Evaluation of the Clinical Efficacy of a Novel Palmitoylethanolamide–Equisetum arvense Supplement for the Management of Chronic Pain: Findings from a Prospective Clinical Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
- T0 (enrolment of the subject in the study): After explaining the treatment administration dosage (two tablets per day of Assonal®PEA) and submitting the questionnaires for the first time, this group becomes the control group for the next phases (Before).
- T1: After 15 days of oral treatment (two tablets a day of Assonal®PEA), evaluations with questionnaire administration will follow. At this stage, patients will adjust the treatment dosage to one tablet per day.
- T2: After one month of oral treatment (one tablet per day of Assonal®PEA), evaluations with questionnaire administration will follow.
- T3: After two months of treatment taken orally (one tablet per day of Assonal®PEA), final evaluations were conducted with the administration of the questionnaires.
2.2. Eligibility Criteria of the Study Population
2.2.1. Inclusion Criteria
- Patients between 18 and 80 years of age.
- Pain beyond 3 months, even intermittent, timing is necessary to have a pattern of chronic pain.
- Signature of informed consent.
- Paracetamol use in the last 3 months.
2.2.2. Exclusion Criteria
- Drug treatment for chronic pain (e.g., acetyl-L-carnitine, tricyclic antidepressants, opioids, antiepileptics) would lead to an incorrect interpretation of data.
- Pharmacological treatment for arthritis pain would lead to an incorrect interpretation of the data.
- Psychiatric disorders or cognitive dysfunction in patients with these disorders could result in the completion of questionnaires that are not useful for the final assessment.
- Concomitant severe brain damage.
- Tumours or terminal illnesses.
- Pregnancy or lactation.
- Alcohol or substance abuse.
- Allergies or intolerance to the product as it would cause serious adverse side effects.
- Non-knowledge of the Italian language as it would not be possible to perform the questionnaires necessary
2.3. Product Under Investigation
2.4. Endpoints
2.4.1. Primary Endpoint
2.4.2. Secondary Endpoints
- The measurement of patient perception versus drug treatment, which will be measured with the GPE, a scale that assesses patient perception using a 7-point Likert scale [37]. This is a subjective assessment in which the patient indicates how much they feel improved or worsened compared to before treatment (1: Very much worse; 2: Moderately worsened; 3: Slightly improved; 4: No change; 5: Slightly improved; 6: Moderately improved; 7: Much improved). This scale is widely used in clinical trials and clinical practice to assess the effectiveness of therapeutic interventions, particularly in musculoskeletal and rehabilitation settings.
- The quantification and description of perceived pain will be assessed using the SF-MPQ [38]. It is a self-assessment questionnaire that allows you to have an accurate description of the quality and intensity of the pain that the subject is experiencing. There are 78 items divided into 20 subgroups that refer to 4 main categories: the sensory class, the affective class, the valuative class and the miscellaneous class [39]. The SF-MPQ also includes the Pain Intensity Index (PPI) of the standard MPQ and a visual analogue scale (VAS).
- Measuring quality of life, described with the EURO-QoL-5D-5L or EQ-5D-5L. The instrument consists of: a 5-dimensional descriptive system (mobility, self-care ability, habitual activities, pain/discomfort, and anxiety/depression), each of which involves a three-point rating scale (no problem = 1 point; some problem = 2 points; persistent problem = 3 points); and a VAS that requires the subject to answer the question, “How healthy do you feel today?” A score of 0 corresponds to the worst health status ever, while 100 equals the best perceived health level. It is possible to combine the scores of the two sections and determine an overall score [40].
2.5. Statistical Analysis
3. Results
3.1. Effects of Assonal®PEA on Pain Intensity
3.2. Effects of Assonal®PEA in the Secondary Endpoints
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
A.O.U | Azienda Ospedaliero Universitaria (University Hospital Authority) |
COX-2 | cyclooxygenase 2 |
DRG | dorsal roots |
EQ-5D-5L | European Quality of Life Five Dimension Five Level Scale |
GPE | Global Perceived Effect |
IL-1β | Interleukin-1 beta |
IL-6 | Interleukin-6 |
MOR | μ-opioid receptor |
mPEA | Micronised PEA |
MPZ | Myelin protein zero |
NPRS | Numerical Pain Rating Scale |
NPSI | Neuropathic Pain Symptom Inventory |
NSAIDs | Nonsteroidal anti-inflammatory drugs |
NRG1 | Neuregulin 1 |
PEA | Palmitoylethanolamide |
PPI | Pain Intensity Index |
SF-MPQ | Short Form McGill Pain Questionnaire |
SS | Saints |
T0 | Timepoint 0 |
T1 | Timepoint 1 (15 days) |
T2 | Timepoint 2 (one month) |
T3 | Timepoint 3 (two months) |
TEC | Territorial Ethics Committee |
TNF-α | Tumor necrosis factor-alpha |
umPEA | Ultra-micronised PEA |
USA | United States of America |
VAS | Visual Analog Scale |
VRS | Verbal Rating Scale |
References
- Cohen, S.P.; Vase, L.; Hooten, W.M. Chronic Pain: An Update on Burden, Best Practices, and New Advances. Lancet 2021, 397, 2082–2097. [Google Scholar] [CrossRef] [PubMed]
- Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.J.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A.; et al. The revised International Association for the Study of Pain definition of pain: Concepts, challenges, and compromises. Pain 2020, 161, 1976–1982. [Google Scholar] [CrossRef] [PubMed]
- Griffith, J.S. Chronic Pain. In Integrative and Functional Medical Nutrition Therapy; Springer International Publishing: Cham, Switzerland, 2020; pp. 447–471. [Google Scholar]
- Guan, S.Y.; Zheng, J.X.; Sam, N.B.; Xu, S.; Shuai, Z.; Pan, F. Global burden and risk factors of musculo-skeletal disorders among adolescents and young adults in 204 countries and territories, 1990–2019. Autoimmun. Rev. 2023, 22, 103361. [Google Scholar] [CrossRef]
- Zobdeh, F.; Eremenko, I.I.; Akan, M.A.; Tarasov, V.V.; Chubarev, V.N.; Schiöth, H.B.; Mwinyi, J. Pharmacogenetics and Pain Treatment with a Focus on Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) and Antidepressants: A Systematic Review. Pharmaceutics 2022, 14, 1190. [Google Scholar] [CrossRef]
- Elvir-Lazo, O.L.; White, P.F.; Cruz Eng, H.; Yumul, F.; Chua, R.; Yumul, R. Impact of Chronic Medications in the Perioperative Period: Mechanisms of Action and Adverse Drug Effects (Part I). Postgrad. Med. 2021, 133, 939–952. [Google Scholar] [CrossRef]
- Lippi, L.; Uberti, F.; Folli, A.; Turco, A.; Curci, C.; d’Abrosca, F.; de Sire, A.; Invernizzi, M. Impact of Nutraceuticals and Dietary Supplements on Mitochondria Modifications in Healthy Aging: A Systematic Review of Randomized Controlled Trials. Aging Clin. Exp. Res. 2022, 34, 2659–2674. [Google Scholar] [CrossRef]
- Ferrillo, M.; Giudice, A.; Migliario, M.; Renó, F.; Lippi, L.; Calafiore, D.; Marotta, N.; de Sire, R.; Fortunato, L.; Ammendolia, A.; et al. Oral–Gut Microbiota, Periodontal Diseases, and Arthritis: Literature Overview on the Role of Probiotics. Int. J. Mol. Sci. 2023, 24, 4626. [Google Scholar] [CrossRef]
- Lim, Y.Z.; Hussain, S.M.; Cicuttini, F.M.; Wang, Y. Nutrients and Dietary Supplements for Osteoarthritis. In Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases; Elsevier: Amsterdam, The Netherlands, 2019; pp. 97–137. [Google Scholar]
- Aghamohammadi, D.; Dolatkhah, N.; Bakhtiari, F.; Eslamian, F.; Hashemian, M. Nutraceutical Supplements in Management of Pain and Disability in Osteoarthritis: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Sci. Rep. 2020, 10, 20892. [Google Scholar] [CrossRef]
- Flint, G.; Rusbridge, C. (Eds.) Syringomyelia; Springer: Berlin, Heidelberg, 2014; ISBN 978-3-540-72484-1. [Google Scholar]
- Marcucci, M.; Germini, F.; Coerezza, A.; Andreinetti, L.; Bellintani, L.; Nobili, A.; Rossi, P.D.; Mari, D. Efficacy of Ultra-Micronized Palmitoylethanolamide (Um-PEA) in Geriatric Patients with Chronic Pain: Study Protocol for a Series of N-of-1 Randomized Trials. Trials 2016, 17, 369. [Google Scholar] [CrossRef]
- Ruga, S.; Galla, R.; Ferrari, S.; Invernizzi, M.; Uberti, F. Novel Approach to the Treatment of Neuropathic Pain Using a Combination with Palmitoylethanolamide and Equisetum arvense L. in an In Vitro Study. Int. J. Mol. Sci. 2023, 24, 5503. [Google Scholar] [CrossRef]
- Clayton, P.; Hill, M.; Bogoda, N.; Subah, S.; Venkatesh, R. Palmitoylethanolamide: A Natural Compound for Health Management. Int. J. Mol. Sci. 2021, 22, 5305. [Google Scholar] [CrossRef]
- Bettoni, I.; Comelli, F.; Colombo, A.; Bonfanti, P.; Costa, B. Non-Neuronal Cell Modulation Relieves Neuropathic Pain: Efficacy of the Endogenous Lipid Palmitoylethanolamide. CNS Neurol. Disord. Drug Targets 2013, 12, 34–44. [Google Scholar] [CrossRef]
- Hryhorowicz, S.; Kaczmarek-Ryś, M.; Zielińska, A.; Scott, R.J.; Słomski, R.; Pławski, A. Endocannabinoid System as a Promising Therapeutic Target in Inflammatory Bowel Disease—A Systematic Review. Front. Immunol. 2021, 12, 790803. [Google Scholar] [CrossRef]
- Das, A.; Balakrishnan, P. Mechanisms and Clinical Applications of Palmitoylethanolamide (PEA) in the Treatment of Neuropathic Pain. Inflammopharmacology 2025, 33, 121–133. [Google Scholar] [CrossRef]
- Gappar, A.G.; Kipchakbayeva, A.K. Chemical Composition and Potential Pharmacological Properties of Field Horsetail Extract Based on GC-MS Analysis. Int. J. Biol. Chem. 2024, 17, 184–189. [Google Scholar] [CrossRef]
- Luanda, A.; Ripanda, A.; Makangara, J.J. Therapeutic Potential of Equisetum arvense L. for Management of Medical Conditions. Phytomed. Plus 2023, 3, 100444. [Google Scholar] [CrossRef]
- Impellizzeri, D.; Peritore, A.F.; Cordaro, M.; Gugliandolo, E.; Siracusa, R.; Crupi, R.; D’Amico, R.; Fusco, R.; Evan-gelista, M.; Cuzzocrea, S.; et al. The neuroprotective effects of micronized PEA (PEA-m) formulation on diabetic peripheral neuropathy in mice. FASEB J. 2019, 33, 11364–11380. [Google Scholar] [CrossRef] [PubMed]
- Tagne, A.M.; Fotio, Y.; Lin, L.; Squire, E.; Ahmed, F.; Rashid, T.I.; Azari, E.K.; Piomelli, D. Palmitoylethanolamide and Hemp Oil Extract Exert Synergistic Anti-Nociceptive Effects in Mouse Models of Acute and Chronic Pain. Pharmacol. Res. 2021, 167, 105545. [Google Scholar] [CrossRef] [PubMed]
- Scuteri, D.; Guida, F.; Boccella, S.; Palazzo, E.; Maione, S.; Rodríguez-Landa, J.F.; Martínez-Mota, L.; Tonin, P.; Bagetta, G.; Corasaniti, M.T. Effects of Palmitoylethanolamide (PEA) on Nociceptive, Musculoskeletal and Neuropathic Pain: Systematic Review and Meta-Analysis of Clinical Evidence. Pharmaceutics 2022, 14, 1672. [Google Scholar] [CrossRef]
- Do Monte, F.H.; dos Santos, J.G., Jr.; Russi, M.; Lanziotti, V.M.; Leal, L.K.; Cunha, G.M. Antinociceptive and anti-inflammatory properties of the hydroalcoholic extract of stems from Equisetum arvense L. in mice. Pharmacol. Res. 2004, 49, 239–243. [Google Scholar] [CrossRef]
- Stratton, S.J. Quasi-Experimental Design (Pre-Test and Post-Test Studies) in Prehospital and Disaster Research. Prehosp Disaster Med. 2019, 34, 573–574. [Google Scholar] [CrossRef]
- Ray, S.S.; Wilson, L.P.; Khan, Z.; Patil, P.N. Effect of Earmuff Use on Physiological and Behavioral Responses in Preterm Neonates: A Non-Randomized, Controlled, before-after, Quality Improvement, Observational Prospective Cohort Study. Eur. J. Pediatr. 2025, 184, 217. [Google Scholar] [CrossRef]
- AGS Panel on Persistent Pain in Older Persons. The Management of Persistent Pain in Older Persons. J. Am. Geriatr. Soc. 2002, 50, 205–224. [Google Scholar] [CrossRef]
- Swieboda, P.; Filip, R.; Prystupa, A.; Drozd, M. Assessment of Pain: Types, Mechanism and Treatment. Ann. Agric. Environ. Med. 2013, 2, 2–7. [Google Scholar]
- Schweiger, V.; Schievano, C.; Martini, A.; Polati, L.; Del Balzo, G.; Simari, S.; Milan, B.; Finco, G.; Varrassi, G.; Polati, E. Extended Treatment with Micron-Size Oral Palmitoylethanolamide (PEA) in Chronic Pain: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 1653. [Google Scholar] [CrossRef]
- D’Amico, R.; Impellizzeri, D.; Cuzzocrea, S.; Di Paola, R. ALIAmides Update: Palmitoylethanolamide and Its Formulations on Management of Peripheral Neuropathic Pain. Int. J. Mol. Sci. 2020, 21, 5330. [Google Scholar] [CrossRef]
- Peritore, A.F.; Siracusa, R.; Crupi, R.; Cuzzocrea, S. Therapeutic Efficacy of Palmitoylethanolamide and Its New Formulations in Synergy with Different Antioxidant Molecules Present in Diets. Nutrients 2019, 11, 2175. [Google Scholar] [CrossRef] [PubMed]
- Agave Group. Available online: https://www.Agavegroup.It/Assonal-Pea/ (accessed on 30 May 2025).
- Perez-Lloret, S.; Ciampi de Andrade, D.; Lyons, K.E.; Rodríguez-Blázquez, C.; Chaudhuri, K.R.; Deuschl, G.; Cruccu, G.; Sampaio, C.; Goetz, C.G.; Schrag, A.; et al. Rating Scales for Pain in Parkinson’s Disease: Critique and Recommendations. Mov. Disord. Clin. Pract. 2016, 3, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Nogueira Carrer, H.C.; de Lima, T.C.; George, S.Z.; dos Reis, F.J.J.; Dias, D.L.C.; Campanha, B.E.S.; Chaves, T.C. Investigating the Hypoalgesic Effects of Spinal Manipulative Therapy Using Hidden Pain Conditioning and Positive Expectation in Patients with Chronic Low Back Pain: Protocol for a Randomised Controlled Trial. BMJ Open 2023, 13, e066199. [Google Scholar] [CrossRef]
- Santiago, R.J.; Esteves, J.; Baptista, J.S.; Marques, A.T.; Costa, J.T. Instrumentation Used to Assess Pain in Osteopathic Interventions: A Critical Literature Review. Int. J. Osteopath. Med. 2020, 37, 25–33. [Google Scholar] [CrossRef]
- Nishitha, K.; Anitha, A.; Thaheera, D. Effectiveness of Virtual Reality-Based Rehabilitation and High-Intensity Exer-cise Program for Total Knee Arthroplasty Patients: A Randomised Controlled Trial. J. Clin. Diagn. Res. 2024, 18, YC01–YC08. [Google Scholar] [CrossRef]
- Adhikari, S.P.; Shrestha, P.; Dev, R. Feasibility and Effectiveness of Telephone-Based Telephysiotherapy for Treatment of Pain in Low-Resource Setting: A Retrospective Pre-Post Design. Pain Res. Manag. 2020, 2020, 2741278. [Google Scholar] [CrossRef]
- de Rooij, A.; van der Leeden, M.; Roorda, L.D.; Steultjens, M.P.; Dekker, J. Predictors of Outcome of Multidisciplinary Treatment in Chronic Widespread Pain: An Observational Study. BMC Musculoskelet. Disord. 2013, 14, 133. [Google Scholar] [CrossRef] [PubMed]
- Jumbo, S.U.; MacDermid, J.C.; Kalu, M.E.; Packham, T.L.; Athwal, G.S.; Faber, K.J. Measurement Properties of the Brief Pain Inventory-Short Form (BPI-SF) and Revised Short McGill Pain Questionnaire Version-2 (SF-MPQ-2) in Pain-Related Musculoskeletal Conditions. Clin. J. Pain 2021, 37, 454–474. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, K.A.S.L.; de Andrade, D.C.; Teixeira, M.J. Development and Validation of a Brazilian Version of the Short-Form McGill Pain Questionnaire (SF-MPQ). Pain Manag. Nurs. 2013, 14, 210–219. [Google Scholar] [CrossRef]
- Herdman, M.; Gudex, C.; Lloyd, A.; Janssen, M.; Kind, P.; Parkin, D.; Bonsel, G.; Badia, X. Development and Preliminary Testing of the New Five-Level Version of EQ-5D (EQ-5D-5L). Qual. Life Res. 2011, 20, 1727–1736. [Google Scholar] [CrossRef]
- Glare, P.; Chye, R.; Bloch, M.; Arya, M.; Moore, A.; Montgomery, J. Tolerability and Efficacy of a 10:25 Preparation of Δ9-Tetrahydrocannabinol and Cannabidiol for Treatment of Chronic Back or Neck Pain: A Multiple-Dose Escalation Study. Med. Cannabis Cannabinoids 2023, 6, 66–76. [Google Scholar] [CrossRef]
- Nasri, H.; Baradaran, A.; Shirzad, H.; Rafieian-Kopaei, M. New Concepts in Nutraceuticals as Alternative for Pharmaceuticals. Int. J. Prev. Med. 2014, 5, 1487–1499. [Google Scholar]
- Kour, J.; Chopra, H.; Bukhari, S.; Sharma, R.; Bansal, R.; Hans, M.; Chandra Saxena, D. Nutraceutical-A Deep and Profound Concept. In Nutraceuticals and Health Care; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–28. [Google Scholar]
- Kohrt, B.A.; Griffith, J.L.; Patel, V. Chronic Pain and Mental Health: Integrated Solutions for Global Problems. Pain 2018, 159, S85–S90. [Google Scholar] [CrossRef]
- Moisset, X.; Bouhassira, D.; Avez Couturier, J.; Alchaar, H.; Conradi, S.; Delmotte, M.H.; Lanteri-Minet, M.; Lefaucheur, J.P.; Mick, G.; Piano, V.; et al. Pharmacological and Non-Pharmacological Treatments for Neuropathic Pain: Systematic Review and French Recommendations. Rev. Neurol. 2020, 176, 325–352. [Google Scholar] [CrossRef]
- Clauw, D.J.; Essex, M.N.; Pitman, V.; Jones, K.D. Reframing Chronic Pain as a Disease, Not a Symptom: Rationale and Implications for Pain Management. Postgrad. Med. 2019, 131, 185–198. [Google Scholar] [CrossRef]
- Piriyaprasath, K.; Kakihara, Y.; Hasegawa, M.; Iwamoto, Y.; Hasegawa, Y.; Fujii, N.; Yamamura, K.; Okamoto, K. Nutritional Strategies for Chronic Craniofacial Pain and Temporomandibular Disorders: Current Clinical and Preclinical Insights. Nutrients 2024, 16, 2868. [Google Scholar] [CrossRef] [PubMed]
- Scaturro, D.; Asaro, C.; Lauricella, L.; Tomasello, S.; Varrassi, G.; Letizia Mauro, G. Combination of rehabilitative therapy with ultramicronized palmitoylethanolamide for chronic low back pain: An observational study. Pain Ther. 2020, 9, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Steels, E.; Venkatesh, R.; Steels, E.; Vitetta, G.; Vitetta, L. A double-blind randomized placebo controlled study assessing safety, tolerability and efficacy of palmitoylethanolamide for symptoms of knee osteoarthritis. Inflammopharmacology 2019, 27, 475–485. [Google Scholar] [CrossRef]
- Rankin, L.; Fowler, C.J. The Basal Pharmacology of Palmitoylethanolamide. Int. J. Mol. Sci. 2020, 21, 7942. [Google Scholar] [CrossRef] [PubMed]
- Landolfo, E.; Cutuli, D.; Petrosini, L.; Caltagirone, C. Effects of Palmitoylethanolamide on Neurodegenerative Diseases: A Review from Rodents to Humans. Biomolecules 2022, 12, 667. [Google Scholar] [CrossRef]
- Petrosino, S.; Schiano Moriello, A. Palmitoylethanolamide: A Nutritional Approach to Keep Neuroinflammation within Physiological Boundaries—A Systematic Review. Int. J. Mol. Sci. 2020, 21, 9526. [Google Scholar] [CrossRef]
- Petrosino, S.; Cordaro, M.; Verde, R.; Moriello, A.S.; Marcolongo, G.; Schievano, C.; Siracusa, R.; Piscitelli, F.; Peritore, A.F.; Crupi, R.; et al. Corrigendum: Oral Ultramicronized Palmitoylethanolamide: Plasma and Tissue Levels and Spinal Antihyperalgesic Effect. Front. Pharmacol. 2024, 15, 1441203. [Google Scholar] [CrossRef]
- Galla, R.; Mulè, S.; Ferrari, S.; Grigolon, C.; Molinari, C.; Uberti, F. Palmitoylethanolamide as a Supplement: The Importance of Dose-Dependent Effects for Improving Nervous Tissue Health in an In Vitro Model. Int. J. Mol. Sci. 2024, 25, 9079. [Google Scholar] [CrossRef]
- Cocito, D.; Peci, E.; Torrieri, M.C.; Clerico, M. Ultramicronized Palmitoylethanolamide in the Management of Neuropathic Pain Related to Chronic Inflammatory Demyelinating Polyneuropathy: A Proof-of-Concept Study. J. Clin. Med. 2024, 13, 2787. [Google Scholar] [CrossRef]
- Toti, A.; Micheli, L.; Lucarini, E.; Ferrara, V.; Ciampi, C.; Margiotta, F.; Failli, P.; Gomiero, C.; Pallecchi, M.; Bartolucci, G.; et al. Ultramicronized N-Palmitoylethanolamine Regulates Mast Cell-Astrocyte Crosstalk: A New Potential Mechanism Underlying the Inhibition of Morphine Tolerance. Biomolecules 2023, 13, 233. [Google Scholar] [CrossRef]
- Sá, M.C.I.d.; Castor, M.G.M. Therapeutic Use of Palmitoylethanolamide as an Anti-Inflammatory and Immunomodulator. Future Pharmacol. 2023, 3, 951–977. [Google Scholar] [CrossRef]
- Skaper, S.D.; Facci, L.; Giusti, P. Glia and mast cells as targets for palmitoylethanolamide, an anti-inflammatory and neuroprotective lipid mediator. Mol. Neurobiol. 2013, 48, 340–352. [Google Scholar] [CrossRef]
- Varrassi, G.; Rekatsina, M.; Leoni, M.L.G.; Cascella, M.; Finco, G.; Sardo, S.; Corno, C.; Tiso, D.; Schweiger, V.; Fornasari, D.M.M.; et al. A Decades-Long Journey of Palmitoylethanolamide (PEA) for Chronic Neuropathic Pain Management: A Comprehensive Narrative Review. Pain Ther. 2025, 14, 81–101. [Google Scholar] [CrossRef]
- Marini, I.; Cavallaro, M.; Bartolucci, M.L.; Alessandri-Bonetti, A.; Gatto, M.R.; Cordaro, M.; Checchi, L. Can Celecoxib Enhance Palmitoylethanolamide’s Effect in the Treatment of Temporo-Mandibular Arthralgia in Osteoarthritis Patients? J. Transl. Sci. 2018, 5, 1–4. [Google Scholar] [CrossRef]
- Mattace Raso, G.; Russo, R.; Calignano, A.; Meli, R. Palmitoylethanolamide in CNS Health and Disease. Pharmacol. Res. 2014, 86, 32–41. [Google Scholar] [CrossRef]
- Pallag, A.; Jurca, T.; Pasca, B.; Sirbu, V.; Honiges, A.N.A.; Costuleanu, M. Analysis of phenolic compounds composition by HPLC and assessment of antioxidant capacity in Equisetum arvense L. extracts. Rev. Chim. 2016, 67, 1623–1627. [Google Scholar]
- Chirchiglia, D.; Cione, E.; Caroleo, M.C.; Wang, M.; Di Mizio, G.; Faedda, N.; Giacolini, T.; Siviglia, S.; Guidetti, V.; Gallelli, L. Effects of Add-On Ultramicronized N-Palmitol Ethanol Amide in Patients Suffering of Migraine with Aura: A Pilot Study. Front. Neurol. 2018, 9, 674. [Google Scholar] [CrossRef] [PubMed]
- Britti, D.; Crupi, R.; Impellizzeri, D.; Gugliandolo, E.; Fusco, R.; Schievano, C.; Morittu, V.M.; Evangelista, M.; Di Paola, R.; Cuzzocrea, S. A Novel Composite Formulation of Palmitoylethanolamide and Quercetin Decreases Inflammation and Relieves Pain in Inflammatory and Osteoarthritic Pain Models. BMC Vet. Res. 2017, 13, 229. [Google Scholar] [CrossRef] [PubMed]
- Guida, F.; Luongo, L.; Boccella, S.; Giordano, M.E.; Romano, R.; Bellini, G.; Manzo, I.; Furiano, A.; Rizzo, A.; Imperatore, R.; et al. Palmitoylethanolamide induces microglia changes associated with increased migration and phagocytic activity: Involvement of the CB2 receptor. Sci. Rep. 2017, 7, 375. [Google Scholar] [CrossRef] [PubMed]
- Gabrielsson, L.; Mattsson, S.; Fowler, C.J. Palmitoylethanolamide for the Treatment of Pain: Pharmacokinetics, Safety and Efficacy. Br. J. Clin. Pharmacol. 2016, 82, 932–942. [Google Scholar] [CrossRef]
- Navarro, G.; Morales, P.; Cueto, C.R.; Fernández-Ruiz, J.; Jagerovic, N.; Franco, R. Targeting Cannabinoid CB2 Receptors in the Central Nervous System. Medicinal Chemistry Approaches with Focus on Neurodegenerative Disorders. Front. Neurosci. 2016, 10, 406. [Google Scholar] [CrossRef]
- Rom, S.; Persidsky, Y. Cannabinoid receptor 2: Potential role in immunomodulation and neuroinflammation. J. Neuroimmune Pharmacol. 2013, 8, 608–620. [Google Scholar] [CrossRef]
- Kasatkina, L.A.; Rittchen, S.; Sturm, E.M. Neuroprotective and Immunomodulatory Action of the Endocannabinoid System under Neuroinflammation. Int. J. Mol. Sci. 2021, 22, 5431. [Google Scholar] [CrossRef] [PubMed]
- Cremon, C.; Stanghellini, V.; Barbaro, M.R.; Cogliandro, R.F.; Bellacosa, L.; Santos, J.; Vicario, M.; Pigrau, M.; Alonso Cotoner, C.; Lobo, B.; et al. Randomised Clinical Trial: The Analgesic Properties of Dietary Supplementation with Palmitoylethanolamide and Polydatin in Irritable Bowel Syndrome. Aliment. Pharmacol. Ther. 2017, 45, 909–922. [Google Scholar] [CrossRef] [PubMed]
- Cordaro, M.; Cuzzocrea, S.; Crupi, R. An Update of Palmitoylethanolamide and Luteolin Effects in Preclinical and Clinical Studies of Neuroinflammatory Events. Antioxidants 2020, 9, 216. [Google Scholar] [CrossRef] [PubMed]
- Siracusa, R.; Fusco, R.; Cordaro, M.; Peritore, A.F.; D’Amico, R.; Gugliandolo, E.; Crupi, R.; Genovese, T.; Evangelista, M.; Di Paola, R.; et al. The Protective Effects of Pre- and Post-Administration of Micronized Palmitoylethanolamide Formulation on Postoperative Pain in Rats. Int. J. Mol. Sci. 2020, 21, 7700. [Google Scholar] [CrossRef]
- Befort, K. Interactions of the opioid and cannabinoid systems in reward: Insights from knockout studies. Front. Pharmacol. 2015, 6, 6. [Google Scholar] [CrossRef]
- Kantonen, T.; Karjalainen, T.; Pekkarinen, L.; Isojärvi, J.; Kalliokoski, K.; Kaasinen, V.; Hirvonen, J.; Nuutila, P.; Nummenmaa, L. Cerebral μ-opioid and CB1 receptor systems have distinct roles in human feeding behavior. Transl. Psychiatry 2021, 11, 442. [Google Scholar] [CrossRef]
- Zogopoulos, P.; Vasileiou, I.; Patsouris, E.; Theocharis, S.E. The role of endocannabinoids in pain modulation. Fundam. Clin. Pharmacol. 2013, 27, 64–80. [Google Scholar] [CrossRef]
- Gohain, F.; Yachamaneni, J.; Kallepalli, P.; Ramesh, N.; Sarkar, M.; Sohaila, S.; Dang, R. Ethanolic Extract of Equisetum arvense: A Potential Agent against Rheumatoid Arthritis in Wistar Rats with Freund’s Complete Adjuvant-Induced Arthritis. Indian J. Pharm. Educ. Res. 2024, 58, s986–s994. [Google Scholar] [CrossRef]
- Li, L.; Li, T.; Qu, X.; Sun, G.; Fu, Q.; Han, G. Stress/Cell Death Pathways, Neuroinflammation, and Neuropathic Pain. Immunol. Rev. 2024, 321, 33–51. [Google Scholar] [CrossRef]
- Mulè, S.; Galla, R.; Ferrari, S.; Invernizzi, M.; Uberti, F. Molecular Insights into the Nociceptive Modulation by Palmitoylethanolamide and Equisetum arvense Extract: An In Vitro Study Across the Blood–Brain Barrier. Nutrients 2025, 17, 1998. [Google Scholar] [CrossRef]
- Carneiro, D.M.; Jardim, T.V.; Araújo, Y.C.L.; Arantes, A.C.; de Sousa, A.C.; Barroso, W.K.S.; Sousa, A.L.L.; da Cunha, L.C.; Cirilo, H.N.C.; Bara, M.T.F.; et al. Equisetum arvense: New evidences supports medical use in daily clinic. Pharmacogn. Rev. 2019, 13, 50–58. [Google Scholar] [CrossRef]
- Bhragual, D.D.; Kumar, N.; Garg, V.K.; Sharma, P.K. Review on plants having hepatoprotective activity. J. Pharm. Res. 2010, 3, 2077–2082. [Google Scholar]
AA (n = 50) | |
---|---|
Age (years) | 67.3 ± 10.9 |
BMI (kg/m2) | 20.9 ± 2.8 |
Sex (female/male) | 22/28 |
Smoke (habitual smokers) | 3 |
≥3 alcohol units/day | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Invernizzi, M.; Mulè, S.; Lippi, L.; Galla, R.; Folli, A.; Ferrari, S.; Tiso, D.; Uberti, F. Evaluation of the Clinical Efficacy of a Novel Palmitoylethanolamide–Equisetum arvense Supplement for the Management of Chronic Pain: Findings from a Prospective Clinical Trial. Med. Sci. 2025, 13, 169. https://doi.org/10.3390/medsci13030169
Invernizzi M, Mulè S, Lippi L, Galla R, Folli A, Ferrari S, Tiso D, Uberti F. Evaluation of the Clinical Efficacy of a Novel Palmitoylethanolamide–Equisetum arvense Supplement for the Management of Chronic Pain: Findings from a Prospective Clinical Trial. Medical Sciences. 2025; 13(3):169. https://doi.org/10.3390/medsci13030169
Chicago/Turabian StyleInvernizzi, Marco, Simone Mulè, Lorenzo Lippi, Rebecca Galla, Arianna Folli, Sara Ferrari, Domenico Tiso, and Francesca Uberti. 2025. "Evaluation of the Clinical Efficacy of a Novel Palmitoylethanolamide–Equisetum arvense Supplement for the Management of Chronic Pain: Findings from a Prospective Clinical Trial" Medical Sciences 13, no. 3: 169. https://doi.org/10.3390/medsci13030169
APA StyleInvernizzi, M., Mulè, S., Lippi, L., Galla, R., Folli, A., Ferrari, S., Tiso, D., & Uberti, F. (2025). Evaluation of the Clinical Efficacy of a Novel Palmitoylethanolamide–Equisetum arvense Supplement for the Management of Chronic Pain: Findings from a Prospective Clinical Trial. Medical Sciences, 13(3), 169. https://doi.org/10.3390/medsci13030169