Association Between Sociodemographic Disparities and Door to Computerized Tomography Time in Patients with Acute Ischemic Stroke Across COVID-19 Periods in the Emergency Department: A Multi-Center Cohort Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Setting
2.2. Participants Selection
2.3. Outcome Measure
2.4. Data Collection
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Outcome Measures
4. Discussion
5. Limitation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Renedo, D.; Acosta, J.N.; Leasure, A.C.; Sharma, R.; Krumholz, H.M.; de Havenon, A.; Alahdab, F.; Aravkin, A.Y.; Aryan, Z.; Bärnighausen, T.W.; et al. Burden of Ischemic and Hemorrhagic Stroke Across the US from 1990 to 2019. JAMA Neurol. 2024, 81, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Tong, X.; Schieb, L.; Coronado, F.; Merritt, R. Stroke Mortality Among Black and White Adults Aged ≥35 Years Before and During the COVID-19 Pandemic—United States, 2015–2021. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.G.; Hellkamp, A.S.; Olson, D.; Smith, E.E.; Schwamm, L.H. Predictors of rapid brain imaging in acute stroke: Analysis of the Get with the Guidelines-Stroke program. Stroke 2012, 43, 1279–1284. [Google Scholar] [CrossRef]
- Association, A.H. Get with the Guideline-Stroke. Available online: https://www.heart.org/en/professional/quality-improvement/get-with-the-guidelines/get-with-the-guidelines-stroke (accessed on 13 February 2025).
- Jauch, E.C.; Saver, J.L.; Adams, H.P., Jr.; Bruno, A.; Connors, J.J.; Demaerschalk, B.M.; Khatri, P.; McMullan, P.W., Jr.; Qureshi, A.I.; Rosenfield, K.; et al. Guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2013, 44, 870–947. [Google Scholar] [CrossRef]
- Greenberg, S.M.; Ziai, W.C.; Cordonnier, C.; Dowlatshahi, D.; Francis, B.; Goldstein, J.N.; Hemphill, J.C., 3rd; Johnson, R.; Keigher, K.M.; Mack, W.J.; et al. 2022 Guideline for the Management of Patients with Spontaneous Intracerebral Hemorrhage: A Guideline from the American Heart Association/American Stroke Association. Stroke 2022, 53, e282–e361. [Google Scholar] [CrossRef] [PubMed]
- Polineni, S.P.; Perez, E.J.; Wang, K.; Gutierrez, C.M.; Walker, J.; Foster, D.; Dong, C.; Asdaghi, N.; Romano, J.G.; Sacco, R.L.; et al. Sex and Race-Ethnic Disparities in Door-to-CT Time in Acute Ischemic Stroke: The Florida Stroke Registry. J. Am. Heart Assoc. 2021, 10, e017543. [Google Scholar] [CrossRef]
- Ferrone, N.G.; Sanmartin, M.X.; O’Hara, J.; Ferrone, S.R.; Wang, J.J.; Katz, J.M.; Sanelli, P.C. Ten-Year Trends in Last Known Well to Arrival Time in Acute Ischemic Stroke Patients: 2014 to 2023. Stroke 2025, 56, 49169. [Google Scholar] [CrossRef]
- Forman, R.; Okumu, R.; Mageid, R.; Baker, A.; Neu, D.; Parker, R.; Peyravi, R.; Schindler, J.L.; Sansing, L.H.; Sheth, K.N.; et al. Association of Neighborhood-Level Socioeconomic Factors with Delay to Hospital Arrival in Patients with Acute Stroke. Neurology 2024, 102, e207764. [Google Scholar] [CrossRef]
- Oluwole, S.A.; Wang, K.; Dong, C.; Ciliberti-Vargas, M.A.; Gutierrez, C.M.; Yi, L.; Romano, J.G.; Perez, E.; Tyson, B.A.; Ayodele, M.; et al. Disparities and Trends in Door-to-Needle Time: The FL-PR CReSD Study (Florida-Puerto Rico Collaboration to Reduce Stroke Disparities). Stroke 2017, 48, 2192–2197. [Google Scholar] [CrossRef]
- Sharobeam, A.; Jones, B.; Walton-Sonda, D.; Lueck, C.J. Factors delaying intravenous thrombolytic therapy in acute ischaemic stroke: A systematic review of the literature. J. Neurol. 2021, 268, 2723–2734. [Google Scholar] [CrossRef]
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation 2021, 143, e254–e743. [Google Scholar] [CrossRef] [PubMed]
- Levine, D.A.; Duncan, P.W.; Nguyen-Huynh, M.N.; Ogedegbe, O.G. Interventions Targeting Racial/Ethnic Disparities in Stroke Prevention and Treatment. Stroke 2020, 51, 3425–3432. [Google Scholar] [CrossRef]
- Yoshimoto, T.; Shiozawa, M.; Koge, J.; Inoue, M.; Koga, M.; Ihara, M.; Toyoda, K. Evaluation of Workflow Delays in Stroke Reperfusion Therapy: A Comparison between the Year-Long Pre-COVID-19 Period and the with-COVID-19 Period. J. Atheroscler. Thromb. 2022, 29, 1095–1107. [Google Scholar] [CrossRef] [PubMed]
- Siegler, J.E.; Zha, A.M.; Czap, A.L.; Ortega-Gutierrez, S.; Farooqui, M.; Liebeskind, D.S.; Desai, S.M.; Hassan, A.E.; Starosciak, A.K.; Linfante, I.; et al. Influence of the COVID-19 Pandemic on Treatment Times for Acute Ischemic Stroke: The Society of Vascular and Interventional Neurology Multicenter Collaboration. Stroke 2021, 52, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Sakakura, K.; Jinnouchi, H.; Taniguchi, Y.; Tsukui, T.; Watanabe, Y.; Yamamoto, K.; Seguchi, M.; Wada, H.; Fujita, H. Comparison of door-to-balloon time and in-hospital outcomes in patients with ST-elevation myocardial infarction between before versus after COVID-19 pandemic. Cardiovasc. Interv. Ther. 2022, 37, 641–650. [Google Scholar] [CrossRef]
- Gu, S.; Li, J.; Shen, H.; Dai, Z.; Bai, Y.; Zhang, S.; Zhao, H.; Zhou, S.; Yu, Y.; Tang, W. The impact of COVID-19 pandemic on treatment delay and short-term neurological functional prognosis for acute ischemic stroke during the lockdown period. Front. Neurol. 2022, 13, 998758. [Google Scholar] [CrossRef]
- Ikeme, S.; Kottenmeier, E.; Uzochukwu, G.; Brinjikji, W. Evidence-Based Disparities in Stroke Care Metrics and Outcomes in the United States: A Systematic Review. Stroke 2022, 53, 670–679. [Google Scholar] [CrossRef]
- de Havenon, A.; Zhou, L.W.; Johnston, K.C.; Dangayach, N.S.; Ney, J.; Yaghi, S.; Sharma, R.; Abbasi, M.; Delic, A.; Majersik, J.J.; et al. Twenty-Year Disparity Trends in United States Stroke Death Rate by Age, Race/Ethnicity, Geography, and Socioeconomic Status. Neurology 2023, 101, e464–e474. [Google Scholar] [CrossRef]
- Chugh, C. Acute Ischemic Stroke: Management Approach. Indian. J. Crit. Care Med. 2019, 23, S140–S146. [Google Scholar] [CrossRef]
- Jacobs, B.S.; Birbeck, G.; Mullard, A.J.; Hickenbottom, S.; Kothari, R.; Roberts, S.; Reeves, M.J. Quality of hospital care in African American and white patients with ischemic stroke and TIA. Neurology 2006, 66, 809–814. [Google Scholar] [CrossRef]
- Price, S. Help Wanted: Texas’ Physician Growth Strong, But Recruitment, Diversity still Needed. Available online: www.texmed.org/Template.aspx?id=60809 (accessed on 11 January 2025).
- Eissa, A.; Krass, I.; Bajorek, B.V. Optimizing the management of acute ischaemic stroke: A review of the utilization of intravenous recombinant tissue plasminogen activator (tPA). J. Clin. Pharm. Ther. 2012, 37, 620–629. [Google Scholar] [CrossRef] [PubMed]
- Addo, J.; Ayerbe, L.; Mohan, K.M.; Crichton, S.; Sheldenkar, A.; Chen, R.; Wolfe, C.D.; McKevitt, C. Socioeconomic status and stroke: An updated review. Stroke 2012, 43, 1186–1191. [Google Scholar] [CrossRef]
- Marshall, I.J.; Wang, Y.; Crichton, S.; McKevitt, C.; Rudd, A.G.; Wolfe, C.D. The effects of socioeconomic status on stroke risk and outcomes. Lancet Neurol. 2015, 14, 1206–1218. [Google Scholar] [CrossRef] [PubMed]
- Lachkhem, Y.; Rican, S.; Minvielle, É. Understanding delays in acute stroke care: A systematic review of reviews. Eur. J. Public. Health 2018, 28, 426–433. [Google Scholar] [CrossRef]
- Al Shamsi, H.; Almutairi, A.G.; Al Mashrafi, S.; Al Kalbani, T. Implications of Language Barriers for Healthcare: A Systematic Review. Oman Med. J. 2020, 35, e122. [Google Scholar] [CrossRef]
- Clark, J.R.; Shlobin, N.A.; Batra, A.; Liotta, E.M. The Relationship Between Limited English Proficiency and Outcomes in Stroke Prevention, Management, and Rehabilitation: A Systematic Review. Front. Neurol. 2022, 13, 790553. [Google Scholar] [CrossRef]
- Attenello, F.J.; Adamczyk, P.; Wen, G.; He, S.; Zhang, K.; Russin, J.J.; Sanossian, N.; Amar, A.P.; Mack, W.J. Racial and socioeconomic disparities in access to mechanical revascularization procedures for acute ischemic stroke. J. Stroke Cerebrovasc. Dis. 2014, 23, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Buus, S.; Schmitz, M.L.; Cordsen, P.; Johnsen, S.P.; Andersen, G.; Simonsen, C.Z. Socioeconomic Inequalities in Reperfusion Therapy for Acute Ischemic Stroke. Stroke 2022, 53, 2307–2316. [Google Scholar] [CrossRef]
- Scheppers, E.; van Dongen, E.; Dekker, J.; Geertzen, J.; Dekker, J. Potential barriers to the use of health services among ethnic minorities: A review. Fam. Pract. 2006, 23, 325–348. [Google Scholar] [CrossRef]
- Flores, G. The impact of medical interpreter services on the quality of health care: A systematic review. Med. Care Res. Rev. 2005, 62, 255–299. [Google Scholar] [CrossRef]
- Jasne, A.S.; Chojecka, P.; Maran, I.; Mageid, R.; Eldokmak, M.; Zhang, Q.; Nystrom, K.; Vlieks, K.; Askenase, M.; Petersen, N.; et al. Stroke Code Presentations, Interventions, and Outcomes Before and During the COVID-19 Pandemic. Stroke 2020, 51, 2664–2673. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Nguyen, T.N.; Wellington, J.; Mofatteh, M.; Yao, W.; Hu, Z.; Kuang, Q.; Wu, W.; Wang, X.; Sun, Y.; et al. Shortening Door-to-Needle Time by Multidisciplinary Collaboration and Workflow Optimization During the COVID-19 Pandemic. J. Stroke Cerebrovasc. Dis. 2022, 31, 106179. [Google Scholar] [CrossRef] [PubMed]
- Banfield, W.H.; Elghawy, O.; Dewanjee, A.; Brady, W.J. Impact of COVID-19 on emergency department management of stroke and STEMI. A narrative review. Am. J. Emerg. Med. 2022, 57, 91–97. [Google Scholar] [CrossRef]
- Camporesi, J.; Strumia, S.; Di Pilla, A.; Paolucci, M.; Orsini, D.; Assorgi, C.; Cacciuttolo, M.G.; Specchia, M.L. Stroke pathway performance assessment: A retrospective observational study. BMC Health Serv. Res. 2023, 23, 1391. [Google Scholar] [CrossRef]
- Rivera, R.; Amudio, C.; Cruz, J.P.; Brunetti, E.; Catalan, P.; Sordo, J.G.; Echeverria, D.; Badilla, L.; Chamorro, A.; Gonzalez, C.; et al. The impact of a two-year long COVID-19 public health restriction program on mechanical thrombectomy outcomes in a stroke network. J. Stroke Cerebrovasc. Dis. 2023, 32, 107138. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, G.; Zhu, Y.; Song, H.; Ren, Y.; Liu, Y.; Ma, Q. Impact of the COVID-19 pandemic on emergent stroke care in Beijing, China. Sci. Rep. 2023, 13, 4429. [Google Scholar] [CrossRef]
- Rose, D.Z.; Registry, F.S.; Wang, K.; Gardener, H.; Gutierrez, C.M.; Koch, S.; Dong, C.; Foster, D.; Jameson, A.; Rundek, T.; et al. Abstract WP26: Covid Pandemic Versus Pre-pandemic Care of Stroke Patients within the Florida Stroke Registry. Stroke 2022, 53, AWP26. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Zhang, S.; Xian, Y.; Xu, H.; Rutan, C.; Alger, H.M.; Walchok, J.G.; Williams, J.H.; de Lemos, J.A.; Decker-Palmer, M.R.; et al. Treatment and Outcomes of Patients with Ischemic Stroke During COVID-19: An Analysis from Get with The Guidelines-Stroke. Stroke 2021, 52, 3225–3232. [Google Scholar] [CrossRef]
- Katsanos, A.H.; de Sa Boasquevisque, D.; Al-Qarni, M.A.; Shawawrah, M.; McNicoll-Whiteman, R.; Gould, L.; Van Adel, B.; Sahlas, D.J.; Ng, K.K.H.; Perera, K.; et al. In-Hospital Delays for Acute Stroke Treatment Delivery during the COVID-19 Pandemic. Can. J. Neurol. Sci. 2021, 48, 59–65. [Google Scholar] [CrossRef]
- Hu, Q.; Hu, Y.; Gu, Y.; Song, X.; Shen, Y.; Lu, H.; Zhang, L.; Liu, P.; Wang, G.; Guo, C.; et al. Impact of the COVID-19 pandemic on acute stroke care: An analysis of the 24-month data from a comprehensive stroke center in Shanghai, China. CNS Neurosci. Ther. 2023, 29, 1898–1906. [Google Scholar] [CrossRef]
- Chou, E.; Hsieh, Y.L.; Wolfshohl, J.; Green, F.; Bhakta, T. Onsite telemedicine strategy for coronavirus (COVID-19) screening to limit exposure in ED. Emerg. Med. J. 2020, 37, 335–337. [Google Scholar] [CrossRef] [PubMed]
- Larremore, D.B.; Wilder, B.; Lester, E.; Shehata, S.; Burke, J.M.; Hay, J.A.; Tambe, M.; Mina, M.J.; Parker, R. Test sensitivity is secondary to frequency and turnaround time for COVID-19 screening. Sci. Adv. 2021, 7, abd5393. [Google Scholar] [CrossRef] [PubMed]
- Fessell, D.; Cherniss, C. Coronavirus Disease 2019 (COVID-19) and Beyond: Micropractices for Burnout Prevention and Emotional Wellness. J. Am. Coll. Radiol. 2020, 17, 746–748. [Google Scholar] [CrossRef]
- Carragher, D.J.; Hancock, P.J.B. Surgical face masks impair human face matching performance for familiar and unfamiliar faces. Cogn. Res. Princ. Implic. 2020, 5, 59. [Google Scholar] [CrossRef] [PubMed]
- Freud, E.; Stajduhar, A.; Rosenbaum, R.S.; Avidan, G.; Ganel, T. The COVID-19 pandemic masks the way people perceive faces. Sci. Rep. 2020, 10, 22344. [Google Scholar] [CrossRef]
- Pavlova, M.A.; Sokolov, A.A. Reading Covered Faces. Cereb. Cortex 2022, 32, 249–265. [Google Scholar] [CrossRef]
- Díaz-Agea, J.L.; Orcajada-Muñoz, I.; Leal-Costa, C.; Adánez-Martínez, M.G.; De Souza Oliveira, A.C.; Rojo-Rojo, A. How Did the Pandemic Affect Communication in Clinical Settings? A Qualitative Study with Critical and Emergency Care Nurses. Healthcare 2022, 10, 373. [Google Scholar] [CrossRef]
- Lasalvia, A.; Amaddeo, F.; Porru, S.; Carta, A.; Tardivo, S.; Bovo, C.; Ruggeri, M.; Bonetto, C. Levels of burn-out among healthcare workers during the COVID-19 pandemic and their associated factors: A cross-sectional study in a tertiary hospital of a highly burdened area of north-east Italy. BMJ Open 2021, 11, e045127. [Google Scholar] [CrossRef]
- Petrino, R.; Riesgo, L.G.; Yilmaz, B. Burnout in emergency medicine professionals after 2 years of the COVID-19 pandemic: A threat to the healthcare system? Eur. J. Emerg. Med. 2022, 29, 279–284. [Google Scholar] [CrossRef]
- Griffin, G.; Krizo, J.; Mangira, C.; Simon, E.L. The impact of COVID-19 on emergency department boarding and in-hospital mortality. Am. J. Emerg. Med. 2023, 67, 5–9. [Google Scholar] [CrossRef]
- Kilaru, A.S.; Scheulen, J.J.; Harbertson, C.A.; Gonzales, R.; Mondal, A.; Agarwal, A.K. Boarding in US Academic Emergency Departments During the COVID-19 Pandemic. Ann. Emerg. Med. 2023, 82, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Reznek, M.A.; Murray, E.; Youngren, M.N.; Durham, N.T.; Michael, S.S. Door-to-Imaging Time for Acute Stroke Patients Is Adversely Affected by Emergency Department Crowding. Stroke 2017, 48, 49–54. [Google Scholar] [CrossRef]
- Tsai, M.T.; Yen, Y.L.; Su, C.M.; Hung, C.W.; Kung, C.T.; Wu, K.H.; Cheng, H.H. The influence of emergency department crowding on the efficiency of care for acute stroke patients. Int. J. Qual. Health Care 2016, 28, 774–778. [Google Scholar] [CrossRef] [PubMed]
- Yeo, I.H.; Kim, Y.J.; Kim, J.K.; Lee, D.E.; Choe, J.Y.; Kim, C.H.; Park, J.B.; Seo, K.S.; Park, S.Y.; Lee, S.H.; et al. Impact of the COVID-19 Pandemic on Emergency Department Workload and Emergency Care Workers’ Psychosocial Stress in the Outbreak Area. Medicina 2021, 57, 1274. [Google Scholar] [CrossRef] [PubMed]
- Khanal, P.; Devkota, N.; Dahal, M.; Paudel, K.; Joshi, D. Mental health impacts among health workers during COVID-19 in a low resource setting: A cross-sectional survey from Nepal. Global Health 2020, 16, 89. [Google Scholar] [CrossRef]
- Kim, J.H.; Yoon, J.; Kim, S.J.; Kim, J.Y.; Bahk, J.; Kim, S.S. Lack of compensation for COVID-19-related overtime work and its association with burnout among EMS providers in Korea. Epidemiol. Health 2023, 45, e2023058. [Google Scholar] [CrossRef]
- Pourmand, A.; Caggiula, A.; Barnett, J.; Ghassemi, M.; Shesser, R. Rethinking Traditional Emergency Department Care Models in a Post-Coronavirus Disease-2019 World. J. Emerg. Nurs. 2023, 49, 520–529.e2. [Google Scholar] [CrossRef]
Patient Characteristics | All (n = 23,364) | Door to CT ≤ 25 min (n = 4468) | Door to CT > 25 min (n = 16,464) | p-Value |
---|---|---|---|---|
Age (year), mean ± SD | 69 ± 15 | 70 ± 15 | 69 ± 15 | <0.01 |
Sex, n (%) | 0.14 | |||
| 11,617 (49.7) | 2255 (21.8) | 8102 (78.2) | |
| 11,747 (50.3) | 2213 (20.9) | 8362 (79.1) | |
Race/Ethnicity, n (%) | <0.01 | |||
| 17,345 (74.2) | 3481 (77.9) | 12,161 (73.9) | |
| 4745 (20.3) | 763 (17.1) | 3369 (20.5) | |
| 454 (1.9) | 72 (1.6) | 346 (2.1) | |
| 820 (3.5) | 152 (3.4) | 588 (3.6) | |
| 2807 (13.5) | 553 (12.5) | 2254 (13.8) | |
Triage acuity level (Emergency Severity Index) | <0.01 | |||
Resuscitation, n (%) | 1686 (8.1) | 725 (16.4) | 961 (5.9) | |
Emergent, n (%) | 12,604 (60.6) | 3361 (76.0) | 9243 (56.4) | |
Urgent, n (%) | 6381 (30.7) | 333 (7.5) | 6048 (36.9) | |
Less Urgent, n (%) | 125 (0.6) | 2 (0.0) | 123 (0.8) | |
Non-Urgent, n (%) | 3 (0.0) | 0 (0.0) | 3 (0.0) | |
Hypertension, n (%) | 19,599 (83.9) | 3826 (85.6) | 13,782 (83.7) | <0.01 |
Diabetes mellitus, n (%) | 10,082 (43.2) | 1826 (40.9) | 7202 (43.7) | <0.01 |
Coronary artery disease, n (%) | 7532 (32.2) | 1435 (32.1) | 5280 (32.1) | 0.95 |
Congestive heart failure, n (%) | 6408 (27.4) | 1347 (30.1) | 5061 (30.7) | 0.45 |
COPD, n (%) | 3995 (17.1) | 845 (18.9) | 3150 (19.1) | 0.74 |
Chronic renal disease, n (%) | 6313 (27.0) | 1247 (27.9) | 5066 (30.8) | <0.01 |
Liver cirrhosis, n (%) | 2360 (10.1) | 420 (9.4) | 2360 (11.3) | <0.01 |
Dementia, n (%) | 3547 (15.2) | 707 (15.8) | 2840 (17.2) | 0.02 |
Smoking history, n (%) | 8869 (46.4) | 1663 (46.1) | 6243 (46.1) | 0.98 |
COVID era | <0.01 | |||
Pre-COVID | 6852 (29.3) | 1519 (34.0) | 4425 (26.9) | |
COVID | 13,593 (58.2) | 2397 (53.7) | 9859 (59.9) | |
Post-COVID | 2919 (12.5) | 552 (12.4) | 2180 (13.2) | |
COPD, Chronic obstructive pulmonary disease |
Odds Ratio (95% CI) | p-Value | |
---|---|---|
Race | ||
White | - | - |
Black | 1.35 (1.23–1.49) | <0.001 |
Asian | 1.33 (1.01–1.74) | 0.04 |
Other | 1.09 (0.90–1.33) | 0.38 |
Hispanic | 1.20 (1.07–1.34) | 0.002 |
Insurance | ||
None | - | - |
Commercial | 1.16 (1.02–1.32) | 0.03 |
Medicare/Medicaid | 1.00 (0.87–1.15) | 1.00 |
Temperature | 1.06 (1.02–1.10) | 0.004 |
Mean arterial pressure (MAP) | 0.99 (0.99–1.00) | <0.001 |
Glasgow Coma Scale | ||
3–8 | - | - |
9–12 | 0.45 (0.35–0.56) | <0.001 |
13–15 | 0.95 (0.78–1.16) | 0.59 |
Liver cirrhosis | 1.31 (1.16–1.49) | <0.001 |
Chronic kidney disease (CKD) | 1.13 (1.04–1.22) | 0.005 |
COVID period | ||
Pre-COVID | - | - |
During COVID | 1.45 (1.34–1.57) | <0.001 |
Post-COVID | 1.46 (1.34–1.57) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, Y.-L.; Tzeng, C.-F.T.; Khan, M.; Shedd, A.; Damrow, T.; Hassani, D.; Danley, M.; Shah, J.; Walker, J.; Chou, E.H. Association Between Sociodemographic Disparities and Door to Computerized Tomography Time in Patients with Acute Ischemic Stroke Across COVID-19 Periods in the Emergency Department: A Multi-Center Cohort Study. Med. Sci. 2025, 13, 31. https://doi.org/10.3390/medsci13010031
Hsieh Y-L, Tzeng C-FT, Khan M, Shedd A, Damrow T, Hassani D, Danley M, Shah J, Walker J, Chou EH. Association Between Sociodemographic Disparities and Door to Computerized Tomography Time in Patients with Acute Ischemic Stroke Across COVID-19 Periods in the Emergency Department: A Multi-Center Cohort Study. Medical Sciences. 2025; 13(1):31. https://doi.org/10.3390/medsci13010031
Chicago/Turabian StyleHsieh, Yu-Lin, Ching-Fang Tiffany Tzeng, Maha Khan, Andrew Shedd, Thomas Damrow, Dahlia Hassani, Matthew Danley, Jaydeep Shah, Jennifer Walker, and Eric H. Chou. 2025. "Association Between Sociodemographic Disparities and Door to Computerized Tomography Time in Patients with Acute Ischemic Stroke Across COVID-19 Periods in the Emergency Department: A Multi-Center Cohort Study" Medical Sciences 13, no. 1: 31. https://doi.org/10.3390/medsci13010031
APA StyleHsieh, Y.-L., Tzeng, C.-F. T., Khan, M., Shedd, A., Damrow, T., Hassani, D., Danley, M., Shah, J., Walker, J., & Chou, E. H. (2025). Association Between Sociodemographic Disparities and Door to Computerized Tomography Time in Patients with Acute Ischemic Stroke Across COVID-19 Periods in the Emergency Department: A Multi-Center Cohort Study. Medical Sciences, 13(1), 31. https://doi.org/10.3390/medsci13010031