Risk of Permanent Dysfunction of Facial Nerves After Open Rigid Internal Fixation in the Treatment of Mandibular Condylar Process Fracture
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TMJ | Temporomandibular joint |
CHF | Condylar head fracture |
ORIF | Open rigid internal fixation |
ACP | “A”-shape condylar plate |
XCP | “X”-shape condylar plate |
M | Month |
CC | Correlation coefficient |
IMF | Intramaxillary fixation |
References
- Kolk, A.; Scheunemann, L.M.; Grill, F.; Stimmer, H.; Wolff, K.D.; Neff, A. Prognostic Factors for Long-Term Results after Condylar Head Fractures: A Comparative Study of Non-Surgical Treatment versus Open Reduction and Osteosynthesis. J. Cranio-Maxillofac. Surg. 2020, 48, 1138–1145. [Google Scholar] [CrossRef]
- Bhutia, O.; Kumar, L.; Jose, A.; Roychoudhury, A.; Trikha, A. Evaluation of Facial Nerve Following Open Reduction and Internal Fixation of Subcondylar Fracture through Retromandibular Transparotid Approach. Br. J. Oral Maxillofac. Surg. 2014, 52, 236–240. [Google Scholar] [CrossRef]
- Ellis, E., 3rd; McFadden, D.; Simon, P.; Throckmorton, G. Surgical Complications with Open Treatment of Mandibular Condylar Process Fractures. J. Oral Maxillofac. Surg. 2000, 58, 950–958. [Google Scholar] [CrossRef]
- Gibson, A.C.; Merrill, T.B.; Boyette, J.R. Complications of Mandibular Fracture Repair. Otolaryngol. Clin. N. Am. 2023, 56, 1137–1150. [Google Scholar] [CrossRef] [PubMed]
- Korzon, T. The Issue of the Advisability of Surgical Treatment of Mandibular Condylar Process Fractures in the Light of Clinical and Experimental Studies. Postdoctoral Thesis, Medical University of Łódź, Łódź, Poland, 1966. [Google Scholar]
- Minervini, G.; Franco, R.; Marrapodi, M.M.; Di Blasio, M.; Isola, G.; Cicciù, M. Conservative Treatment of Temporomandibular Joint Condylar Fractures: A Systematic Review Conducted According to PRISMA Guidelines and the Cochrane Handbook for Systematic Reviews of Interventions. J. Oral Rehabil. 2023, 50, 886–893. [Google Scholar] [CrossRef] [PubMed]
- Monarchi, G.; Catarzi, L.; Paglianiti, M.; Valassina, D.; Balercia, P.; Consorti, G. A Comparative Analysis of Surgical and Conservative Management in Intra-Articular Condylar Fractures: A Retrospective Study. Surgeries 2024, 5, 1033–1042. [Google Scholar] [CrossRef]
- Zide, M.F.; Kent, J.N. Indications for open reduction of mandibular condyle fractures. J. Oral Maxillofac. Surg. 1983, 41, 89–98. [Google Scholar] [CrossRef]
- Kozakiewicz, M. Fractures of Mandible Condyle Process; Państwowy Zakład Wydawnictw Lekarskich (PZWL): Warsaw, Poland, 2019. [Google Scholar]
- Koch, S. Biomechanische Untersuchungen zur Stabilität Verschiedener Osteosynthesematerialien bei Gelenkwalzenfrakturen vom Typ A, Klinik und Poliklinik für Mund-Kiefer-Gesichtschirurgie der Technischen Universität München Klinikum Rechts der Isar. Ph.D. Thesis, Technical University of Munich, München, Germany, 2003. [Google Scholar]
- Kolk, A.; Neff, A. Long-Term Results of ORIF of Condylar Head Fractures of the Mandible: A Prospective 5-Year Follow-Up Study of Small-Fragment Positional-Screw Osteosynthesis (SFPSO). J. Craniomaxillofac. Surg. 2015, 43, 452–461. [Google Scholar] [CrossRef]
- Kozakiewicz, M.; Okulski, J.; Krasowski, M.; Konieczny, B.; Zieliński, R. Which of 51 Plate Designs Can Most Stably Fixate the Fragments in a Fracture of the Mandibular Condyle Base? J. Clin. Med. 2023, 12, 4508. [Google Scholar] [CrossRef]
- Kozakiewicz, M.; Sołtysiak, P. Pullout force comparison of selected screws for rigid fixation in maxillofacial surgery. Dent. Med. Probl. 2017, 54, 129–133. [Google Scholar] [CrossRef]
- Kozakiewicz, M. Comparison of compression screws used for mandible head fracture treatment—Experimental study. Clin. Oral Investig. 2019, 23, 4059–4066. [Google Scholar] [CrossRef] [PubMed]
- Kozakiewicz, M. Small-diameter compression screws completely embedded in bone for rigid internal fixation of the condylar head of the mandible. Br. J. Oral Maxillofac. Surg. 2018, 56, 74–76. [Google Scholar] [CrossRef] [PubMed]
- Kozakiewicz, M.; Gabryelczak, I. Bone Union Quality after Fracture Fixation of Mandibular Head with Compression Magnesium Screws. Materials 2022, 15, 2230. [Google Scholar] [CrossRef] [PubMed]
- Neff, A.; Neff, F.; Kolk, A.; Horch, H.H. Risiken und perioperative Komplikationen bei offenen gelenkchirurgischen Eingriffen. Dtsch. Zahnärztl. Z. 2001, 56, 258–262. [Google Scholar]
- Ghezta, N.K.; Ram, R.; Bhardwaj, Y.; Sreevidya, S.; Sharma, M.; Bhatt, R. Operator Experience and Fracture Location Affects the Rate of Facial Nerve Injury in Condylar Fractures: An Analysis of 89 Cases. J. Oral Maxillofac. Surg. 2021, 79, 1104.e1–1104.e9. [Google Scholar] [CrossRef]
- Sapna, T.; Vishal, V.; Mohd, R.; Saurabh, S.; Kumar, S.A.; Kumar, S.N. Is the facial nerve at risk following surgical correction of mandibular condylar fracture: A systematic review and meta-analysis. Nat. J. Maxillofac. Surg. 2022, 13, S1–S10. [Google Scholar] [CrossRef]
- Elmadawy, A.; Hegab, A.; Alahmady, H.; Shuman, M. Clinical and electromyographic assessment of facial nerve function after temporomandibular joint surgery. Int. J. Oral Maxillofac. Surg. 2015, 44, 1275–1280. [Google Scholar] [CrossRef]
- Rajasekhar, G.; Kruthi, N.; Nandagopl, V.; Sudhir, R. Retrospective Study of Facial Nerve Injury in Temporomandibular Joint Surgeries Following Preauricular Approach. Surg. Curr. Res. 2014, 3, 2. [Google Scholar] [CrossRef]
- Al-Moraissi, E.A.; Ellis, E.; Neff, A. Does Encountering the Facial Nerve during Surgical Management of Mandibular Condylar Process Fractures Increase the Risk of Facial Nerve Weakness? A Systematic Review and Meta-Regression Analysis. J. Craniomaxillofac. Surg. 2018, 46, 1223–1231. [Google Scholar] [CrossRef]
- Moin, A.; Shetty, A.D.; Archana, T.S.; Kale, S.G. Facial nerve injury in temporomandibular joint approaches. Ann. Maxillofac. Surg. 2018, 8, 51–55. [Google Scholar] [CrossRef]
- Hunt, B.R.; Johnson, S.A.; Klukkert, Z.S. Distribution, scaling, and depiction of the temporal branches of the facial nerve. Sci. Rep. 2025, 15, 11350. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.Y.; Byrne, P.J. Management of facial paralysis in the 21st century. Facial Plast. Surg. 2011, 27, 346–357. [Google Scholar] [CrossRef]
- Tollefson, T.T.; Hadlock, T.A.; Lighthall, J.G. Facial Paralysis Discussion and Debate. Facial Plast. Surg. 2018, 26, 163–180. [Google Scholar] [CrossRef]
- Noguera, C.M.; Noguera, M.D. Management of Facial Nerve Palsy: Part Two of a Two-Part Series Exploring the Diagnosis and Management of Facial Paralysis. Rev. Ophthalmol. 2023. Available online: https://www.reviewofophthalmology.com/article/management-of-facial-nerve-palsy (accessed on 1 August 2025).
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbrouche, J.P.; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Kozakiewicz, M. Classification proposal for fractures of the processus condylaris mandibulae. Clin. Oral Investig. 2019, 23, 485–491. [Google Scholar] [CrossRef]
- Neff, A.; Cornelius, C.P.; Rasse, M.; Torre, D.D.; Audigé, L. The Comprehensive AOCMF Classification System: Condylar Process Fractures—Level 3 Tutorial. Craniomaxillofac. Trauma Reconstr. 2014, 7, 44–58. [Google Scholar] [CrossRef]
- Loukota, R.A.; Rasse, M. Nomenclature/classification of fractures of the mandibular condylar head. Br. J. Oral Maxillofac. Surg. 2010, 48, 477–478. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-M.; Yoo, Y.-B. Anatomy of the Facial Nerve at the Condylar Area: Measurement Study and Clinical Implications. Sci. World J. 2014, 2014, 473568. [Google Scholar] [CrossRef] [PubMed]
- Imai, T.; Fujita, Y.; Takaoka, H.; Motoki, A.; Kanesaki, T.; Ota, Y.; Chisoku, H.; Ohmae, M.; Sumi, T.; Nakazawa, M.; et al. Longitudinal Study of Risk for Facial Nerve Injury in Mandibular Condyle Fracture Surgery: Marginal Mandibular Branch-Traversing Classification of Percutaneous Approaches. Clin. Oral Investig. 2020, 24, 1445–1454. [Google Scholar] [CrossRef]
- Kozakiewicz, M.; Walczyk, A. Current Frequency of Mandibular Condylar Process Fractures. J. Clin. Med. 2023, 12, 1394. [Google Scholar] [CrossRef]
- Kozakiewicz, M.; Zieliński, R.; Krasowski, M.; Okulski, J. Forces Causing One-Millimeter Displacement of Bone Fragments of Condylar Base Fractures of the Mandible after Fixation by All Available Plate Designs. Materials 2019, 12, 3122. [Google Scholar] [CrossRef]
- Sikora, M.; Chęciński, M.; Nowak, Z.; Chęcińska, K.; Olszowski, T.; Chlubek, D. The Use of Titanium 3D Mini-Plates in the Surgical Treatment of Fractures of the Mandibular Condyle: A Systematic Review and Meta-Analysis of Clinical Trials. J. Clin. Med. 2021, 10, 3604. [Google Scholar] [CrossRef]
- Kermer, C.; Undt, G.; Rasse, M. Surgical reduction and fixation of intracapsular condylar fractures; A follow-up study. Int. J. Oral Maxillofac. Surg. 1998, 27, 191–194. [Google Scholar] [CrossRef]
- Neff, A.; Kolk, A.; Meschke, F.; Deppe, H.; Horch, H.H. Kleinfragmentschrauben vs. Plattenosteosynthese bei Gelenkwalzenfrakturen; Vergleich funktioneller Ergebnisse mit MRT und Achsiographie Small fragment screws vs. plate osteosynthesis in condylar head fractures. Mund Kiefer Gesichtschir. 2005, 9, 80–88. (In German) [Google Scholar] [CrossRef]
- Kozakiewicz, M.; Świniarski, J. Finite element analysis of newly introduced plates for mandibular condyle neck fracture treatment by open reduction and rigid fixation. Dent. Med. Probl. 2017, 54, 319–326. [Google Scholar] [CrossRef]
- Rahnama, M. Oral and Maxillofacial Surgery; PZWL: Warsaw, Poland, 2024. [Google Scholar]
- Pulino, B.; de Andrade, J.F.; Felippe, T.; Prestes, F.; Neff, A.; Guerra, R.C. Surgical approaches for condylar fractures: An analysis of the advantages of transmeatal retroauricular access. Adv. Oral Maxillofac. Surg. 2025, 17, 100500. [Google Scholar] [CrossRef]
- Kanno, T. Surgical Approaches to Open Reduction and Internal Fixation of Mandibular Condylar Fractures. Shimane J. Med. Sci. 2020, 37, 83–94. [Google Scholar] [CrossRef]
- Becker, P.; Bouffleur, F.; Heimes, D.; Theim, D.G.E.; Seifert, L.B.; Neff, A.; Wiltfang, J.; Heiland, M.; Kesting, M.; Bar, A.-K.; et al. Facial trauma management: A nationwide data collection on practice patterns and patient care in oral and maxillofacial surgery in Germany. J. Craniomaxillofac. Surg. 2025, 53, 999–1008. [Google Scholar] [CrossRef] [PubMed]
- García-Guerrero, I.; Ramírez, J.M.; de Diego, R.G.; Martínez-González, J.M.; Poblador, M.S.; Lancho, J.L. Complications in the treatment of mandibular condylar fractures: Surgical versus conservative treatment. Ann. Anat. 2018, 216, 60–68. [Google Scholar] [CrossRef]
- Kozakiewicz, M.; Gabryelczak, I. The Osteosynthesis of the Mandibular Head, Does the Way the Screws Are Positioned Matter? J. Clin. Med. 2022, 11, 2031. [Google Scholar] [CrossRef] [PubMed]
- Antoniadis, G.; Kretschmer, T.; Pedro, M.T.; König, R.W.; Heinen, C.P.; Richter, H.P. Iatrogenic nerve injuries: Prevalence, diagnosis and treatment. Dtsch. Arztebl. Int. 2014, 111, 273–279. [Google Scholar] [CrossRef]
- Marin, P.; Pouliot, D.; Fradet, G. Facial nerve outcome with a preoperative stimulation threshold under 0.05 mA. Laryngoscope 2011, 121, 2295–2298. [Google Scholar] [CrossRef]
- Neff, A. Open reduction and internal fixation in temporomandibular joint traumatology: Current concepts and future perspectives. Stomatol. Dis. Sci. 2019, 3, 2. [Google Scholar] [CrossRef]
- Al-Moraissi, E.A.; Neff, A.; Kaur, A.; Falci, S.G.M.; de Souza, G.M.; Ellis, E. Treatment for Adult Mandibular Condylar Process Fractures: A Network Meta-Analysis of Randomized Clinical Trials. J. Oral Maxillofac. Surg. 2023, 81, 1252–1269. [Google Scholar] [CrossRef]
- Pavlychuk, T.; Chernogorskyi, D.; Chepurnyi, Y.; Neff, A.; Kopchak, A. Application of CAD/CAM Technology for Surgical Treatment of Condylar Head Fractures: A Preliminary Study. J. Oral Biol. Craniofac. Res. 2020, 10, 608–614. [Google Scholar] [CrossRef]
- Pavlychuk, T.; Chernogorskyi, D.; Chepurnyi, Y.; Neff, A.; Kopchak, A. Biomechanical Evaluation of Type P Condylar Head Osteosynthesis Using Conventional Small-Fragment Screws Reinforced by a Patient-Specific Two-Component Plate. Head Face Med. 2020, 16, 25. [Google Scholar] [CrossRef]
- Pruszyńska, P.; Kozakiewicz, M.; Szymor, P.; Wach, T. Personalized Temporomandibular Joint Total Alloplastic Replacement as a Solution to Help Patients with Non-Osteosynthesizable Comminuted Mandibular Head Fractures. J. Clin. Med. 2024, 13, 5257. [Google Scholar] [CrossRef]
- Da Rosa, E.L.; Oleskovicz, C.F.; Aragão, B.N. Rapid Prototyping in Maxillofacial Surgery and Traumatology: Case Report. Braz. Dent. J. 2004, 15, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Sinno, H.; Tahiri, Y.; Gilardino, M.; Bobyn, D. Engineering Alloplastic Temporomandibular Joint Replacements. Mcgill J. Med. 2010, 13, 63–72. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3090476/ (accessed on 1 August 2025). [CrossRef]
- Hirose, T.; Shiozaki, T.; Shimizu, K.; Tamoyoshi, M.; Noguchi, K.; Ohnishi, M.; Shimazu, T. The Effect of Electrical Muscle Stimulation on the Prevention of Disuse Muscle Atrophy in Patients with Consciousness Disturbance in the Intensive Care Unit. J. Crit. Care 2013, 28, 536.e1–536.e7. [Google Scholar] [CrossRef]
- Miller, R.C. The effects of nerve injury on the neuromuscular junction. In The Neuromuscular Junction; Brumback, R.A., Gerst, J., Eds.; Futura: New York, NY, USA, 1984; pp. 203–255. [Google Scholar]
- Rola, R. Physiological basis of electrophysiological studies of the peripheral nervous system. Postgrad. Neurol. 2012, 7, 44–49. [Google Scholar]
- Bravo, M.; Kohan, J.B.; Monasterio, M.U. Effectiveness of Glucocorticoids in Orthognathic Surgery: An Overview of Systematic Reviews. Br. J. Oral Maxillofac. Surg. 2022, 60, e231–e245. [Google Scholar] [CrossRef]
- Oksa, M.; Haapanen, A.; Furuholm, J.; Thorén, H.; Snäll, J. Effect of Perioperative Systemic Dexamethasone on Pain, Edema, and Trismus in Mandibular Fracture Surgery: A Randomized Trial. J. Craniofac. Surg. 2021, 32, 2611–2614. [Google Scholar] [CrossRef] [PubMed]
- Okano, M. Mechanisms and clinical implications of glucocorticosteroids in the treatment of allergic rhinitis. Clin. Exp. Immunol. 2009, 158, 164–173. [Google Scholar] [CrossRef]
- Seo, K.H. Perioperative glucocorticoid management based on current evidence. Anesth. Pain Med. 2021, 16, 8–15. [Google Scholar] [CrossRef]
- Semper-Hogg, W.; Fuessinger, M.A.; Dirlewanger, T.W.; Cornelius, C.P.; Metzger, M.C. The influence of dexamethasone on postoperative swelling and neurosensory disturbances after orthognathic surgery: A randomized controlled clinical trial. Head Face Med. 2017, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Scheller, K.; Scheller, C. Nimodipine for peripheral nerve recovery after maxillofacial and vestibular schwannoma surgery. Muscle Nerve 2014, 50, 1026–1027. [Google Scholar] [CrossRef] [PubMed]
- Robertson, V.; Ward, A.; Low, J.; Reed, A. Physical Therapy: Clinical and Biophysical Aspects; Państwowy Zakład Wydawnictw Lekarskich (Urban & Partner): Wrocław, Poland, 2009. [Google Scholar]
- Levin, L.A.; Beck, R.W.; Joseph, M.P.; Seiff, S.; Kraker, R. The treatment of traumatic optic neuropathy: The International Optic Nerve Trauma Study. Ophthalmology 1999, 106, 1268–1277. [Google Scholar] [CrossRef]
- Edwards, P.; Arango, M.; Balica, L.; Cottingham, R.; El-Sayed, H.; Farrell, B.; Fernandes, J.; Gogichaisvili, T.; Golden, N.; Hartzenberg, B.; et al. Final results of MRC CRASH, a randomised placebo-controlled trial of intravenous corticosteroid in adults with head injury—Outcomes at 6 months. Lancet 2005, 365, 1957–1959. [Google Scholar] [CrossRef]
- Zhu, N.; Xiang, B.; Shi, J.; Yang, P.; Dai, Y.; Wang, S. The Effect of Perineural Dexamethasone on Nerve Injury and Recovery of Nerve Function after Surgery: A Randomized Controlled Trial. Heliyon 2024, 10, e35612. [Google Scholar] [CrossRef] [PubMed]
- Widłak, P.; Tomczyk, Ł.; Woldańska-Okońska, M.; Bartnicki, P. Effect of low-frequency magnetic field (magnetic stimulation) and kinesitherapy on the level of selected blood parameters in haemodialysis patients. Med. Res. J. 2024, 9, 3–10. [Google Scholar] [CrossRef]
- Friscia, M.; Abbate, V.; De Fazio, G.R.; Montemurro, N.; Guglielmi, V.; Marenzi, G.; Tartaglia, G.M. Pulsed Electromagnetic Fields (PEMF) as a Valid Tool in Orthognathic Surgery to Reduce Post-Operative Pain and Swelling: A Prospective Study. Oral Maxillofac. Surg. 2024, 28, 1287–1294. [Google Scholar] [CrossRef]
- Sobiech, M.; Czępińska, A.; Zieliński, G.; Zawadka, M.; Gawda, P. Does Application of Lymphatic Drainage with Kinesiology Taping Have Any Effect on the Extent of Edema and Range of Motion in Early Postoperative Recovery following Primary Endoprosthetics of the Knee Joint? J. Clin. Med. 2022, 11, 3456. [Google Scholar] [CrossRef]
- Tozzi, U.; Santagata, M.; Sellitto, A.; Tartaro, G.P. Influence of Kinesiologic Tape on Post-Operative Swelling after Orthognathic Surgery. J. Maxillofac. Oral Surg. 2016, 15, 52–58. [Google Scholar] [CrossRef]
- Lietz-Kijak, D.; Kijak, E.; Krajczy, M.; Bogacz, K.; Łuniewski, J.; Szczegielniak, J. The Impact of the Use of Kinesio Taping Method on the Reduction of Swelling in Patients after Orthognathic Surgery: A Pilot Study. Med. Sci. Monit. 2018, 24, 3736–3743. [Google Scholar] [CrossRef]
- Skowroński, J. Surgery of the Peripheral Nerves; Exemplum: Poznań, Poland, 2025. [Google Scholar]
- Kandel, E.R.; Schwartz, J.H.; Jessell, T.M. Principles of Neural Science; McGraw-Hill: New York, NY, USA, 2000. [Google Scholar]
- Łukasik, A. Fundamentals of electro diagnosis in peripheral nerve palsy. Balneology 2007, 49, 154–159. [Google Scholar]
- Pinzon, R.T.; Schellack, N.; Matawaran, B.J.; Tsang, M.W.; Deerochanawong, C.; Hiew, F.L.; Nafach, J.; Khadilkar, S. Clinical Recommendations for the Use of Neurotropic B Vitamins (B1, B6, and B12) for the Management of Peripheral Neuropathy: Consensus from a Multidisciplinary Expert Panel. J. Assoc. Physicians India 2023, 71, 11–12. [Google Scholar] [CrossRef]
- Calderón-Ospina, C.A.; Nava-Mesa, M.O. B Vitamins in the Nervous System: Current Knowledge of the Biochemical Modes of Action and Synergies of Thiamine, Pyridoxine, and Cobalamin. CNS Neurosci. Ther. 2020, 26, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Błaszczyk, J.W. Clinical Biomechanics; PZWL: Warsaw, Poland, 2004. [Google Scholar]
- Traczyk, W.Z. Human Physiology in Outline; PZWL: Warsaw, Poland, 2005. [Google Scholar]
- Shandrin, I.Y.; Khodabukus, A.; Bursac, N. Striated Muscle Function, Regeneration, and Repair. Cell. Mol. Life Sci. 2016, 73, 4175–4202. [Google Scholar] [CrossRef]
- Mehta, M. Atlas of Facial Nerve Surgery and Reanimation Procedures; Thieme: Delhi, India; Stuttgart, Germany; New York, NY, USA; Rio de Janeiro, Brazil, 2023. [Google Scholar]
- Greiner, R.C.; Kohlberg, G.D.; Lu, G.N. Management of Facial Nerve Trauma. Curr. Opin. Otolaryngol. Head Neck Surg. 2024, 32, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Davis, T.S.; Lou, F.; Xie, S.J.; Mouro-Fuentes, E.A.; Rodrigues, E.B. Evaluating Adherence to Diabetic Retinopathy Care in an Urban Ophthalmology Clinic Utilizing the Compliance With Annual Diabetic Eye Exams Survey. Cureus 2023, 15, e34083. [Google Scholar] [CrossRef] [PubMed]
- Pogany, L.; Horvath, A.A.; Slezak, A.; Rozsavolgyi, E.; Lazary, J. A COVID-19 járvány miatt elrendelt első veszélyhelyzet a pszichiátriai betegek szemszögéből: Gondozói felmérés; The first lockdown due to COVID-19 pandemic from the psychiatric patients’ perspective: An ambulatory care client experience survey. Neuropsychopharmacol. Hung. 2020, 22, 144–153. Available online: https://www.researchgate.net/publication/342123456_A_COVID-19_jarvany_miatt_elrendelt_elso_veszelyhelyzet_a_pszichiatriai_betegek_szemszogebol_gondozoi_felmeres (accessed on 26 July 2025). [PubMed]
- Iorga, M.; Soponaru, C.; Socolov, R.V.; Cărăuleanu, A.; Socolov, D.G. How the SARS-CoV-2 Pandemic Period Influenced the Health Status and Determined Changes in Professional Practice among Obstetrics and Gynecology Doctors in Romania. Medicina 2021, 57, 325. [Google Scholar] [CrossRef]
- Cha, H.J.; Jeon, M.K. Experience of Family Caregivers in Long-Term Care Hospitals During the Early Stages of COVID-19: A Phenomenological Analysis. Healthcare 2024, 12, 2254. [Google Scholar] [CrossRef]
- Bielecki-Kowalski, B.; Kowalczyk, O.; Podziewska, M.; Agier, P.; Kroc-Szczepkowska, A.; Kozakiewicz, M. The Evaluation of Oral Health in Patients Undergoing Dental Treatment During the COVID-19 Pandemic. J. Clin. Med. 2024, 13, 7216. [Google Scholar] [CrossRef]
- McMaster, T.; Wright, T.; Mori, K.; Stelmach, W.; To, H. Current and future use of telemedicine in surgical clinics during and beyond COVID-19: A narrative review. Ann. Med. Surg. 2021, 66, 102378. [Google Scholar] [CrossRef]
- Puyo, E.M.; Salvati, L.R.; Garg, N.; Baylay, H.; Kariveda, R.R.; Carnino, J.M.; Nathan, A.J.; Levi, J.R. The impact of COVID-19 and socioeconomic determinants on appointment non-attendance in an urban otolaryngology clinic: A retrospective analysis from a safety net hospital. Ann. Otol. Rhinol. Laryngol. 2025, 134, 117–124. [Google Scholar] [CrossRef]
- Mason, M.C.; Vedhanayagam, K.; Jernigan, J.A. Evaluating patient adherence to routine and symptom indicated colonoscopies during the COVID-19 pandemic. Cureus 2021, 13, e16711. [Google Scholar] [CrossRef]
- Handschel, J.; Rüggeberg, T.; Depprich, R.; Schwartz, F.; Meyer, U.; Kubler, N.R.; Naujkos, C. Comparison of various approaches for the treatment of fractures of the mandibular condylar process. J. Craniomaxillofac. Surg. 2012, 40, 397–401. [Google Scholar] [CrossRef]
- Franke, A.; Matschke, J.B.; Sembdner, P.; Seidler, A.; McLeod, N.M.H.; Leonhardt, H. Long-term outcomes of open treatment of condylar head fractures using cannulated headless bone screws—A retrospective analysis. Int. J. Oral Maxillofac. Surg. 2025, 54, 598–606. [Google Scholar] [CrossRef] [PubMed]
Grade | Description | Eye Closure | Forehead Movement | Mouth Movement | Synkinesis |
---|---|---|---|---|---|
1 | Normal facial function in all areas | Complete | Normal | Symmetrical | None |
2 | Slight weakness, normal tone, and symmetry at rest | Complete, slight effort | Normal | Slight asymmetry | Mild |
3 | Moderate dysfunction and no noticeable weakness at rest | Complete, with effort | Slightly reduced | Asymmetry present | Noticeable |
4 | Severe dysfunction and obvious facial weakness | Incomplete | No movement | Asymmetry with Effort | Present |
5 | Severe dysfunction and minimal facial motion | Incomplete | No movement | Very asymmetrical | Present |
6 | Total facial paralysis; no motion | Incomplete | No movement | No movement | None |
Variable | Variants | 00M | 01M | 02M | 03M | 04M | 05M | 06M | 24M |
---|---|---|---|---|---|---|---|---|---|
Patients | Full Cohort | 2.20 ± 1.25 | 1.98 ± 1.20 | 1.77 ± 1.07 | 1.54 ± 0.88 | 1.34 ± 0.69 | 1.19 ± 0.51 | 1.08 ± 0.37 | 1.02 ± 0.19 |
Sex | Female | 2.33 ± 1.20 | 2.24 ± 1.16 | 2.04 ± 1.09 | 1.65 ± 0.82 | 1.40 ± 0.68 | 1.20 ± 0.48 | 1.08 ± 0.38 | 1.02 ± 0.16 |
Male | 2.03 ± 1.27 | 1.90 ± 1.20 | 1.68 ± 1.05 | 1.51 ± 0.90 | 1.32 ± 0.70 | 1.20 ± 0.52 | 1.09 ± 0.37 | 1.02 ± 0.20 | |
Residence Place | Rural | 2.26 ± 1.29 | 1.92 ± 1.19 | 1.69 ± 1.01 | 1.49 ± 0.85 | 1.27 ± 0.66 | 1.15 ± 0.44 | 1.05 ± 0.27 | 1.00 ± 0.00 |
Urban | 2.41 ± 1.32 | 2.01 ± 1.20 | 1.80 ± 1.09 | 1.56 ± 0.90 | 1.36 ± 0.71 | 1.21 ± 0.54 | 1.10 ± 0.41 | 1.03 ± 0.23 | |
Injury Reason | Assault | 1.58 ± 0.95 | 1.51 ± 0.96 | 1.37 ± 0.84 | 1.23 ± 0.68 | 1.15 ± 0.53 | 1.09 ± 0.40 | 1.06 ± 0.33 | 1.03 ± 0.26 |
Fall | 2.48 ± 1.29 | 2.30 ± 1.22 | 2.06 ± 1.15 | 1.78 ± 0.97 | 1.50 ± 0.79 | 1.27 ± 0.56 | 1.08 ± 0.31 | 1.02 ± 0.13 | |
Sports | 1.33 ± 0.82 | 1.17 ± 0.41 | 1.17 ± 0.40 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | |
Vehicle | 2.30 ± 1.32 | 2.19 ± 1.24 | 1.89 ± 1.04 | 1.58 ± 0.81 | 1.35 ± 0.65 | 1.20 ± 0.50 | 1.07 ± 0.38 | 1.00 ± 0.00 | |
Workplace | 2.60 ± 1.51 | 2.60 ± 1.51 | 2.40 ± 1.35 | 2.20 ± 1.32 | 1.70 ± 0.95 | 1,50 ± 0.97 | 1.50 ± 0.97 | 1.20 ± 0.42 | |
Intoxicants | No | 2.20 ± 1.28 | 2.09 ± 1.21 | 1.83 ± 1.10 | 1.58 ± 0.88 | 1.34 ± 0.66 | 1.19 ± 0.51 | 1.06 ± 0.32 | 1.01 ± 0.10 |
Yes | 1.95 ± 1.21 | 1.83 ± 1.16 | 1.67 ± 1.03 | 1.49 ± 0.90 | 1.33 ± 0.74 | 1.20 ± 0.51 | 1.11 ± 0.44 | 1.04 ± 0.27 | |
Fracture Diagnosis | CHF type A | 2.50 ± 2.12 | 2.50 ± 2.12 | 2.00 ± 1.41 | 2.00 ± 1.41 | 2.00 ± 1.41 | 1.50 ± 0.71 | 1.00 ± 0.00 | 1.00 ± 0.00 |
CHF type B | 3.29 ± 1.19 | 3.05 ± 1.12 | 2.57 ± 1.12 | 2.24 ± 1.09 | 1.43 ± 0.81 | 1.29 ± 0.72 | 1.19 ± 0.68 | 1.00 ± 0.00 | |
CHF type C | 3.08 ± 1.09 | 2.92 ± 1.11 | 2.53 ± 1.15 | 2.19 ± 1.02 | 1.83 ± 0.93 | 1.49 ± 0.77 | 1.23 ± 0.60 | 1.08 ± 0.35 | |
High-Neck | 3.15 ± 0.99 | 2.85 ± 1.07 | 2.54 ± 0.88 | 1.85 ± 0.80 | 1.46 ± 0.66 | 1.38 ± 0.51 | 1.08 ± 0.29 | 1.00 ± 0.00 | |
Low-Neck | 2.19 ± 1.26 | 2.00 ± 1.08 | 1.81 ± 1.09 | 1.50 ± 0.84 | 1.28 ± 0.58 | 1.15 ± 0.37 | 1.00 ± 0.00 | 1.00 ± 0.00 | |
Base | 1.46 ± 0.87 | 1.39 ± 0.84 | 1.30 ± 0.72 | 1.17 ± 0.52 | 1.11 ± 0.40 | 1.05 ± 0.24 | 1.02 ± 0.15 | 1.01 ± 1.19 | |
Condyle Fracture | Single | 1.88 ± 1.15 | 1.76 ± 1.06 | 1.55 ± 0.90 | 1.37 ± 0.72 | 1.20 ± 0.52 | 1.09 ± 0.30 | 1.02 ± 0.13 | 1.00 ± 0.00 |
Bilateral | 2.63 ± 1.34 | 2.52 ± 1.33 | 2.29 ± 1.24 | 1.95 ± 1.07 | 1.66 ± 0.92 | 1.43 ± 0.76 | 1.24 ± 0.63 | 1.08 ± 0.34 | |
Origin | Own Patient | 2.05 ± 1.24 | 1.93 ± 1.18 | 1.73 ± 1.06 | 1.51 ± 0.87 | 1.32 ± 0.69 | 1.19 ± 0.51 | 1.09 ± 0.38 | 1.03 ± 1.20 |
Another Centre | 2.70 ± 1.27 | 2.59 ± 1.22 | 2.26 ± 1.06 | 1.85 ± 0.95 | 1.48 ± 0.70 | 1.26 ± 0.53 | 1.04 ± 0.20 | 1.00 ± 0.00 | |
Surgical Approach | Extended Preauricular | 2.72 ± 1.18 | 2.56 ± 1.15 | 2.20 ± 1.09 | 1.78 ± 0.96 | 1.49 ± 0.75 | 1.31 ± 0.62 | 1.16 ± 0.53 | 1.09 ± 0.36 |
Preauricular | 2.52 ± 1.26 | 2.40 ± 1.22 | 2.09 ± 1.16 | 1.84 ± 1.02 | 1.53 ± 0.85 | 1.27 ± 0.62 | 1.00 ± 0.00 | 1.00 ± 0.00 | |
Extended Retromadibular | 2.05 ± 1.34 | 1.93 ± 1.33 | 1.78 ± 1.14 | 1.53 ± 0.82 | 1.33 ± 0.62 | 1.18 ± 0.38 | 1.03 ± 0.16 | 1.00 ± 0.00 | |
Auricular | 4.00 ± 0.00 | 3.67 ± 0.58 | 3.67 ± 0.58 | 3.33 ± 1.15 | 3.00 ± 1.73 | 2.33 ± 1.15 | 2.00 ± 1.00 | 1.00 ± 0.00 | |
Retroauricular | 2.63 ± 1.51 | 2.50 ± 1.41 | 2.25 ± 1.28 | 2.13 ± 1.13 | 1.50 ± 0.76 | 1.50 ± 0.76 | 1.13 ± 0.35 | 1.00 ± 0.00 | |
Retromandibular | 1.16 ± 0.46 | 1.11 ± 0.38 | 1.06 ± 0.28 | 1.01 ± 0.11 | 1.01 ± 0.11 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | |
Periangular | 1.38 ± 0.52 | 1.25 ± 0.46 | 1.13 ± 0.35 | 1.13 ± 0.35 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | |
Intraoral | 1.53 ± 1.12 | 1.41 ± 0.80 | 1.41 ± 0.80 | 1.18 ± 0.39 | 1.06 ± 0.24 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | |
Comorbidity | 5 Diseases | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 |
4 Diseases | 3.00 ± 0.00 | 3.00 ± 0.00 | 3.00 ± 0.00 | 2.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | |
3 Diseases | 2.57 ± 1.51 | 2.43 ± 1.40 | 2.14 ± 1.07 | 1.86 ± 0.90 | 1.43 ± 0.53 | 1.29 ± 0.49 | 1.00 ± 0.00 | 1.00 ± 0.00 | |
2 Diseases | 2.11 ± 1.32 | 2.00 ± 1.28 | 1.78 ± 1.17 | 1.56 ± 0.86 | 1.44 ± 0.78 | 1.17 ± 0.38 | 1.00 ± 0.00 | 1.00 ± 0.00 | |
1 Disease | 2.45 ± 1.37 | 2.32 ± 1.32 | 2.05 ± 1.21 | 1.74 ± 1.02 | 1.53 ± 0.92 | 1.34 ± 0.70 | 1.16 ± 0.52 | 1.03 ± 0.16 | |
Healthy Generally | 1.98 ± 1.19 | 1.86 ± 1.13 | 1.67 ± 1.00 | 1.47 ± 0.83 | 1.26 ± 0.58 | 1.14 ± 0.43 | 1.06 ± 0.32 | 1.03 ± 0.21 | |
Fixing Material | Compressive Screws | 3.08 ± 1.07 | 2.89 ± 1.09 | 2.48 ± 1.10 | 2.13 ± 1.00 | 1.68 ± 0.86 | 1.40 ± 0.69 | 1.18 ± 0.53 | 1.06 ± 0.31 |
XCP | 1.25 ± 0.72 | 1.25 ± 0.72 | 1.20 ± 0.52 | 1.15 ± 0.37 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | |
ACP | 1.64 ± 1.02 | 1.55 ± 0.98 | 1.44 ± 0.92 | 1.26 ± 0.69 | 1.15 ± 0.52 | 1.07 ± 0.29 | 1.02 ± 0.13 | 1.00 ± 0.00 | |
3 Straight Plates | 2.20 ± 1.30 | 2.20 ± 1.30 | 1.60 ± 0.89 | 1.20 ± 0.45 | 1.20 ± 0.45 | 1.20 ± 0.45 | 1.00 ± 0.00 | 1.00 ± 0.00 | |
2 Straight Plates | 1.68 ± 1.31 | 1.57 ± 0.99 | 1.46 ± 0.88 | 1.30 ± 0.69 | 1.15 ± 0.60 | 1.16 ± 0.50 | 1.09 ± 0.43 | 1.03 ± 0.17 | |
1 Straight Plate | 2.00 ± 1.41 | 2.00 ± 1.41 | 1.50 ± 1.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | |
Neurotmesis | Yes | 3.14 ± 1.07 | 3.00 ± 1.15 | 2.29 ± 1.25 | 1.29 ± 1.25 | 1.86 ± 1.46 | 1.57 ± 1.13 | 1.43 ± 1.13 | 1.00 ± 0.00 |
No | 2.08 ± 1.25 | 1.96 ± 1.19 | 1.76 ± 1.07 | 1.52 ± 0.87 | 1.33 ± 0.67 | 1.19 ± 0.49 | 1.08 ± 0.34 | 1.03 ± 0.19 | |
Mandible Fractures | 4 Fractures | 2.44 ± 1.74 | 2.44 ± 1.74 | 2.22 ± 1.48 | 1.89 ± 1.05 | 1.67 ± 0.87 | 1.33 ± 0.50 | 1.00 ± 0.00 | 1.00 ± 0.00 |
3 Fractures | 2.36 ± 1.32 | 2.26 ± 1.27 | 2.11 ± 1.20 | 1.85 ± 1.06 | 1.58 ± 0.90 | 1.36 ± 0.72 | 1.17 ± 0.54 | 1.05 ± 0.31 | |
2 Fractures | 1.70 ± 1.10 | 1.60 ± 1.07 | 1.45 ± 0.90 | 1.29 ± 0.69 | 1.19 ± 0.52 | 1.11 ± 0.40 | 1.07 ± 0.35 | 1.03 ± 0.17 | |
Only Condyle | 2.39 ± 1.22 | 2.22 ± 1.20 | 1.77 ± 1.02 | 1.58 ± 0.84 | 1.31 ± 0.61 | 1.15 ± 0.38 | 1.08 ± 0.37 | 1.00 ± 0.00 |
Type of Condylar Fracture | No. of Patients with Transient Facial Nerve Palsy | Transient Facial Nerve Palsy (%) | No. of Patients with Permanent Facial Nerve Palsy | Total Sample Size |
---|---|---|---|---|
Head | 83 | 82% | 4 * | 101 |
High-neck | 12 | 92% | 0 | 13 |
Low-neck | 18 | 56% | 0 | 32 |
Base | 47 | 26% | 2 * | 183 |
All | 160 | 48.63% | 6 | 329 |
Approach | No. of Patients with Transient Facial Nerve Palsy | Transient Facial Nerve Palsy (%) | No. of Patients with Permanent Facial Nerve Palsy | Total Sample Size |
---|---|---|---|---|
Preauricular | 56 | 69% | 0 | 81 |
Extended Preauricular | 66 | 69% | 6 * | 87 |
Auricular | 3 | 100% | 0 | 3 |
Retroauricular | 5 | 63% | 0 | 8 |
Retromandibular | 11 | 13% | 0 | 85 |
Extended Retromandibular | 18 | 45% | 0 | 40 |
Periangular | 3 | 38% | 0 | 8 |
Intraoral | 4 | 24% | 0 | 17 |
All | 166 | 49% | 6 | 329 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agier, P.; Kozakiewicz, M.; Tyszkiewicz, S.; Gabryelczak, I. Risk of Permanent Dysfunction of Facial Nerves After Open Rigid Internal Fixation in the Treatment of Mandibular Condylar Process Fracture. Med. Sci. 2025, 13, 121. https://doi.org/10.3390/medsci13030121
Agier P, Kozakiewicz M, Tyszkiewicz S, Gabryelczak I. Risk of Permanent Dysfunction of Facial Nerves After Open Rigid Internal Fixation in the Treatment of Mandibular Condylar Process Fracture. Medical Sciences. 2025; 13(3):121. https://doi.org/10.3390/medsci13030121
Chicago/Turabian StyleAgier, Paulina, Marcin Kozakiewicz, Szymon Tyszkiewicz, and Izabela Gabryelczak. 2025. "Risk of Permanent Dysfunction of Facial Nerves After Open Rigid Internal Fixation in the Treatment of Mandibular Condylar Process Fracture" Medical Sciences 13, no. 3: 121. https://doi.org/10.3390/medsci13030121
APA StyleAgier, P., Kozakiewicz, M., Tyszkiewicz, S., & Gabryelczak, I. (2025). Risk of Permanent Dysfunction of Facial Nerves After Open Rigid Internal Fixation in the Treatment of Mandibular Condylar Process Fracture. Medical Sciences, 13(3), 121. https://doi.org/10.3390/medsci13030121