Accuracy of Accuhaler, Ellipta, and Turbuhaler Testers in Patients with Chronic Obstructive Pulmonary Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Study Procedures
2.3. Outcomes
2.4. Statistical Analysis
3. Results
3.1. Participants
3.2. Primary Outcomes
3.3. Secondary Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAT | COPD Assessment Test |
COPD | chronic obstructive pulmonary disease |
FEV1 | forced expiratory volume in one second |
FVC | forced vital capacity |
GOLD | Global Initiative for Chronic Obstructive Lung Disease |
ICS | inhaled corticosteroid |
LABA | long-acting beta-2 agonist |
LAMA | long-acting muscarinic antagonist |
mMRC | modified Medical Research Council |
NPV | negative predictive value |
PIFR | peak inspiratory flow rate |
pMDI | pressurized metered dose inhaler |
PPV | positive predictive value |
SABD | short-acting bronchodilator |
SMI | soft mist inhaler |
References
- World Health Organization. Chronic Obstructive Pulmonary Disease (COPD). Available online: https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd) (accessed on 1 November 2023).
- Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease 2023 Report. Available online: https://goldcopd.org/2023-gold-report-2/ (accessed on 1 November 2023).
- Laube, B.L.; Janssens, H.M.; de Jongh, F.H.; Devadason, S.G.; Dhand, R.; Diot, P.; Everard, M.L.; Horvath, I.; Navalesi, P.; Voshaar, T.; et al. What the pulmonary specialist should know about the new inhalation therapies. Eur. Respir. J. 2011, 37, 1308–1331. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Ohar, J.A.; Drummond, M.B. Peak inspiratory flow rate in chronic obstructive pulmonary disease: Implications for dry powder inhalers. J. Aerosol Med. Pulm. Drug Deliv. 2017, 30, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Loh, C.H.; Peters, S.P.; Lovings, T.M.; Ohar, J.A. Suboptimal inspiratory flow rates are associated with chronic obstructive pulmonary disease and all-cause readmissions. Ann. Am. Thorac. Soc. 2017, 14, 1305–1311. [Google Scholar] [CrossRef]
- Kamin, W.E.; Genz, T.; Roeder, S.; Scheuch, G.; Trammer, T.; Juenemann, R.; Cloes, R.M. Mass output and particle size distribution of glucocorticosteroids emitted from different inhalation devices depending on various inspiratory parameters. J. Aerosol Med. 2002, 15, 65–73. [Google Scholar] [CrossRef]
- Haidl, P.; Heindl, S.; Siemon, K.; Bernacka, M.; Cloes, R.M. Inhalation device requirements for patients’ inhalation maneuvers. Respir. Med. 2016, 118, 65–75. [Google Scholar] [CrossRef]
- Abdelrahim, M.E.; Assi, K.H.; Chrystyn, H. Dose emission and aerodynamic characterization of the terbutaline sulphate dose emitted from a Turbuhaler at low inhalation flow. Pharm. Dev. Technol. 2013, 18, 944–949. [Google Scholar] [CrossRef] [PubMed]
- Grant, A.C.; Walker, R.; Hamilton, M.; Garrill, K. The ELLIPTA(R) dry powder inhaler: Design, functionality, in vitro dosing performance and critical task compliance by patients and caregivers. J. Aerosol Med. Pulm. Drug Deliv. 2015, 28, 474–485. [Google Scholar] [CrossRef]
- Anderson, M.; Collison, K.; Drummond, M.B.; Hamilton, M.; Jain, R.; Martin, N.; Mularski, R.A.; Thomas, M.; Zhu, C.Q.; Ferguson, G.T. Peak inspiratory flow rate in COPD: An analysis of clinical trial and real-world data. Int. J. Chronic Obstr. Pulm. Dis. 2021, 16, 933–943. [Google Scholar] [CrossRef]
- Chrystyn, H. Is inhalation rate important for a dry powder inhaler? Using the In-Check Dial to identify these rates. Respir. Med. 2003, 97, 181–187. [Google Scholar] [CrossRef]
- Kawamatawong, T.; Khiawwan, S.; Pornsuriyasak, P. Peak inspiratory flow rate measurement by using In-Check DIAL for the different inhaler devices in elderly with obstructive airway diseases. J. Asthma Allergy 2017, 10, 17–21. [Google Scholar] [CrossRef]
- Usmani, O.S. Choosing the right inhaler for your asthma or COPD patient. Ther. Clin. Risk Manag. 2019, 15, 461–472. [Google Scholar] [CrossRef]
- Mahler, D.A.; Wells, C.K. Evaluation of clinical methods for rating dyspnea. Chest 1988, 93, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.W.; Harding, G.; Berry, P.; Wiklund, I.; Chen, W.H.; Kline Leidy, N. Development and first validation of the COPD Assessment Test. Eur. Respir. J. 2009, 34, 648–654. [Google Scholar] [CrossRef]
- Broeders, M.E.; Molema, J.; Vermue, N.A.; Folgering, H.T. In Check Dial: Accuracy for Diskus and Turbuhaler. Int. J. Pharm. 2003, 252, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Atkins, P.J. Dry powder inhalers: An overview. Respir. Care 2005, 50, 1304–1312; discussion 1312. [Google Scholar]
- Manuyakorn, W.; Direkwattanachai, C.; Benjaponpitak, S.; Kamchaisatian, W.; Sasisakulporn, C.; Teawsomboonkit, W. Sensitivity of Turbutester and Accuhaler tester in asthmatic children and adolescents. Pediatr. Int. 2010, 52, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Melani, A.S.; Bracci, L.S.; Rossi, M. Reduced peak inspiratory effort through the Diskus((R)) and the Turbuhaler((R)) due to mishandling is common in clinical practice. Clin. Drug Investig. 2005, 25, 543–549. [Google Scholar] [CrossRef]
- Engel, T.; Heinig, J.H.; Madsen, F.; Nikander, K. Peak inspiratory flow and inspiratory vital capacity of patients with asthma measured with and without a new dry-powder inhaler device (Turbuhaler). Eur. Respir. J. 1990, 3, 1037–1041. [Google Scholar] [CrossRef]
- Brown, P.H.; Ning, A.C.; Greening, A.P.; McLean, A.; Crompton, G.K. Peak inspiratory flow through Turbuhaler in acute asthma. Eur. Respir. J. 1995, 8, 1940–1941. [Google Scholar] [CrossRef]
- Altman, P.; Wehbe, L.; Dederichs, J.; Guerin, T.; Ament, B.; Moronta, M.C.; Pino, A.V.; Goyal, P. Comparison of peak inspiratory flow rate via the Breezhaler(R), Ellipta(R) and HandiHaler(R) dry powder inhalers in patients with moderate to very severe COPD: A randomized cross-over trial. BMC Pulm. Med. 2018, 18, 100. [Google Scholar] [CrossRef]
- Represas-Represas, C.; Aballe-Santos, L.; Fernandez-Garcia, A.; Priegue-Carrera, A.; Lopez-Campos, J.L.; Gonzalez-Montaos, A.; Botana-Rial, M.; Fernandez-Villar, A. Evaluation of suboptimal peak inspiratory flow in patients with stable COPD. J. Clin. Med. 2020, 9, 3949. [Google Scholar] [CrossRef] [PubMed]
- Mahler, D.A.; Demirel, S.; Hollander, R.; Gopalan, G.; Shaikh, A.; Mahle, C.D.; Elder, J.; Morrison, C. High prevalence of suboptimal peak inspiratory flow in hospitalized patients with COPD: A real-world study. Chronic Obstr. Pulm. Dis. 2022, 9, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Mahler, D.A.; Niu, X.; Deering, K.L.; Dembek, C. Prospective evaluation of exacerbations associated with suboptimal peak inspiratory flow among stable outpatients with COPD. Int. J. Chronic Obstr. Pulm. Dis. 2022, 17, 559–568. [Google Scholar] [CrossRef]
- Suriyakul, A.; Saiphoklang, N.; Barjaktarevic, I.; Cooper, C.B. Correlation between Hand Grip Strength and Peak Inspiratory Flow Rate in Patients with Stable Chronic Obstructive Pulmonary Disease. Diagnostics 2022, 12, 3050. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, M.M.; Vemuri, M.B.; Saka, V.K.; Upadhya, P.; Govindharaj, V. Prevalence and predictors of suboptimal peak inspiratory flow rates in the management of chronic obstructive pulmonary disease. Monaldi Arch. Chest Dis. 2024. Available online: https://pubmed.ncbi.nlm.nih.gov/39749893/ (accessed on 1 November 2024). [CrossRef]
- Duarte, A.G.; Tung, L.; Zhang, W.; Hsu, E.S.; Kuo, Y.F.; Sharma, G. Spirometry measurement of peak inspiratory flow identifies suboptimal use of dry powder inhalers in ambulatory patients with COPD. Chronic Obstr. Pulm. Dis. 2019, 6, 246–255. [Google Scholar] [CrossRef]
Characteristics | Data (n = 82) |
---|---|
Age, years | 73.3 ± 8.8 |
Male/female | 77 (93.9)/5 (6.1) |
Body mass index, kg/m2 | 22.0 ± 3.9 |
Smoking, pack-years | 30.6 ± 23.4 |
Comorbidity | |
Hypertension | 50 (61.0) |
Dyslipidemia | 39 (47.6) |
Diabetes mellitus | 17 (20.7) |
Coronary artery disease | 13 (15.9) |
Atrial fibrillation | 5 (6.1) |
Congestive heart failure | 2 (2.4) |
Obstructive sleep apnea | 5 (6.1) |
Allergic rhinitis | 6 (7.3) |
COPD Grade | |
1 | 31 (37.8) |
2 | 33 (40.2) |
3 | 15 (18.3) |
4 | 3 (3.7) |
COPD Group | |
A | 32 (39.0) |
B | 17 (20.7) |
E | 33 (40.3) |
Medication | |
SABD | 38 (46.3) |
LAMA | 7 (8.5) |
LABA/LAMA | 28 (34.1) |
ICS/LABA | 7 (8.5) |
ICS/LABA/LAMA | 40 (48.8) |
Methylxanthine | 15 (18.3) |
Oral beta-2 agonist | 3 (3.7) |
Macrolide | 2 (2.4) |
PDE4 inhibitor | 2 (2.4) |
Current inhalation device | |
Metered dose inhaler | 11 (13.4) |
Accuhaler | 8 (9.8) |
Turbuhaler | 6 (7.3) |
Ellipta | 36 (43.9) |
Soft mist inhaler | 23 (28.0) |
HandiHaler | 16 (19.5) |
Functional capacity | |
CAT scores | 9.1 ± 5.7 |
mMRC scores | 1.5 ± 1.1 |
Spirometry data | |
Post-bronchodilator FVC, L | 2.93 ± 0.82 |
Post-bronchodilator FVC, %predicted | 94.4 ± 19.4 |
Post-bronchodilator FEV1, L | 1.62 ± 0.58 |
Post-bronchodilator FEV1, %predicted | 69.2 ± 21.0 |
Post bronchodilator FEV1/FVC, % | 54.9 ± 11.9 |
Parameter | Accuhaler Tester | Ellipta Tester | Turbuhaler Tester |
---|---|---|---|
Minimum PIFR | |||
Sensitivity, % | 98.8 | 98.8 | 98.7 |
Specificity, % | 100.0 | 100.0 | 40.0 |
PPV, % | 100.0 | 100.0 | 96.2 |
NPV, % | 50.0 | 66.7 | 66.7 |
Accuracy, % | 98.8 | 98.8 | 95.1 |
Optimal PIFR | |||
Sensitivity, % | 100.0 | 100.0 | 100.0 |
Specificity, % | 11.1 | 14.3 | 7.7 |
PPV, % | 80.0 | 77.2 | 54.4 |
NPV, % | 100.0 | 100.0 | 100.0 |
Accuracy, % | 80.5 | 78.1 | 56.1 |
Parameter | Accuhaler (n = 82) | Ellipta (n = 82) | Turbuhaler (n = 82) |
---|---|---|---|
PIFR, L/min | 71.5 ± 19.0 | 70.8 ± 18.3 | 59.0 ± 17.2 |
Optimal PIFR | 64 (78.0) | 61 (74.4) | 43 (52.4) |
Suboptimal PIFR | 18 (22.0) | 21 (25.6) | 39 (47.6) |
Minimum PIFR | 81 (98.8) | 80 (97.6) | 77 (93.9) |
Insufficient PIFR | 1 (1.2) | 2 (2.4) | 5 (6.1) |
Variable | Accuhaler (n = 82) | Ellipta (n = 82) | Turbuhaler (n = 82) | ||||||
---|---|---|---|---|---|---|---|---|---|
Optimal | Suboptimal | p-Value | Optimal | Suboptimal | p-Value | Optimal | Suboptimal | p-Value | |
Patients | 64 (78.0) | 18 (22.0) | NA | 61 (74.4) | 21 (25.6) | NA | 43 (52.4) | 39 (47.6) | NA |
Maximal PIFR, L/min | 78.8 ± 14.0 | 45.5 ± 9.0 | <0.001 | 78.7 ± 13.0 | 47.9 ± 10.0 | <0.001 | 72.5 ± 9.0 | 44.2 ± 10.3 | <0.001 |
Sex | 0.068 | 0.103 | 0.186 | ||||||
Male | 62 (96.9) | 15 (83.3) | 59 (96.7) | 18 (85.7) | 42 (97.7) | 35 (89.7) | |||
Female | 2 (3.1) | 3 (16.7) | 2 (3.3) | 3 (14.3) | 1 (2.3) | 4 (10.3) | |||
Age, years | 72.3 ± 8.9 | 77.0 ± 7.8 | 0.043 | 71.7 ± 8.8 | 77.8 ± 7.5 | 0.006 | 69.7 ± 8.9 | 77.2 ± 6.9 | <0.001 |
Body weight, kg | 61.9 ± 12.4 | 55.2 ± 13.1 | 0.049 | 62.1 ± 11.8 | 55.4 ± 14.3 | 0.037 | 64.4 ± 11.5 | 56.0 ± 12.8 | 0.003 |
Height, cm | 166.1 ± 6.9 | 163.0 ± 9.3 | 0.124 | 166.6 ± 6.8 | 162.0 ± 8.7 | 0.015 | 167.7 ± 6.6 | 162.9 ± 7.8 | 0.004 |
BMI, kg/m2 | 22.3 ± 3.8 | 20.7 ± 4.0 | 0.106 | 22.3 ± 3.4 | 21.0 ± 4.9 | 0.202 | 22.8 ± 3.4 | 21.0 ± 4.1 | 0.030 |
Active smoking | 6 (9.4) | 1 (5.6) | 0.372 | 6 (9.8) | 1 (4.8) | 0.219 | 5 (11.6) | 2 (5.1) | 0.276 |
Smoking, pack-years | 28.5 ± 24.5 | 38.3 ± 17.7 | 0.119 | 25.7 ± 19.0 | 44.9 ± 29.1 | 0.001 | 26.8 ± 18.7 | 34.9 ± 27.3 | 0.116 |
Comorbidity | |||||||||
Hypertension | 39 (60.9) | 11 (61.1) | 0.989 | 38 (62.3) | 12 (57.1) | 0.676 | 25 (58.1) | 25 (64.1) | 0.580 |
Dyslipidemia | 30 (46.9) | 9 (50.0) | 0.815 | 27 (44.3) | 12 (57.1) | 0.308 | 19 (44.2) | 20 (51.3) | 0.521 |
Diabetes mellitus | 13 (20.3) | 4 (22.2) | 1.000 | 13 (21.3) | 4 (19.0) | 1.000 | 10 (23.3) | 7 (17.9) | 0.554 |
Coronary artery disease | 7 (10.9) | 6 (33.3) | 0.032 | 8 (13.1) | 5 (23.8) | 0.302 | 6 (14.0) | 7 (17.9) | 0.621 |
Atrial fibrillation | 2 (3.1) | 3 (16.7) | 0.068 | 1 (1.6) | 4 (19.0) | 0.014 | 1 (2.3) | 4 (10.3) | 0.186 |
Congestive heart failure | 2 (3.1) | 0 (0) | 1.000 | 2 (3.3) | 0 (0) | 1.000 | 1 (2.3) | 1 (2.6) | 1.000 |
Obstructive sleep apnea | 4 (6.3) | 1 (5.6) | 1.000 | 4 (6.6) | 1 (4.8) | 1.000 | 3 (7.0) | 2 (5.1) | 1.000 |
Allergic rhinitis | 6 (9.4) | 0 (0) | 0.330 | 6 (9.8) | 0 (0) | 0.330 | 1 (2.3) | 5 (12.8) | 0.097 |
Spirometry data | |||||||||
Post-BD FEV1, % | 70.4 ± 21.1 | 64.9 ± 20.4 | 0.331 | 71.0 ± 20.5 | 63.8 ± 22.0 | 0.181 | 72.9 ± 19.4 | 65.0 ± 22.2 | 0.092 |
Post-BD FVC, % | 99.4 ± 19.9 | 90.3 ± 16.3 | 0.080 | 99.3 ± 20.1 | 91.8 ± 16.7 | 0.128 | 101.5 ± 18.7 | 92.9 ± 19.4 | 0.046 |
COPD Grade 3 and 4 | 13 (20.3) | 5 (27.8) | 0.527 | 12 (19.7) | 6 (28.6) | 0.541 | 8 (18.6) | 10 (25.6) | 0.442 |
Functional performance | |||||||||
CAT scores | 8.3 ± 4.8 | 12.0 ± 7.8 | 0.014 | 7.9 ± 4.8 | 12.4 ± 7.1 | 0.013 | 7.2 ± 4.2 | 11.2 ± 6.5 | 0.002 |
CAT ≥ 10 | 24 (37.5) | 11 (61.1) | 0.074 | 22 (36.1) | 13 (61.9) | 0.039 | 13 (30.2) | 22 (56.4) | 0.017 |
mMRC scores | 1.3 ± 1.1 | 2.3 ± 1.0 | 0.001 | 1.2 ± 1.0 | 2.4 ± 1.0 | <0.001 | 1.1 ± 0.9 | 2.0 ± 1.2 | <0.001 |
mMRC ≥ 2 | 19 (29.7) | 13 (72.2) | 0.001 | 16 (26.2) | 16 (76.2) | <0.001 | 9 (20.9) | 23 (59.0) | <0.001 |
GOLD Group E | 24 (37.5) | 9 (50.0) | 0.339 | 20 (32.8) | 13 (61.9) | 0.019 | 11 (25.6) | 22 (56.4) | 0.004 |
Medication | |||||||||
SABD | 27 (42.2) | 11 (61.1) | 0.155 | 24 (39.3) | 14 (66.7) | 0.030 | 14 (32.6) | 24 (61.5) | 0.009 |
LAMA | 4 (6.3) | 3 (16.7) | 0.175 | 4 (6.6) | 3 (14.3) | 0.365 | 4 (9.3) | 3 (7.7) | 1.000 |
LABA/LAMA | 21 (32.8) | 7 (38.9) | 0.631 | 22 (36.1) | 6 (28.6) | 0.532 | 15 (34.9) | 13 (33.3) | 0.882 |
ICS/LABA | 7 (10.9) | 0 (0) | 0.338 | 7 (11.5) | 0 (0) | 0.182 | 5 (11.6) | 2 (5.1) | 0.436 |
ICS/LABA/LAMA | 32 (50.0) | 8 (44.4) | 0.677 | 28 (45.9) | 12 (57.1) | 0.374 | 19 (44.2) | 21 (53.8) | 0.382 |
Methylxanthine | 11 (17.2) | 4 (22.2) | 0.731 | 10 (16.4) | 5 (23.8) | 0.516 | 6 (14.0) | 9 (23.1) | 0.286 |
Oral beta-2 agonist | 3 (4.7) | 0 (0) | 1.000 | 3 (4.9) | 0 (0) | 0.566 | 2 (4.7) | 1 (2.6) | 1.000 |
Macrolide | 1 (1.6) | 1 (5.6) | 0.393 | 1 (1.6) | 1 (4.8) | 0.449 | 0 (0) | 2 (5.1) | 0.223 |
PDE4 inhibitor | 2 (3.1) | 0 (0) | 1.000 | 1 (1.6) | 1 (4.8) | 0.449 | 0 (0) | 2 (5.1) | 0.223 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saiphoklang, N.; Siriyothipun, T.; Panichaporn, S. Accuracy of Accuhaler, Ellipta, and Turbuhaler Testers in Patients with Chronic Obstructive Pulmonary Disease. Med. Sci. 2025, 13, 50. https://doi.org/10.3390/medsci13020050
Saiphoklang N, Siriyothipun T, Panichaporn S. Accuracy of Accuhaler, Ellipta, and Turbuhaler Testers in Patients with Chronic Obstructive Pulmonary Disease. Medical Sciences. 2025; 13(2):50. https://doi.org/10.3390/medsci13020050
Chicago/Turabian StyleSaiphoklang, Narongkorn, Thiravit Siriyothipun, and Sarawut Panichaporn. 2025. "Accuracy of Accuhaler, Ellipta, and Turbuhaler Testers in Patients with Chronic Obstructive Pulmonary Disease" Medical Sciences 13, no. 2: 50. https://doi.org/10.3390/medsci13020050
APA StyleSaiphoklang, N., Siriyothipun, T., & Panichaporn, S. (2025). Accuracy of Accuhaler, Ellipta, and Turbuhaler Testers in Patients with Chronic Obstructive Pulmonary Disease. Medical Sciences, 13(2), 50. https://doi.org/10.3390/medsci13020050