defined SPISE-IR as 10/SPISE, so that higher values reflect greater insulin resistance.
2.4.3. Social Isolation Assessment
2.4.4. Statistical Analysis
3. Results
4. Discussion
4.1. Principal Findings
4.2. Comparison with the Literature
4.3. Contributions of This Study
4.4. Perspectives and Implications
4.5. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, S.-H.; Park, S.-Y.; Choi, C.S. Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes Metab. J. 2022, 46, 15–37. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Młynarska, E.; Czarnik, W.; Dzieża, N.; Jędraszak, W.; Majchrowicz, G.; Prusinowski, F.; Stabrawa, M.; Rysz, J.; Franczyk, B. Type 2 Diabetes Mellitus: New Pathogenetic Mechanisms, Treatment and the Most Important Complications. Int. J. Mol. Sci. 2025, 26, 1094. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Neeland, I.J.; Lim, S.; Tchernof, A.; Gastaldelli, A.; Rangaswami, J.; Ndumele, C.E.; Powell-Wiley, T.M.; Després, J.-P. Metabolic syndrome. Nat. Rev. Dis. Primers 2024, 10, 77. [Google Scholar] [CrossRef] [PubMed]
- Mehta, M.; Shah, J.; Joshi, U.; Mehta, M. Understanding Insulin Resistance in NAFLD: A Systematic Review and Meta-Analysis Focused on HOMA-IR in South Asians. Cureus 2024, 16, e70768. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sastre-Alzamora, T.; Tomás-Gil, P.; Paublini, H.; Pallarés, L.; Ramírez-Manent, J.I.; López-González, A.A. Relationship between heart age and insulin resistance risk scales in 139,634 Spanish workers. Acad. J. Health Sci. 2024, 39, 16–22. [Google Scholar] [CrossRef]
- Caturano, A.; Erul, E.; Nilo, R.; Nilo, D.; Russo, V.; Rinaldi, L.; Acierno, C.; Gemelli, M.; Ricotta, R.; Sasso, F.C.; et al. Insulin resistance and cancer: Molecular links and clinical perspectives. Mol. Cell. Biochem. 2025, 480, 3995–4014. [Google Scholar] [CrossRef] [PubMed]
- Salvi, V.; Tripodi, B.; Cerveri, G.; Migliarese, G.; Bertoni, L.; Nibbio, G.; Barlati, S.; Vita, A.; Mencacci, C. Insulin-resistance as a modifiable pathway to cognitive dysfunction in schizophrenia: A systematic review. Schizophr. Res. 2024, 274, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Gasmi, A.; Noor, S.; Menzel, A.; Doşa, A.; Pivina, L.; Bjørklund, G. Obesity and Insulin Resistance: Associations with Chronic Inflammation, Genetic and Epigenetic Factors. Curr. Med. Chem. 2021, 28, 800–826. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Herrero, M.T.; Egea-Sancho, M.; Ramírez Iñiguez de la Torre, M.V.; López-González, A.A. Relación de los índices de adi-posidad visceral (VAI) y adiposidad disfuncional (DAI) con las escalas de riesgo de resistencia a la insulina y prediabetes. Acad. J. Health Sci. 2024, 39, 25–31. [Google Scholar] [CrossRef]
- Sibony, R.W.; Segev, O.; Dor, S.; Raz, I. Overview of oxidative stress and inflammation in diabetes. J. Diabetes 2024, 16, e70014. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kuppuswami, J.; Senthilkumar, G.P. Nutri-stress, mitochondrial dysfunction, and insulin resistance—Role of heat shock proteins. Cell Stress Chaperones 2023, 28, 35–48. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yazıcı, D.; Demir, S.Ç.; Sezer, H. Insulin Resistance, Obesity, and Lipotoxicity. Adv. Exp. Med. Biol. 2024, 1460, 391–430. [Google Scholar] [CrossRef] [PubMed]
- Bovolini, A.; Garcia, J.; Andrade, M.A.; Duarte, J.A. Metabolic Syndrome Pathophysiology and Predisposing Factors. Int. J. Sports Med. 2021, 42, 199–214. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Chang, D. Role of adiposopathy and physical activity in cardio-metabolic disorder diseases. Clin. Chim. Acta 2020, 511, 243–247. [Google Scholar] [CrossRef]
- Fahed, G.; Aoun, L.; Bou Zerdan, M.; Allam, S.; Bou Zerdan, M.; Bouferraa, Y.; Assi, H.I. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int. J. Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Delai, A.; Gomes, P.M.; Foss-Freitas, M.C.; Elias, J.; Antonini, S.R.; Castro, M.; Moreira, A.C.; Mermejo, L.M. Hyperinsulinemic-Euglycemic Clamp Strengthens the Insulin Resistance in Nonclassical Congenital Adrenal Hyperplasia. J. Clin. Endocrinol. Metab. 2022, 107, e1106–e1116. [Google Scholar] [CrossRef] [PubMed]
- Paracha, A.I.; Haroon, Z.H.; Aamir, M.; Bibi, A. Diagnostic Accuracy of Markers of Insulin Resistance (HOMA-IR) and Insulin Sensitivity (QUICKI) in Gestational Diabetes. J. Coll. Physicians Surg. Pak. 2021, 31, 1015–1019. [Google Scholar] [CrossRef]
- Manzanero, R.Z.; López-González, A.A.; Tomás-Gil, P.; Paublini, H.; Martínez-Jover, A.; Ramírez-Manent, J.I. Estimation of cardi-ometabolic risk in 25,030 Spanish kitchen workers. Acad. J. Health Sci. 2023, 38, 101–110. [Google Scholar] [CrossRef]
- Duan, M.; Zhao, X.; Li, S.; Miao, G.; Bai, L.; Zhang, Q.; Yang, W.; Zhao, X. Metabolic score for insulin resistance (METS-IR) predicts all-cause and cardiovascular mortality in the general population: Evidence from NHANES 2001–2018. Cardiovasc. Diabetol. 2024, 23, 243. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cederholm, J.; Zethelius, B. SPISE and other fasting indexes of insulin resistance: Risks of coronary heart disease or type 2 diabetes. Comparative cross-sectional and longitudinal aspects. Upsala J. Med. Sci. 2019, 124, 265–272. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pilar Fernández-Figares Vicioso, M.; Riutord Sbert, P.; López-González, Á.A.; Ramírez-Manent, J.I.; Del Barrio Fernández, J.L.; Herrero, M.T.V. Risk of Insulin Resistance: Comparison of the Commerce vs. Industry Sector and Associated Variables. Diseases 2025, 13, 150. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tosoratto, J.; López, P.J.T.; López-González, Á.A.; Busquets-Cortes, C.; de Hevia, J.O.; Ramirez-Manent, J.I. Associations Between Shift Work and Insulin Resistance Markers in 53,053 Spanish Workers: A Sex-Stratified Cross-Sectional Analysis Using TyG, TyG-BMI, METS-IR, and SPISE-IR Indices. J. Clin. Med. 2025, 14, 4604. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brandt, L.; Liu, S.; Heim, C.; Heinz, A. The effects of social isolation stress and discrimination on mental health. Transl. Psychiatry 2022, 12, 398. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Holt-Lunstad, J. Why Social Relationships Are Important for Physical Health: A Systems Approach to Understanding and Modifying Risk and Protection. Annu. Rev. Psychol. 2018, 69, 437–458. [Google Scholar] [CrossRef] [PubMed]
- Hajek, A.; Kretzler, B.; König, H.-H. Informal Caregiving, Loneliness and Social Isolation: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 12101. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dudel, C.; Gómez, M.A.L.; Benavides, F.G.; Myrskylä, M. The Length of Working Life in Spain: Levels, Recent Trends, and the Impact of the Financial Crisis. Eur. J. Popul. 2018, 34, 769–791. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Teo, R.H.; Cheng, W.H.; Cheng, L.J.; Lau, Y.; Lau, S.T. Global prevalence of social isolation among community-dwelling older adults: A systematic review and meta-analysis. Arch. Gerontol. Geriatr. 2023, 107, 104904. [Google Scholar] [CrossRef] [PubMed]
- Ran, Z.; Wei, J.; Yang, G.; Yang, C. Prevalence of social isolation in the elderly: A systematic review and meta-analysis. Geriatr. Nurs. 2024, 58, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Xia, N.; Li, H. Loneliness, Social Isolation, and Cardiovascular Health. Antioxid. Redox Signal. 2018, 28, 837–851. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, F.; Gao, Y.; Han, Z.; Yu, Y.; Long, Z.; Jiang, X.; Wu, Y.; Pei, B.; Cao, Y.; Ye, J.; et al. A systematic review and meta-analysis of 90 cohort studies of social isolation, loneliness and mortality. Nat. Hum. Behav. 2023, 7, 1307–1319. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Kong, X.; Han, F.; Tian, H.; Sun, S.; Sun, Y.; Feng, W.; Wu, Y. Association between social isolation and depression: Evidence from longitudinal and Mendelian randomization analyses. J. Affect. Disord. 2024, 350, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Savadlou, A.; Park, S.; Siska, P.; Epp, J.R.; Sargin, D. The impact of loneliness and social isolation on the development of cognitive decline and Alzheimer’s Disease. Front. Neuroendocr. 2023, 69, 101061. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, J.R.; McMahon, E.K.; Boner, W.; Haussmann, M.F. Oxytocin administration prevents cellular aging caused by social isolation. Psychoneuroendocrinology 2019, 103, 52–60. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Campagne, D.M. Stress and perceived social isolation (loneliness). Arch. Gerontol. Geriatr. 2019, 82, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.J.; Gavey, S.; Riddell, N.E.; Kontari, P.; Victor, C. The association between loneliness, social isolation and inflammation: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2020, 112, 519–541. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Hendryx, M. Mediation analysis of social isolation and mortality by health behaviors. Prev. Med. 2022, 154, 106881. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhu, C.; Shi, B.; Song, C.; Cui, K.; Chang, Z.; Gao, G.; Jia, L.; Fu, R.; Dong, Q.; et al. Social isolation, loneliness, and incident type 2 diabetes mellitus: Results from two large prospective cohorts in Europe and East Asia and Mendelian randomization. eClinicalMedicine 2023, 64, 102236. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Liu, M.; Zhou, C.; Ye, Z.; Zhang, Y.; Yang, S.; He, P.; Gan, X.; Qin, X. Social isolation, loneliness, and the risk of incident type 2 diabetes mellitus by glycemic status. Diabetes Metab. 2024, 50, 101517. [Google Scholar] [CrossRef] [PubMed]
- Salinas-Rehbein, B.; Terán-Mendoza, O.; Cancino, V. Social support and aging: Psychometric analysis of the ENRICHD Social Support Instrument in a Chilean population over 50. Psicol. Crit. 2025, 38, 1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roh, H.W.; Cho, E.J.; Son, S.J.; Hong, C.H. The moderating effect of cognitive function on the association between social support and depressive symptoms among community-dwelling older adults: Cross-sectional and longitudinal analyses. J. Affect. Disord. 2022, 318, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Font, M.M.; Busquets-Cortés, C.; Ramírez-Manent, J.I.; Tomás-Gil, P.; Paublini, H.; López-González, Á.A. Influence of Sociodemographic Variables and Healthy Habits on the Values of Insulin Resistance Indicators in 386,924 Spanish Workers. Nutrients 2023, 15, 5122. [Google Scholar] [CrossRef]
- Obrador de Hevia, J.; López-González, Á.A.; Ramírez-Manent, J.I.; Paublini Oliveira, H.; Tárraga López, P.J.; Riutord-Sbert, P. Relationship between alcohol consumption and other variables with the values of different cardiovascular risk factors in 139,634 Spanish workers. Acad. J. Health Sci. 2024, 39, 132–141. [Google Scholar] [CrossRef]
- Meh, K.; Jurak, G.; Sorić, M.; Rocha, P.; Sember, V. Validity and Reliability of IPAQ-SF and GPAQ for Assessing Sedentary Behaviour in Adults in the European Union: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 4602. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mestre Font, M.; Busquets-Cortés, C.; Ramírez-Manent, J.I.; Vallejos, D.; Sastre Alzamora, T.; López-González, A.A. Influence of sociodemographic variables and healthy habits on the values of cardiometabolic risk scales in 386,924 spanish workers. Acad. J. Health Sci. 2024, 39, 112–121. [Google Scholar] [CrossRef]
- Otero-Luis, I.; Saz-Lara, A.; Moreno-Herráiz, N.; Lever-Megina, C.G.; Bizzozero-Peroni, B.; Martínez-Ortega, I.A.; Varga-Cirila, R.; Cavero-Redondo, I. Exploring the Association between Mediterranean Diet Adherence and Arterial Stiffness in Healthy Adults: Findings from the EvasCu Study. Nutrients 2024, 16, 2158. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mestre-Font, M.; Busquets-Cortés, C.; Ramírez-Manent, J.I.; Tomás-Gil, P.; Paublini, H.; López-González, A.A. Influence of socio-demographic variables and healthy habits on the values of type 2 diabetes risk scales. Acad. J. Health Sci. 2024, 39, 99–106. [Google Scholar] [CrossRef]
- Nayak, V.K.R.; Satheesh, P.; Shenoy, M.T.; Kalra, S. Triglyceride Glucose (TyG) Index: A surrogate biomarker of insulin resistance. J. Pak. Med. Assoc. 2022, 72, 986–988. [Google Scholar] [CrossRef] [PubMed]
- Bello-Chavolla, O.Y.; Almeda-Valdes, P.; Gomez-Velasco, D.; Viveros-Ruiz, T.; Cruz-Bautista, I.; Romo-Romo, A.; Sánchez-Lázaro, D.; Meza-Oviedo, D.; Vargas-Vázquez, A.; Campos, O.A.; et al. METS-IR, a novel score to evaluate insulin sensitivity, is predictive of visceral adiposity and incident type 2 diabetes. Eur. J. Endocrinol. 2018, 178, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Manent, J.I.; López-González, Á.A.; Martínez-Almoyna Rifá, E.; Paublini Oliveira, H.; Martorell Sánchez, C.; Tárraga López, P.J. Association between sociodemographic variables, healthy habits and stress with insulin resistance risk scales. Acad. J. Health Sci. 2025, 40, 107–116. [Google Scholar] [CrossRef]
- ENRICHD Investigators. The ENRICHD Social Support Instrument (ESSI). Psychosom. Med. 2005, 67, 701–707. [Google Scholar]
- Nayak, S.S.; Kuriyakose, D.; Polisetty, L.D.; Patil, A.A.; Ameen, D.; Bonu, R.; Shetty, S.P.; Biswas, P.; Ulrich, M.T.; Letafatkar, N.; et al. Diagnostic and prognostic value of triglyceride glucose index: A comprehensive evaluation of meta-analysis. Cardiovasc. Diabetol. 2024, 23, 310. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, J.; Zhu, L.; Li, Y. Association between the triglyceride glucose index and diabetic retinopathy in type 2 diabetes: A meta-analysis. Front. Endocrinol. 2023, 14, 1302127. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheng, H.; Yu, X.; Li, Y.-T.; Jia, Z.; Wang, J.-J.; Xie, Y.-J.; Hernandez, J.; Wang, H.H.X.; Wu, H.-F. Association Between METS-IR and Prediabetes or Type 2 Diabetes Mellitus Among Elderly Subjects in China: A Large-Scale Population-Based Study. Int. J. Environ. Res. Public Health 2023, 20, 1053. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qiu, J.; He, S.; Yu, C.; Yang, R.; Kuang, M.; Sheng, G.; Zou, Y. Assessing the validity of METS-IR for predicting the future onset of diabetes: An analysis using time-dependent receiver operating characteristics. BMC Endocr. Disord. 2024, 24, 238. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Correa-Burrows, P.; Matamoros, M.; de Toro, V.; Zepeda, D.; Arriaza, M.; Burrows, R. A Single-Point Insulin Sensitivity Estimator (SPISE) of 5.4 is a good predictor of both metabolic syndrome and insulin resistance in adolescents with obesity. Front. Endocrinol. 2023, 14, 1078949. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barchetta, I.; Dule, S.; Bertoccini, L.; Cimini, F.A.; Sentinelli, F.; Bailetti, D.; Marini, G.; Barbonetti, A.; Loche, S.; Cossu, E.; et al. The single-point insulin sensitivity estimator (SPISE) index is a strong predictor of abnormal glucose metabolism in overweight/obese children: A long-term follow-up study. J. Endocrinol. Investig. 2022, 45, 43–51. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stein, R.; Koutny, F.; Riedel, J.; Dörr, N.; Meyer, K.; Colombo, M.; Vogel, M.; Anderwald, C.H.; Blüher, M.; Kiess, W.; et al. Single Point Insulin Sensitivity Estimator (SPISE) As a Prognostic Marker for Emerging Dysglycemia in Children with Overweight or Obesity. Metabolites 2023, 13, 100. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ryu, H.E.; Jung, D.H.; Heo, S.-J.; Park, B.; Lee, Y.J. METS-IR and all-cause mortality in Korean over 60 years old: Korean genome and epidemiology study-health examinees (KoGES-HEXA) cohorts. Front. Endocrinol. 2024, 15, 1346158. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jeon, Y.K.; Kim, S.S.; Kim, J.H.; Kim, H.J.; Park, J.J.; Cho, Y.S.; Joung, S.H.; Kim, J.R.; Kim, B.H.; Song, S.H.; et al. Combined Aerobic and Resistance Exercise Training Reduces Circulating Apolipoprotein J Levels and Improves Insulin Resistance in Postmenopausal Diabetic Women. Diabetes Metab. J. 2020, 44, 103–112. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Valenti, V.E.; Chagas, A.D.S.; Chedraui, P.; de Souza, I.S.; Porto, A.A.; Sorpreso, I.C.E.; Júnior, J.M.S.; Zangirolami-Raimundo, J.; Garner, D.M.; Raimundo, R.D. Effect of combined aerobic exercise and resistance training on postmenopausal women with type 2 diabetes: A systematic review and meta-analysis. Gynecol. Endocrinol. 2025, 41, 2450338. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.M.; Duarte-Mendes, P.; Teixeira, A.M.; Soares, C.M.; Ferreira, J.P. The effects of combined exercise training on glucose metabolism and inflammatory markers in sedentary adults: A systematic review and meta-analysis. Sci. Rep. 2024, 14, 1936. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jelleyman, C.; Yates, T.; O’DOnovan, G.; Gray, L.J.; King, J.A.; Khunti, K.; Davies, M.J. The effects of high-intensity interval training on glucose regulation and insulin resistance: A meta-analysis. Obes. Rev. 2015, 16, 942–961. [Google Scholar] [CrossRef] [PubMed]
- Papakonstantinou, E.; Oikonomou, C.; Nychas, G.; Dimitriadis, G.D. Effects of Diet, Lifestyle, Chrononutrition and Alternative Dietary Interventions on Postprandial Glycemia and Insulin Resistance. Nutrients 2022, 14, 823. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mestre-Font, M.; Busquets-Cortés, C.; Ramírez-Manent, J.I.; Tomás-Gil, P.; Paublini, H.; López-González, A.A. Influence of socio-demographic variables and healthy habits on the values of overweight and obesity scales in 386,924 Spanish workers. Acad. J. Health Sci. 2024, 39, 27–35. [Google Scholar] [CrossRef]
- Aguiló Juanola, M.C.; López-González, A.A.; Tomás-Gil, P.; Paublini, H.; Tárraga-López, P.J.; Ramírez-Manent, J.I. Influence of tobacco consumption on the values of different insulin resistance risk scales and non-alcoholic fatty liver disease and hepatic fibrosis scales in 418,343 spanish people. Acad. J. Health Sci. 2024, 39, 9–15. [Google Scholar] [CrossRef]
- Hackett, R.A.; Hudson, J.L.; Chilcot, J. Loneliness and type 2 diabetes incidence: Findings from the English Longitudinal Study of Ageing. Diabetologia 2020, 63, 2329–2338. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liang, Y.Y.; He, Y.; Wang, J.; Liu, Y.; Ai, S.; Feng, H.; Zhu, C.; Li, H.; Zhou, Y.; Zhang, J.; et al. Social Isolation, Loneliness, and Risk of Microvascular Complications Among Individuals with Type 2 Diabetes Mellitus. Am. J. Kidney Dis. 2024, 84, 557–566.e1. [Google Scholar] [CrossRef] [PubMed]
- Usama, S.M.; Kothari, Y.L.; Karthikeyan, A.; Khan, S.A.; Sarraf, M.; Nagaraja, V. Social Isolation, Loneliness, and Cardiovascular Mortality: The Role of Health Care System Interventions. Curr. Cardiol. Rep. 2024, 26, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Preminger, Z.; Steptoe, A.; Fancourt, D. Protein signatures associated with loneliness and social isolation: Plasma proteome analyses in the English Longitudinal Study of Ageing, with causal evidence from Mendelian randomization. Brain Behav. Immun. 2025, 124, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Saki, N.; Hashemi, S.J.; Hosseini, S.A.; Rahimi, Z.; Rahim, F.; Cheraghian, B. Socioeconomic status and metabolic syndrome in Southwest Iran: Results from Hoveyzeh Cohort Study (HCS). BMC Endocr. Disord. 2022, 22, 332. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hoveling, L.A.; Lepe, A.; Boissonneault, M.; de Beer, J.A.A.; Smidt, N.; de Kroon, M.L.A.; Liefbroer, A.C. Educational inequalities in metabolic syndrome prevalence, timing, and duration amongst adults over the life course: A microsimulation analysis based on the lifelines cohort study. Int. J. Behav. Nutr. Phys. Act. 2023, 20, 104. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Deng, Y.-Y.; Ngai, F.-W.; Qin, J.; Yang, L.; Wong, K.-P.; Wang, H.-H.; Xie, Y.-J. Combined Influence of Eight Lifestyle Factors on Metabolic Syndrome Incidence: A Prospective Cohort Study from the MECH-HK Study. Nutrients 2024, 16, 547. [Google Scholar] [CrossRef] [PubMed]
Men n = 71,384 | Women n = 45,914 | ||
---|---|---|---|
Variables | Mean (SD) | Mean (SD) | p-Value |
Age (years) | 45.5 (7.4) | 45.2 (7.2) | <0.001 |
Height (cm) | 173.1 (7.0) | 160.2 (6.5) | <0.001 |
Weight (kg) | 82.2 (13.5) | 66.0 (12.9) | <0.001 |
Waist (cm) | 88.5 (9.2) | 74.4 (7.9) | <0.001 |
Hip (cm) | 100.5 (8.3) | 97.7 (8.7) | <0.001 |
Systolic BP (mm Hg) | 126.4 (15.7) | 116.7 (15.4) | <0.001 |
Diastolic BP (mm Hg) | 77.4 (10.6) | 71.3 (10.5) | <0.001 |
Cholesterol (mg/dL) | 205.0 (37.3) | 201.4 (36.0) | <0.001 |
HDL-c (mg/dL) | 49.5 (6.9) | 52.6 (7.4) | <0.001 |
LDL-c (mg/dL) | 129.1 (36.6) | 130.7 (36.4) | <0.001 |
Triglycerides (mg/dL) | 133.4 (92.1) | 91.1 (48.4) | <0.001 |
Glucose (mg/dL) | 90.0 (13.2) | 85.8 (11.8) | <0.001 |
Variables | n (%) | n (%) | p-value |
18–39 years | 18,418 (25.8) | 12,214 (26.6) | <0.001 |
40–49 years | 32,098 (45.0) | 20,934 (45.6) | |
50–59 years | 17,350 (24.5) | 11,094 (24.2) | |
60–69 years | 3338 (4.7) | 1672 (3.6) | |
Social class I | 4002 (5.6) | 2980 (6.5) | <0.001 |
Social class II | 12,978 (18.2) | 13,856 (30.2) | |
Social class III | 54,404 (76.2) | 29,078 (63.3) | |
Smokers | 24,426 (34.2) | 14,132 (30.8) | <0.001 |
Yes Mediterranean diet | 22,858 (32.0) | 20,536 (44.7) | <0.001 |
Yes physical activity | 26,010 (36.4) | 20,478 (45.2) | <0.001 |
Social isolation low | 27,376 (38.4) | 4198 (9.1) | <0.001 |
Social isolation normal | 44,008 (61.6) | 41,716 (90.9) |
TyG | METS-IR | SPISE-IR | |||||
---|---|---|---|---|---|---|---|
N | Mean (SD) | p-Value | Mean (SD) | p-Value | Mean (SD) | p-Value | |
18–39 years | 18,418 | 8.4 (0.6) | <0.001 | 38.7 (7.3) | <0.001 | 1.7 (0.5) | <0.001 |
40–49 years | 32,098 | 8.5 (0.6) | 40.3 (7.4) | 1.8 (0.5) | |||
50–59 years | 17,350 | 8.6 (0.6) | 42.0 (7.2) | 1.9 (0.5) | |||
60–69 years | 3338 | 8.6 (0.5) | 42.7 (6.6) | 1.9 (0.4) | |||
Social class I | 4002 | 8.4 (0.5) | <0.001 | 39.4 (6.8) | <0.001 | 1.7 (0.4) | <0.001 |
Social class II | 12,978 | 8.5 (0.6) | 39.9 (7.3) | 1.8 (0.5) | |||
Social class III | 54,404 | 8.6 (0.6) | 40.6 (7.5) | 1.8 (0.5) | |||
Smokers | 24,426 | 8.6 (0.6) | <0.001 | 40.6 (7.1) | <0.001 | 1.8 (0.5) | <0.001 |
Non-smokers | 46,778 | 8.4 (0.6) | 40.1 (7.9) | 1.7 (0.5) | |||
Yes Mediterranean diet | 22,858 | 8.2 (0.4) | 34.5 (3.4) | 1.4 (0.2) | |||
Non Mediterranean diet | 48,346 | 8.7 (0.6) | 43.2 (7.1) | 2.0 (0.5) | |||
Yes physical activity | 26,010 | 8.2 (0.4) | <0.001 | 34.4 (3.4) | <0.001 | 1.4 (0.2) | <0.001 |
Non physical activity | 45,194 | 8.7 (0.6) | 43.8 (6.9) | 2.0 (0.4) | |||
Social isolation low | 27,376 | 8.7 (0.6) | <0.001 | 46.1 (6.8) | <0.001 | 2.1 (0.5) | <0.001 |
Social isolation normal | 44,008 | 8.4 (0.5) | 36.9 (5.3) | 1.6 (0.3) | |||
N | Mean (SD) | p-Value | Mean (SD) | p-Value | Mean (SD) | p-Value | |
18–39 years | 12,214 | 8.0 (0.5) | <0.001 | 34.4 (7.8) | <0.001 | 1.4 (0.5) | <0.001 |
40–49 years | 20,934 | 8.1 (0.5) | 36.0 (7.7) | 1.5 (0.5) | |||
50–59 years | 11,094 | 8.3 (0.5) | 38.4 (7.6) | 1.6 (0.5) | |||
60–69 years | 1672 | 8.4 (0.5) | 39.4 (7.6) | 1.7 (0.5) | |||
Social class I | 2980 | 8.0 (0.4) | <0.001 | 33.6 (6.8) | <0.001 | 1.3 (0.4) | <0.001 |
Social class II | 13,856 | 8.1 (0.5) | 34.5 (7.2) | 1.4 (0.4) | |||
Social class III | 29,078 | 8.2 (0.5) | 37.4 (8.0) | 1.6 (0.5) | |||
Smokers | 14,132 | 8.2 (0.5) | <0.001 | 36.7 (7.9) | <0.001 | 1.6 (0.5) | <0.001 |
Non-smokers | 31,781 | 8.1 (0.5) | 35.4 (7.5) | 1.5 (0.5) | |||
Yes Mediterranean diet | 20,536 | 7.9 (0.4) | 31.3 (3.6) | 1.2 (0.2) | |||
Non Mediterranean diet | 25,377 | 8.3 (0.5) | 40.3 (8.0) | 1.8 (0.5) | |||
Yes physical activity | 20,478 | 7.9 (0.4) | <0.001 | 30.9 (3.4) | <0.001 | 1.2 (0.2) | <0.001 |
Non physical activity | 25,155 | 8.4 (0.5) | 40.7 (7.7) | 1.8 (0.5) | |||
Social isolation low | 4198 | 8.5 (0.5) | <0.001 | 47.0 (7.7) | <0.001 | 2.2 (0.5) | <0.001 |
Social isolation normal | 41,716 | 8.1 (0.5) | 35.2 (7.0) | 1.5 (0.4) |
TyG High | METS-IR High | SPISE-IR High | |||||
---|---|---|---|---|---|---|---|
n | % | p-Value | % | p-Value | % | p-Value | |
18–39 years | 18,418 | 22.7 | <0.001 | 7.5 | <0.001 | 12.7 | <0.001 |
40–49 years | 32,098 | 30.4 | 9.9 | 16.9 | |||
50–59 years | 17,350 | 34.7 | 12.7 | 19.5 | |||
60–69 years | 3338 | 35.2 | 13.0 | 19.6 | |||
Social class I | 4002 | 22.4 | <0.001 | 8.3 | <0.001 | 12.3 | <0.001 |
Social class II | 12,978 | 28.3 | 8.6 | 17.1 | |||
Social class III | 54,404 | 30.6 | 10.6 | 17.4 | |||
Smokers | 24,426 | 34.1 | <0.001 | 11.2 | <0.001 | 17.7 | <0.001 |
Non-smokers | 46,778 | 27.5 | 9.6 | 16.0 | |||
Yes Mediterranean diet | 22,858 | 10.3 | 5.1 | 7.9 | |||
Non Mediterranean diet | 48,346 | 30.6 | 16.9 | 17.5 | |||
Yes physical activity | 26,010 | 9.0 | <0.001 | 4.0 | <0.001 | 6.8 | <0.001 |
Non physical activity | 45,194 | 34.8 | 17.8 | 20.6 | |||
Social isolation low | 27,376 | 41.8 | <0.001 | 13.5 | <0.001 | 9.8 | <0.001 |
Social isolation normal | 44,008 | 22.2 | 6.9 | 17.2 | |||
n | % | p-Value | % | p-Value | % | p-Value | |
18–39 years | 12,214 | 7.4 | <0.001 | 4.7 | <0.001 | 6.6 | <0.001 |
40–49 years | 20,934 | 11.6 | 6.1 | 8.4 | |||
50–59 years | 11,094 | 20.0 | 7.4 | 11.1 | |||
60–69 years | 1672 | 24.9 | 9.7 | 15.1 | |||
Social class I | 2980 | 7.7 | <0.001 | 3.2 | <0.001 | 4.5 | <0.001 |
Social class II | 13,856 | 10.2 | 4.4 | 6.0 | |||
Social class III | 29,078 | 14.8 | 7.3 | 10.6 | |||
Smokers | 14,132 | 14.8 | <0.001 | 6.7 | <0.001 | 9.6 | <0.001 |
Non-smokers | 31,781 | 12.1 | 5.0 | 7.2 | |||
Yes Mediterranean diet | 20,536 | 7.1 | 3.5 | 5.5 | |||
Non Mediterranean diet | 25,377 | 15.2 | 7.9 | 11.0 | |||
Yes physical activity | 20,478 | 6.0 | <0.001 | 3.0 | <0.001 | 4.0 | <0.001 |
Non physical activity | 25,155 | 18.2 | 8.6 | 13.5 | |||
Social isolation low | 4198 | 32.4 | <0.001 | 19.6 | <0.001 | 19.4 | <0.001 |
Social isolation normal | 41,716 | 11.0 | 7.8 | 7.9 |
TyG High | METS-IR High | SPISE-IR High | ||||
---|---|---|---|---|---|---|
OR (95% CIs) | p-Value | OR (95% CIs) | p-Value | OR (95% CIs) | p-Value | |
Women | 1 | 1 | 1 | |||
Men | 2.67 (2.30–3.15) | <0.001 | 1.64 (1.55–1.74) | <0.001 | 1.25 (1.20–1.30) | <0.001 |
18–39 years | 1 | 1 | 1 | |||
40–49 years | 1.11 (1.08–1.15) | <0.001 | 1.18 (1.14–1.23) | <0.001 | 1.18 (1.14–1.23) | <0.001 |
50–59 years | 1.23 (1.18–1.29) | <0.001 | 1.46 (1.33–1.60) | <0.001 | 1.40 (1.31–1.50) | <0.001 |
60–69 years | 1.51 (1.41–1.62) | <0.001 | 1.99 (1.70–2.29) | <0.001 | 1.88 (1.69–2.08) | <0.001 |
Social class I | 1 | 1 | 1 | |||
Social class II | 1.30 (1.24–1.36) | <0.001 | 1.15 (1.11–1.20) | <0.001 | 1.26 (1.20–1.33) | <0.001 |
Social class III | 1.58 (2.44–1.72) | <0.001 | 1.46 (1.38–1.55) | <0.001 | 1.49 (1.38–1.60) | <0.001 |
Non-smokers | 1 | 1 | 1 | |||
Smokers | 1.54 (1.49–1.60) | <0.001 | 1.25 (1.20–1.31) | <0.001 | 1.20 (1.16–1.25) | <0.001 |
Yes Mediterranean diet | 1 | 1 | 1 | |||
Non Mediterranean diet | 2.69 (2.33–3.16) | <0.001 | 3.14 (2.80–3.49) | <0.001 | 4.92 (4.02–5.83) | <0.001 |
Yes physical activity | 1 | 1 | 1 | |||
Non physical activity | 6.21 (5.30–7.11) | <0.001 | 6.95 (5.96–7.95) | <0.001 | 9.95 (8.60–11.31) | <0.001 |
Social isolation normal | 1 | 1 | 1 | |||
Social isolation low | 1.98 (1.75–2.22) | <0.001 | 2.69 (2.45–2.93) | <0.001 | 3.76 (3.15–4.37) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riutord-Sbert, P.; Tárraga López, P.J.; López-González, Á.A.; Coll Campayo, I.; Busquets-Cortés, C.; Ramírez Manent, J.I. Sociodemographic, Lifestyle, and Social Isolation Correlates of TyG, METS-IR, and SPISE-IR Scores in a Large Spanish Working Population. Med. Sci. 2025, 13, 171. https://doi.org/10.3390/medsci13030171
Riutord-Sbert P, Tárraga López PJ, López-González ÁA, Coll Campayo I, Busquets-Cortés C, Ramírez Manent JI. Sociodemographic, Lifestyle, and Social Isolation Correlates of TyG, METS-IR, and SPISE-IR Scores in a Large Spanish Working Population. Medical Sciences. 2025; 13(3):171. https://doi.org/10.3390/medsci13030171
Chicago/Turabian StyleRiutord-Sbert, Pere, Pedro Juan Tárraga López, Ángel Arturo López-González, Irene Coll Campayo, Carla Busquets-Cortés, and José Ignacio Ramírez Manent. 2025. "Sociodemographic, Lifestyle, and Social Isolation Correlates of TyG, METS-IR, and SPISE-IR Scores in a Large Spanish Working Population" Medical Sciences 13, no. 3: 171. https://doi.org/10.3390/medsci13030171
APA StyleRiutord-Sbert, P., Tárraga López, P. J., López-González, Á. A., Coll Campayo, I., Busquets-Cortés, C., & Ramírez Manent, J. I. (2025). Sociodemographic, Lifestyle, and Social Isolation Correlates of TyG, METS-IR, and SPISE-IR Scores in a Large Spanish Working Population. Medical Sciences, 13(3), 171. https://doi.org/10.3390/medsci13030171