Assessment of the Seismic Site Amplification in the City of Ivanec (NW Part of Croatia) Using the Microtremor HVSR Method and Equivalent-Linear Site Response Analysis
Abstract
:1. Introduction
2. Seismological and Geological Characteristics of the Study Area
2.1. Seismicity of the Wider Ivanec Area
2.2. Geological Characteristics of the City of Ivanec Area
3. Application of the Microtremor HVSR Method in the City of Ivanec
3.1. Microtremor Measurements and HVSR Analysis
3.2. Fundamental Soil Frequency Map for the City of Ivanec
3.3. Geophysical Measurements
3.4. Estimation of Bedrock Depth for the City of Ivanec Using the H/V Forward Modelling Routine
3.5. VS30 Map for the City of Ivanec
4. Analysis of the 1-D Equivalent-Linear Site Response for the City of Ivanec
4.1. Soil Profiles Used in Site Response Analysis
4.2. Input Rock Motions Used in Site Response Analysis
4.3. Results of 1-D Equivalent-Linear Site Response Analysis
5. Assessment of the Seismic Site Amplification Map for the City of Ivanec
5.1. Site Peak HVSR Amplitude Map for the City of Ivanec
5.2. Site Response Amplification Map for the City of Ivanec
5.3. Discussion on the Differences between HVSR Peak Amplitudes and Seismic Site Response Amplifications
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Krznar, S.; Poljak, S.; Jagić, S.; Miljan, Z.; Pehard, I. Ivanec Kroz Stoljeća 1396–2016 (Ivanec through Centuries 1396–2016); Monography: Ivanec, Croatia, 2017; p. 257. [Google Scholar]
- Herak, D.; Herak, M.; Tomljenović, B. Seismicity and earthquake focal mechanisms in North-Western Croatia. Tectonophysics 2009, 465, 212–220. [Google Scholar] [CrossRef]
- Spatial Master Planning of the City of Ivanec with Amendments. 2012 & 2016. Available online: http://www.ivanec.hr/46-prostorni-planovi (accessed on 23 May 2019).
- Idriss, I.M.; Seed, H.B. Seismic Response of Horizontal Soil Layers. J. Soil Mech. Found. Div. 1968, 94, 1003–1034. [Google Scholar]
- Kramer, S.L. Geotechnical Earthquake Engineering, 1st ed.; Prentice-Hall: Upper Saddle River, Bergen County, NJ, USA, 1996; p. 654. [Google Scholar]
- Reiter, L. Earthquake Hazard. Analysis: Issues and Insights; Columbia University Press: New York, NY, USA, 1990; p. 254. [Google Scholar]
- Schnabel, P.B.; Lysmer, J.; Seed, H.B. SHAKE: A Computer Program for Earthquake Response Analysis of Horizontally Layered Sites; UCB/EERC-72/12; Earthquake Engineering Research Center: Oakland, CA, USA, 1972. [Google Scholar]
- Meunier, P.; Hovius, N.; Haines, J.A. Topographic site effects and the location of earthquake induced landslides. Earth Planet. Sci. Lett. 2008, 275, 221–232. [Google Scholar] [CrossRef]
- Panzera, F.; Lombardo, G.; D’Amico, S.; Galea, P. Speedy Techniques to Evaluate Seismic Site Effects in Particular Geomorphologic Conditions: Faults, Cavities, Landslides and Topographic Irregularities. In Engineering Seismology, Geotechnical and Structural Earthquake Engineering, 1st ed.; D’Amico, S., Ed.; Intech Open: London, UK, 2013; Chapter 5; pp. 102–138. [Google Scholar]
- Stanko, D.; Gülerce, Z.; Markušić, S.; Šalić, R. Evaluation of the site amplification factors estimated by equivalent linear site response analysis using time series and random vibration theory based approaches. Soil Dyn. Earthq. Eng. 2019, 117, 16–29. [Google Scholar] [CrossRef]
- Nogoshi, M.; Igarashi, T. On the Propagation Characteristics of Microtremor. J. Seismol. Soc. Jpn. 1970, 23, 264–280. [Google Scholar]
- Nakamura, Y. Method for Dynamic Characteristics Estimation of Subsurface using Microtremor on the Ground Surface. Railw. Tech. Res. Inst. Q. Rep. 1989, 30, 25–33. [Google Scholar]
- Gosar, A. Microtremor HVSR study for assessing site effects in the Bovec basin (NW Slovenia) related to 1998 Mw5.6 and 2004 Mw5.2 earthquakes. Eng. Geol. 2007, 91, 178–193. [Google Scholar] [CrossRef]
- Gosar, A. Study on the applicability of the microtremor HVSR method to support seismic microzonation in the town of Idrija (W Slovenia). Nat. Hazards Earth Syst. Sci. 2017, 17, 925–937. [Google Scholar] [CrossRef] [Green Version]
- Mucciarelli, M.; Gallipoli, M.R. A critical review of 10 years of microtremor HVSR technique. Boll. Geofis. Teor. Appl. 2001, 42, 255–266. [Google Scholar]
- Di Giacomo, D.; Gallipoli, M.R.; Mucciarelli, M.; Parolai, S.; Richwalski, S.M. Analysis and modeling of HVSR in the presence of a velocity inversion: The case of Venosa, Italy. Bull. Seismol. Soc. Am. 2005, 95, 2364–2372. [Google Scholar] [CrossRef]
- D’Amico, V.; Picozzi, M.; Baliva, F.; Albarello, D. Ambient noise measurements for preliminary site-effects characterization in the urban area of Florence, Italy. Bull. Seismol. Soc. Am. 2008, 98, 1373–1388. [Google Scholar] [CrossRef]
- Del Monaco, F.; Tallini, M.; De Rose, C.; Durante, F. HVNSR survey in historical downtown L’Aquila (central Italy): Site resonance properties vs. subsoil model. Eng. Geol. 2013, 158, 34–47. [Google Scholar] [CrossRef]
- Herak, M.; Allegretti, I.; Herak, D.; Kuk, K.; Kuk, V.; Marić, K.; Markušić, S.; Stipčević, J. HVSR of ambient noise in Ston (Croatia): Comparison with theoretical spectra and with the damage distribution after the 1996 Ston-Slano earthquake. Bull. Earthq. Eng. 2010, 8, 483–499. [Google Scholar] [CrossRef]
- Stanko, D.; Markušić, S.; Strelec, S.; Gazdek, M. HVSR analysis of seismic site effects and soil-structure resonance in Varaždin city (North Croatia). Soil Dyn. Earthq. Eng. 2017, 92, 666–677. [Google Scholar] [CrossRef]
- Mucciarelli, M. Reliability and applicability of Nakamura’s technique using microtremors: An experimental approach. J. Earthq. Eng. 1998, 2, 625–638. [Google Scholar] [CrossRef]
- Imposa, S.; Lombardo, G.; Panzera, F.; Grassi, S. Ambient Vibrations Measurements and 1D Site Response Modelling as a Tool for Soil and Building Properties Investigation. Geosciences 2018, 8, 87. [Google Scholar] [CrossRef]
- Del Gaudio, V.; Wasowski, J.; Muscillo, S. New developments in ambient noise analysis to characterise the seismic response of landslide-prone slopes. Nat. Hazards Earth Syst. Sci. 2013, 13, 2075–2087. [Google Scholar] [CrossRef] [Green Version]
- Rong, M.; Fu, L.-Y.; Wang, Z.; LI, X.; Carpenter, N.S.; Woolery, N.S.; Lyu, Y. On the Amplitude Discrepancy of HVSR and Site Amplification from Strong-Motion Observations. Bull. Seismol. Soc. Am. 2017, 170, 2873–2884. [Google Scholar] [CrossRef]
- Foti, S.; Parolai, S.; Albarello, D.; Picozzi, M. Application of Surface-Wave Methods for Seismic Site Characterization. Surv. Geophys. 2011, 32, 777–825. [Google Scholar] [CrossRef] [Green Version]
- Castellaro, S.; Mulargia, F. VS30 Estimates Using Constrained H/V Measurements. Bull. Seismol. Soc. Am. 2009, 99, 761–773. [Google Scholar] [CrossRef]
- Castellaro, S. The complementarity of H/V and dispersion curves. Geophysics 2016, 81, T323–T338. [Google Scholar] [CrossRef]
- Herak, M.; Allegretti, I.; Herak, D.; Ivančić, I.; Kuk, V.; Marić, K.; Markušić, S.; Sović, I. Seismic Hazard Map of Croatia for a 475-Year Return Period. 2011. Available online: http://seizkarta.gfz.hr/ (accessed on 23 May 2019).
- Anbazhagan, P.; Sitharam, T.G. Seismic microzonation of Bangalore, India. J. Earth Syst. Sci. 2008, 117, 833–852. [Google Scholar] [CrossRef]
- Ivančić, I.; Herak, D.; Markušić, S.; Sović, I.; Herak, M. Seismicity of Croatia in the period 2002–2005. Geofizika 2006, 23, 87–103. [Google Scholar]
- Ivančić, I.; Herak, D.; Herak, M.; Allegretti, I.; Fiket, T.; Kuk, K.; Markušić, S.; Prevolnik, S.; Sović, I.; Dasović, I.; et al. Seismicity of Croatia in the period 2006–2015. Geofizika 2018, 35, 69–98. [Google Scholar] [CrossRef]
- Herak, M.; Herak, D.; Markušić, S. Revision of the earthquake catalogue and seismicity of Croatia, 1908–1992. Terra Nova 1996, 8, 86–94. [Google Scholar] [CrossRef]
- Tomljenović, B.; Csontos, L. Neogene-quaternary structures in the border zone between Alps, Dinarides and Pannonian Basin (Hrvatsko zgorje and Karlovac basins, Croatia). Int. J. Earth Sci. 2001, 90, 560–578. [Google Scholar] [CrossRef]
- Stanko, D.; Markušić, S.; Strelec, S.; Gazdek, M. Seismic response and vulnerability of historical Trakošćan Castle using HVSR method. Environ. Earth Sci 2016, 75, 368. [Google Scholar] [CrossRef]
- European Committee for Normalization. Eurocode: Design of Structures for Earthquake Resistance—Part 1: General Rules, Seismic Actions and Rules for Buildings (EN 1998-1: 2004); European Committee for Normalization: Brussels, Belgium, 2004. [Google Scholar]
- Šimunić, A.; Pikija, M.; Hećimović, I. Basic Geological Map of Croatia, Sheet Varaždin, M 1: 100000; Croatian Geological Survey: Zagreb, Croatia, 1982. [Google Scholar]
- Šimunić, A. Geology of the Lepoglava area (Northwestern Croatia). Radovi Zavoda za Znanstveni rad Varaždin 1986, 1, 19–32. [Google Scholar]
- Šimunić, A. Geological Basis of Mineral Deposits in Ivanec Area; Zbornik 600 Godina Ivanca; HAZU: Varaždin, Croatia, 1997; pp. 105–110. [Google Scholar]
- Kaiser, A.E.; Holden, C.; Massey, C.I. Site amplification, polarity and topographic effects in the Port Hills during the Canterbury earthquake sequence. GNS Sci. Consult. Rep. 2014, 121, 33. [Google Scholar]
- Molnar, S.; Cassidy, J.F.; Castellaro, S.; Cornou, C.; Crow, H.; Hunter, J.A.; Matsushima, S.; Sánchez-Sesma, F.J.; Yong, A. Application of Microtremor Horizontal-toVertical Spectral Ratio (MHVSR) Analysis for Site Characterization: State of the Art. Surv. Geophys. 2018, 39, 613–631. [Google Scholar] [CrossRef]
- Luzi, L.; Puglia, R.; Pacor, F.; Gallipoli, M.R.; Bindi, D.; Mucciarelli, M. Proposal for a soil classification based on parameters alternative or complementary to Vs,30. Bull. Earthq. Eng. 2011, 9, 1877–1898. [Google Scholar] [CrossRef]
- Bignardi, S.; Mantovani, A.; Zeid, N.A. OpenHVSR: Imaging the subsurface 2D/3D elastic properties through multiple HVSR modeling and inversion. Comput. Geosci. 2016, 93, 103–113. [Google Scholar] [CrossRef]
- Nelson, S.; McBride, J. Application of HVSR to estimating thickness of laterite weathering profiles in basalt. Earth Surf. Process. Landf. 2019, 44, 1365–1376. [Google Scholar] [CrossRef]
- Bard, P.; Duval, A.; Koehler, A.; Rao, S. Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations Measurements, Processing and Interpretation. SESAME H/V User Guidelines. 2004, pp. 1–62. Available online: http://sesame.geopsy.org/SES_Reports.htm (accessed on 20 May 2019).
- Pischiutta, M.; Rovelli, A.; Salvini, F.; Di Giulio, G.; Ben-Zion, Y. Directional resonance variations across the pernicana fault, Mt Etna, in relation to brittle deformation fields. Geophys. J. Int. 2013, 193, 986–996. [Google Scholar] [CrossRef]
- Leyton, F.; Ruiz, S.; Sepúlveda, S.A.; Contreras, J.P.; Rebolledo, S.; Astroza, M. Microtremors’ HVSR and its correlation with surface geology and damage observed after the 2010 Maule earthquake (Mw 8.8) at Talca and Curico, Central Chile. Eng. Geol. 2013, 161, 26–33. [Google Scholar] [CrossRef]
- Gallipoli, M.R.; Mucciarelli, M.; Šket-Motnikar, B.; Zupanćić, P.; Gosar, A.; Prevolnik, S.; Herak, M.; Stipčević, J.; Herak, D.; Milutinović, Z.; et al. Empirical estimates of dynamic parameters on a large set of European buildings. Bull. Earthq. Eng. 2010, 8, 593–607. [Google Scholar] [CrossRef]
- Park, C.B.; Miller, R.D.; Xia, J. Multichannel analysis of surface waves. Geophysics 1999, 64, 800–808. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Miller, R.D.; Park, C.B. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics 1999, 64, 691–700. [Google Scholar] [CrossRef]
- Park, C.B.; Heljeson, M.A.; Ivanov, J.; Brohammer, M. Surfseis User’s Manual v 2.0; Kansas Geological Survey: Lawrence, KS, USA, 2007; p. 74. Available online: http://www.kgs.ku.edu/software/surfseis/SurfSeisMan.pdf (accessed on 25 May 2019).
- Sheehan, J.R.; Doll, W.E.; Mandell, W.A. An Evaluation of Methods and Available Software for Seismic Refraction Tomography Analysis. J. Environ. Eng. Geophys. 2006, 10, 21–34. [Google Scholar] [CrossRef]
- Pegah, E.; Liu, H. Application of near-surface seismic refraction tomography and multichannel analysis of surface waves for geotechnical site characterizations: A case study. Eng. Geol. 2016, 208, 100–113. [Google Scholar] [CrossRef]
- Williams, R.A.; Stephenson, W.J.; Odum, J.K.; Worley, D.M. Comparison of P- and S-wave velocity profiles from surface seismic refraction/reflection and downhole dana. Tectonophysics 2003, 368, 71–88. [Google Scholar] [CrossRef]
- Boore, D.M. Estimating Vs (30) (or NEHRP site classes) from shallow velocity models (depths <30 m). Bull. Seismol. Soc. Am. 2004, 94, 591–597. [Google Scholar]
- Poggi, V.; Ermert, L.; Burjanek, J.; Michel, C.; Fah, D. Modal analysis of 2-D sedimentary basin from frequency domain decomposition of ambient vibration array recordings. Geophys. J. Int. 2014, 200, 615–626. [Google Scholar] [CrossRef] [Green Version]
- Gosar, A.; Stopar, R.; Rošer, J. Comparative test of active and passive multichannel analysis of surface waves (MASW) methods and microtremor HVSR method. RMZ Mater. Geoenviron. 2008, 55, 41–66. [Google Scholar]
- Idriss, I.M.; Sun, J.I. User’s Manual for SHAKE91: A Computer Program for Conducting Equivalent Linear Seismic Response Analyses of Horizontally Layered Soil Deposits. 1993. Available online: http://www.soilquake.net/shake91_input/ (accessed on 23 May 2019).
- Hashash, Y.M.A.; Groholski, D.R.; Phillips, C.A.; Park, D.; Musgrove, M. DEEPSOIL 5.0, User Manual and Tutorial; University of Illinois at Urbana-Champaign: Champaign, IL, USA, 2011. [Google Scholar]
- Kottke, A.R.; Rathje, E.M. Technical Manual for Strata; PEER Report 2008/10; Pacific Earthquake Engineering Research Center College of Engineering University of California: Berkeley, CA, USA, 2009; p. 100. [Google Scholar]
- Boore, D.M. Determining generic velocity and density models for crustal amplification calculations, with an update of the Boore and Joyner (1997) generic site amplification for Vs(Z) = 760 m/s. Bull. Seismol. Soc. Am. 2016, 106, 313–317. [Google Scholar] [CrossRef]
- Seed, H.B.; Wong, R.T.; Idriss, I.M.; Tokimatsu, K. Moduli and Damping Factors for Dynamic Analyses of Cohesionless Soils. J. Geotech. Eng. 1986, 112, 1016–1032. [Google Scholar] [CrossRef]
- Vučetić, M.; Dobry, R. Effect of Soil Plasticity on Cyclic Response. J. Geotech. Eng. 1991, 117, 89–107. [Google Scholar] [CrossRef]
- Schnabel, P.B. Effects of Local Geology and Distance from Source on Earthquake Ground Motions. Ph.D. Thesis, University of California, Berkeley, CA, USA, 1973. [Google Scholar]
- Rathje, E.M.; Kottke, A.R.; Trent, W.L. Influence of Input Motion and Site Property Variabilities on Seismic Site Response Analysis. J. Geotech. Geoenviron. Eng. 2010, 136, 607–619. [Google Scholar] [CrossRef]
- Kottke, A.R.; Rathje, E.M. Comparison of time series and random-vibration theory site-response methods. Bull. Seismol. Soc. Am. 2013, 103, 2111–2127. [Google Scholar] [CrossRef]
- Beresnev, I.; Wen, K. Nonlinear Soil Response-A Reality? Bull. Seismol. Soc. Am. 1996, 86, 1964–1978. [Google Scholar]
- Bolisetti, C.; Whittaker, A.S.; Mason, H.B.; Almufti, I.; Willford, M. Equivalent linear and nonlinear site response analysis for design and risk assessment of safety-related nuclear structures. Nucl. Eng. Des. 2014, 275, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Dhakal, R.P.; Lin, S.L.; Loye, A.K.; Evans, S.J. Seismic design spectra for different soil classes. Bull. N. Z. Soc. Earthq. Eng. 2013, 46, 79–87. [Google Scholar]
- Elnashai, A.S.; Di Sarno, L. Fundamentals of Earthquake Engineering; Wiley and Sons: Chichester, UK, 2008; p. 347. [Google Scholar]
- Burjanek, J.; Edwards, B.; Fäh, D. Empirical evidence of local seismic effects at sites with pronounced topography: A systematic approach. Geophys. J. Int. 2014, 197, 608–619. [Google Scholar] [CrossRef]
- Seed, H.B.; Muraka, R.; Lysmer, J.; Idriss, I.M. Relationships of maximum acceleration, maximum velocity, distance from source, and local site conditions for moderately strong earthquakes. Bull. Seismol. Soc. Am. 1976, 66, 1323–1342. [Google Scholar]
- Anbazhagan, P.; Neaz Sheikh, M.; Parihar, A. Influence of rock depth on seismic site classification for shallow bedrock regions. Nat. Hazards Rev. 2013, 14, 108–121. [Google Scholar] [CrossRef]
- Bonilla, L.F.; Steidl, J.H.; Gariel, J.C.; Archuleta, R.J. Borehole response studies at the Garner Valley Downhole Array, southern California. Bull. Seismol. Soc. Am. 2002, 92, 3165–3179. [Google Scholar] [CrossRef]
- Belavauxm, M.; Meza-Fajardo, K.; Abad, J.; Bertil, D.; Roulle, A.; Munoz, S.; Prepetit, C. Combined Geophysical and Geotechnical Approaches for Microzonation Studies in Hispaniola Island. Geosciences 2018, 8, 336. [Google Scholar] [Green Version]
- Grasso, S.; Maugeri, M. The seismic microzonation of the city of Catania (Italy) for the Etna scenario earthquake (M = 6.2) od 20 February 1818. Earthq. Spectra 2012, 28, 573–594. [Google Scholar] [CrossRef]
- Roy, N.; Sahu, R.B. Site specific ground motion simulation and seismic response analysis for microzonation of Kolkata. Geomech. Eng. 2012, 4, 1–18. [Google Scholar] [CrossRef]
- Lanzo, G.; Silvestri, F.; Costanzo, A.; d’Onofrio, A.; Martelli, L.; Pagliaroli, A.; Sica, S.; Simonelli, A. Site response studies and seismic microzoning in the middle Aterno valley (L’Aquila, Central Italy). Bull. Earthq. Eng. 2011, 9, 1417–1442. [Google Scholar] [CrossRef]
- James, N.; Sitharam, T.G.; Padmanabhan, G.; Pillai, C.S. Seismic microzonation of a nuclear power plant site with detailed geotechnical, geophysical and site effect studies. Nat. Hazards 2014, 71, 419–462. [Google Scholar] [CrossRef]
Nr | Record Nr. | Earthquake | Year | Station | Vs,30 (m/s) | Mw | PGA (g) | Hyp. Depth (km) | Epic. Dist. (km) | Hyp. Dist. (km) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 23 | San Francisco-USA | 1957 | Golden Gate Park | 874 | 5.28 | 0.0863 | 8 | 11.13 | 13.7 |
2 | 43 | Lytle Creek-USA | 1970 | Cedar Springs, Allen Ranch | 813 | 5.33 | 0.0429 | 8 | 18.87 | 20.5 |
3 | 72 | San Fernando-USA | 1971 | Lake Hughes #4 | 822 | 6.61 | 0.1786 | 13 | 24.18 | 27.46 |
4 | 98 | Hollister-USA-03 | 1974 | Gilroy Array #1 | 1428 | 5.14 | 0.1053 | 6.11 | 11.08 | 12.66 |
5 | 146 | Coyote Lake-USA | 1979 | Gilroy Array #1 | 1428 | 5.74 | 0.1059 | 9.6 | 12.56 | 14.9 |
6 | 643 | Whittier Narrows-USA-01 | 1987 | LA - Wonderland Ave | 1223 | 5.99 | 0.0465 | 14.6 | 28.48 | 32.01 |
7 | 663 | Whittier Narrows-USA-01 | 1987 | Mt Wilson - CIT Seis Sta | 822 | 5.99 | 0.1599 | 14.6 | 19.56 | 24.41 |
8 | 680 | Whittier Narrows-USA-01 | 1987 | Pasadena - CIT Kresge Lab | 969 | 5.99 | 0.1034 | 14.6 | 13.85 | 20.12 |
9 | 715 | Whittier Narrows-USA-02 | 1987 | Mt Wilson - CIT Seis Sta | 822 | 5.27 | 0.1500 | 13.3 | 18.75 | 22.98 |
10 | 765 | Loma Prieta-USAa | 1989 | Gilroy Array #1 | 1428 | 6.93 | 0.4332 | 17.48 | 28.64 | 33.55 |
11 | 957 | Northridge-USA-01 | 1994 | Burbank - Howard Rd. | 822 | 6.69 | 0.1427 | 17.5 | 23.18 | 29.05 |
12 | 1011 | Northridge-USA-01 | 1994 | LA - Wonderland Ave | 1223 | 6.69 | 0.1408 | 17.5 | 18.99 | 25.82 |
13 | 1108 | Kobe, Japan | 1995 | Kobe University | 1043 | 6.9 | 0.2962 | 17.9 | 25.4 | 31.08 |
14 | 1165 | Kocaeli, Turkey | 1999 | Izmit | 811 | 7.51 | 0.1939 | 15 | 5.31 | 16.86 |
15 | 1645 | Sierra Madre-USA | 1991 | Mt Wilson - CIT Seis Sta | 822 | 5.61 | 0.2345 | 12 | 6.46 | 13.63 |
16 | 1696 | Northridge-USA-06 | 1994 | Burbank - Howard Rd. | 822 | 5.28 | 0.0604 | 13.09 | 16.21 | 20.83 |
17 | 1709 | Northridge-USA-06 | 1994 | LA - Griffith Park Observatory | 1016 | 5.28 | 0.0489 | 13.09 | 20.53 | 24.35 |
18 | 1715 | Northridge-USA-06 | 1994 | LA - Wonderland Ave | 1223 | 5.28 | 0.0527 | 13.09 | 15.71 | 20.45 |
19 | 1943 | Anza-USA-02 | 2001 | Idyllwild - Keenwild Fire Sta. | 845 | 4.92 | 0.0372 | 15.2 | 29.07 | 32.81 |
20 | 3548 | Loma Prieta-USA | 1989 | Los Gatos - Lexington Dam | 1070 | 6.93 | 0.4438 | 17.48 | 20.35 | 26.83 |
21 | 3718 | Whittier Narrows-USA-02 | 1987 | LA-Wonderland Ave | 1223 | 5.27 | 0.0184 | 13.3 | 26.18 | 29.37 |
22 | 4312 | Umbria-Italy-03 | 1984 | Gubbio | 922 | 5.6 | 0.050 | 9 | 17.08 | 19.31 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanko, D.; Markušić, S.; Gazdek, M.; Sanković, V.; Slukan, I.; Ivančić, I. Assessment of the Seismic Site Amplification in the City of Ivanec (NW Part of Croatia) Using the Microtremor HVSR Method and Equivalent-Linear Site Response Analysis. Geosciences 2019, 9, 312. https://doi.org/10.3390/geosciences9070312
Stanko D, Markušić S, Gazdek M, Sanković V, Slukan I, Ivančić I. Assessment of the Seismic Site Amplification in the City of Ivanec (NW Part of Croatia) Using the Microtremor HVSR Method and Equivalent-Linear Site Response Analysis. Geosciences. 2019; 9(7):312. https://doi.org/10.3390/geosciences9070312
Chicago/Turabian StyleStanko, Davor, Snježana Markušić, Mario Gazdek, Vedran Sanković, Ivan Slukan, and Ines Ivančić. 2019. "Assessment of the Seismic Site Amplification in the City of Ivanec (NW Part of Croatia) Using the Microtremor HVSR Method and Equivalent-Linear Site Response Analysis" Geosciences 9, no. 7: 312. https://doi.org/10.3390/geosciences9070312
APA StyleStanko, D., Markušić, S., Gazdek, M., Sanković, V., Slukan, I., & Ivančić, I. (2019). Assessment of the Seismic Site Amplification in the City of Ivanec (NW Part of Croatia) Using the Microtremor HVSR Method and Equivalent-Linear Site Response Analysis. Geosciences, 9(7), 312. https://doi.org/10.3390/geosciences9070312