Back to the Future: Using Long-Term Observational and Paleo-Proxy Reconstructions to Improve Model Projections of Antarctic Climate
Abstract
:1. Introduction
2. Key Phenomena and Processes Relating to Past Reconstructions and Future Projections of Antarctic Climate
3. Past Climates and Transitions (34 Ma to the Last 2 Ka)
3.1. Current State-of-the-Art
- -
- the Paleoclimate Model Intercomparison Project (PMIP, now in phase 4, and endorsed in the current World Climate Research Programme’s Coupled Model Intercomparison Phase 6 (CMIP6) project [23]): equilibrium simulations of the mid-Holocene (~6 ka, [24]), the LGM [25] and the LIG [26]. The last two phases also include the last millennium and the current phase is aimed at simulating transient evolution of particular time windows such as the last deglaciation of the LIG.
- -
- The Pliocene Model Intercomparison Project (PlioMIP, now in phase 2, [27]): equilibrium run with averaged conditions of the mPWP. Phase 2 includes equilibrium or transient simulations of specific glacial-interglacial oscillations within the mPWP.
- -
- The Pliocene Ice Sheet Model Intercomparison Project (PLISMIP-ANT, [28]): equilibrium simulations to test the sensitivity of the Antarctic ice sheet to the Pliocene warmth, forced with the outputs of PlioMIP experiments.
- -
- The Miocene Model Intercomparison Project (MioMIP, starting 2019): equilibrium simulations of particular snapshots centered on the MMCO and on the late Miocene.
- -
- The Deep-time Model Intercomparison Project (DeepMIP, [29]): is on-going and tests the sensitivity of models to very high atmospheric CO2 concentrations and/or different paleo-geographies, as suggested by proxy reconstructions for times older than the EOT.
- The last deglaciation represents a transient climate warming (from glacial to interglacial) with atmospheric CO2 remaining lower than present day (< 300 ppm, Figure 1).
- The LIG and MIS 11 can be used to evaluate the impact of warm orbits on meridional and zonal thermal gradients, polar amplification and the behaviour of teleconnections (SAM, PSA, ENSO). Both periods are suitable for reconstructing the oceanic conditions leading to Marine Ice Sheet Instability in Antarctica under low atmospheric CO2 concentration [34].
- mPWP, MMCO and EOT provide opportunities for out-of-sample evaluation of the ability of models to simulate rapid retreat of ice sheet (freshwater feedbacks) as well as sea ice expansion, polar amplification, teleconnections behaviour and bottom water formation. They have similarities with emission scenarios used by the IPCC for future climate projections.
3.2. Current Challenges
- Uncertainty in paleo bathymetry is hampering progress in the ability to realistically simulate past and future fresh water flux pathways and related ice sheet-ocean interactions
- Differences in model spin-up approach used by different model centres affect inter-comparisons of paleo-climate model simulations and potentially the rate of projected ice sheet change
- Current challenges in reconstructing and modelling sea ice, SST gradients, the ocean thermohaline circulation, westerlies and glacier conditions for past climates affects confidence in model projections
- A caveat for informing model projections based on past warm periods is that warming today is different in terms of drivers and rates of change (orbital versus greenhouse gas)
3.3. Next Steps
- Increased PMIP multi-model ensemble sizes in PMIP simulations would help to inform potential constraints on future projections
- Higher resolution paleoclimate records with better age characterisation to allow model evaluation over a wider range of climate variability timescales
- Improved bathymetry will help develop more realistic paleoclimate simulations, which is valuable for testing climate models outside their modern-era development focus
4. The Last Two Millennia
4.1. Temperature, Precipitation and Surface Mass Balance
4.1.1. Current State-of-the-Art
- Improved estimates of natural climate variability, and therefore its potential impact on projected change over the 21st century and beyond
4.1.2. Current Challenges
- uncertainty in forcings (e.g., vegetation, volcanic eruptions, solar variability) used to drive the models;
- misrepresentation or omission of physical processes within the models (e.g., uncertainty in representing anthropogenic aerosol processes and challenges in simulating extreme air-sea interaction conditions at high latitudes);
- the sparse and uneven availability of proxy data;
- biases in the reconstructions due to post-deposition effects, non-climatic influences on the records, or the complex relationship between some proxies (in particular δ18O) and climate variables (see for instance [111]).
- Incorrect assessment and interpretation ice sheet surface mass balance from ice cores, for instance due to omission high precipitation events resulting from maritime air intrusions [114].
- A ‘good’ model could exhibit biases in variability due to uncertainty in the amplitude of natural forcing of variability such as volcanic eruptions
- Key processes currently omitted or misrepresented in climate models may significantly bias estimates of future climate change impact
- Non-stationarity in relationships such as the SAM-temperature relationship are an important consideration when comparing models and reconstructions
4.1.3. Next Steps
- Moving more towards a ‘like-for-like’ comparison between models and climate proxies will likely help reduce uncertainties in model evaluation
- Increased intra-model ensemble sizes in PMIP simulations would help to assess projection uncertainty relating to internal climate variability
4.2. Surface Pressure and Teleconnections
4.2.1. Current State-of-the-Art
- Multi-proxy circulation reconstructions are best suited for evaluation of model-simulated hemispheric-scale SAM variability
- SAM reconstructions (both proxy and instrumental) are most consistent in summer, which is therefore most relevant to projections in this season
4.2.2. Current Challenges
- Current reconstructions limit the scope for evaluation of non-annular circulation patterns and/or jet stream shifting or strengthening associated with SAM variability
- There is a need to better understand model-reconstruction differences in multi-decadal variability in order to increase confidence in using such information to inform projections
4.2.3. Next Steps
- New gridded datasets utilising rescued data would have potential for improved model evaluation of atmospheric circulation through the early 20th century
- Improving the robustness of paleo-proxy reconstructions of atmospheric circulation and the coherency with the reconstructions of other variables (e.g., through data assimilation) would help to improve the evaluation of climate variability in models and its role in projections
5. The Emergence of Anthropogenic Climate Signals
5.1. Anthropogenic Signals in Antarctic Variables
5.1.1. Temperature
5.1.2. SMB
5.1.3. Atmospheric Circulation
5.1.4. Sea Ice
5.2. Incorporating Longer-Term Datasets in Antarctic D&A
- Anthropogenic signals are still not detectable in sea ice and therefore it is difficult to evaluate robustness of projections
- Improved quantification of the role of the ozone hole in West Antarctic climate variability is a key foundation for improving projections of broader environmental change
- Improved detection and attribution scaling would provide a basis for scaling climate model projections
6. Conclusions
- Reconstructions of past conditions are being used to identify climate model variants that best match past conditions and therefore provide the potential to narrow uncertainty in projections; wide participation in multi-model paleo-focused MIPs such as CMIP6-PMIP is encouraged.
- Improved paleo bathymetric data has the potential to better constrain past reconstructions and future simulations of freshwater fluxes from ice sheet melting, oceanic heat exchange between regional polar oceans and the open ocean, and impacts of freshwater release on the Southern Ocean.
- Recent progress in compiling long term extended instrumental and paleo-proxy records are providing improved information on decadal-to-centennial variability of the Antarctic climate system that may help to provide insight into the realism of the pronounced variability generated internally within the latest earth system models. There are both opportunities and challenges in assessing how drivers of variability (such as ENSO) influence climate indices such as the SAM and climatic conditions over Antarctica.
- To date formal D&A Antarctic studies have focused on the modern instrumental era, but there is potential to incorporate longer-term datasets and to help narrow the uncertainty range on detected signals.
- An overall recommendation that is not specific to the time periods or processes considered in this paper is for communities working on long-term Antarctic climate reconstructions to produce datasets for use in routine climate model evaluation. In this way, the paleoclimate information could be a more prominent part of the standard model development and testing cycle and feed directly into improving and developing the next generation of climate and earth-system models. A prominent example of a repository for observational data for use in model evaluation is the Obs4MIPs project (https://esgf-node.llnl.gov/projects/obs4mips/). Many aspects of the gridded reconstructions of Antarctic climate that have been generated as part of synthesis projects, such as PAGES Antarctica2k, could be adapted to conform to the formatting and uncertainty estimation requirements.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Flato, G.; Marotzke, J.; Abiodun, B.; Braconnot, P.; Chou, S.C.; Collins, W.; Cox, P.; Driouech, F.; Emori, S.; Eyring, V.; et al. Evaluation of Climate Models; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Nowicki, S.; Seroussi, H. Projections of Future Sea Level Contributions from the Greenland and Antarctic Ice Sheets Challenges beyond Dynamical Ice Sheet Modeling. Oceanography 2018, 31, 109–117. [Google Scholar] [CrossRef]
- Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.-L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; Gutowski, W.J.; Johns, T.; Krinner, G.; et al. Long-term Climate Change: Projections, Commitments and Irreversibility. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Bracegirdle, T.J.; Hyder, P.; Holmes, C.R. CMIP5 diversity in southern westerly jet projections related to historical sea ice area; strong link to strengthening and weak link to shift. J. Clim. 2018, 31, 195–211. [Google Scholar] [CrossRef]
- Chavaillaz, Y.; Codron, F.; Kageyama, M. Southern westerlies in LGM and future (RCP4.5) climates. Clim. Past 2013, 9, 517–524. [Google Scholar] [CrossRef] [Green Version]
- Krinner, G.; Largeron, C.; Menegoz, M.; Agosta, C.; Brutel-Vuilmet, C. Oceanic Forcing of Antarctic Climate Change: A Study Using a Stretched-Grid Atmospheric General Circulation Model. J. Clim. 2014, 27, 5786–5800. [Google Scholar] [CrossRef] [Green Version]
- Limpasuvan, V.; Hartmann, D.L. Eddies and the annular modes of climate variability. Geophys. Res. Lett. 1999, 26, 3133–3136. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.; Phillips, T.; Hosking, J.S.; Marshall, G.J.; Orr, A. The Amundsen Sea low. Int. J. Climatol. 2013, 33, 1818–1829. [Google Scholar] [CrossRef]
- Turner, J.; Comiso, J.C.; Marshall, G.J.; Lachlan-Cope, T.A.; Bracegirdle, T.J.; Maksym, T.; Meredith, M.P.; Wang, Z.; Orr, A. Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett. 2009, 36, L08502. [Google Scholar] [CrossRef]
- England, M.R.; Polvani, L.M.; Smith, K.L.; Landrum, L.; Holland, M.M. Robust response of the Amundsen Sea Low to stratospheric ozone depletion. Geophys. Res. Lett. 2016, 43, 8207–8213. [Google Scholar] [CrossRef]
- Karoly, D.J. Southern Hemisphere circulation features associated with El Niño-Southern Oscillation events. J. Clim. 1989, 2, 1239–1252. [Google Scholar] [CrossRef]
- Stevenson, S.; Fox-Kemper, B.; Jochum, M.; Neale, R.; Deser, C.; Meehl, G. Will There Be a Significant Change to El Nino in the Twenty-First Century? J. Clim. 2012, 25, 2129–2145. [Google Scholar] [CrossRef]
- Arblaster, J.M.; Meehl, G.A. Contributions of external forcings to southern annular mode trends. J. Clim. 2006, 19, 2896–2905. [Google Scholar] [CrossRef]
- Polvani, L.M.; Waugh, D.W.; Correa, G.J.P.; Son, S.-W. Stratospheric Ozone Depletion: The Main Driver of Twentieth-Century Atmospheric Circulation Changes in the Southern Hemisphere. J. Clim. 2011, 24, 795–812. [Google Scholar] [CrossRef]
- Datwyler, C.; Neukom, R.; Abram, N.J.; Gallant, A.J.E.; Grosjean, M.; Jacques-Coper, M.; Karoly, D.J.; Villalba, R. Teleconnection stationarity, variability and trends of the Southern Annular Mode (SAM) during the last millennium. Clim. Dyn. 2018, 51, 2321–2339. [Google Scholar] [CrossRef]
- Gillett, N.P.; Fyfe, J.C. Annular mode changes in the CMIP5 simulations. Geophys. Res. Lett. 2013, 40, 1189–1193. [Google Scholar] [CrossRef]
- Bracegirdle, T.J.; Stephenson, D.B.; Turner, J.; Phillips, T. The importance of sea ice area biases in 21st century multimodel projections of Antarctic temperature and precipitation. Geophys. Res. Lett. 2015, 42. [Google Scholar] [CrossRef]
- Holloway, M.D.; Sime, L.C.; Singarayer, J.S.; Tindall, J.C.; Bunch, P.; Valdes, P.J. Antarctic last interglacial isotope peak in response to sea ice retreat not ice-sheet collapse. Nat. Commun. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.F.; Stewart, A.L.; Spence, P.; Heywood, K.J. The Antarctic Slope Current in a Changing Climate. Rev. Geophys. 2018, 56, 741–770. [Google Scholar] [CrossRef]
- Braconnot, P.; Harrison, S.P.; Kageyama, M.; Bartlein, P.J.; Masson-Delmotte, V.; Abe-Ouchi, A.; Otto-Bliesner, B.; Zhao, Y. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Chang. 2012, 2, 417–424. [Google Scholar] [CrossRef]
- Lear, C.H.; Elderfield, H.; Wilson, P.A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 2000, 287, 269–272. [Google Scholar] [CrossRef]
- Fischer, H.; Meissner, K.J.; Mix, A.C.; Abram, N.J.; Austermann, J.; Brovkin, V.; Capron, E.; Colombaroli, D.; Daniau, A.L.; Dyez, K.A.; et al. Palaeoclimate constraints on the impact of 2 degrees C anthropogenic warming and beyond. Nat. Geosci. 2018, 11, 474–485. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Otto-Bliesner, B.L.; Braconnot, P.; Harrison, S.P.; Lunt, D.J.; Abe-Ouchi, A.; Albani, S.; Bartlein, P.J.; Capron, E.; Carlson, A.E.; Dutton, A.; et al. The PMIP4 contribution to CMIP6-Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations. Geosci. Model Dev. 2017, 10, 3979–4003. [Google Scholar] [CrossRef]
- Kageyama, M.; Albani, S.; Braconnot, P.; Harrison, S.P.; Hopcroft, P.O.; Ivanovic, R.F.; Lambert, F.; Marti, O.; Peltier, W.R.; Peterschmitt, J.-Y.; et al. The PMIP4 contribution to CMIP6-Part 4: Scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments. Geosci. Model Dev. 2017, 10, 4035–4055. [Google Scholar] [CrossRef]
- Lunt, D.J.; Abe-Ouchi, A.; Bakker, P.; Berger, A.; Braconnot, P.; Charbit, S.; Fischer, N.; Herold, N.; Jungclaus, J.H.; Khon, V.C.; et al. A multi-model assessment of last interglacial temperatures. Clim. Past 2013, 9, 699–717. [Google Scholar] [CrossRef] [Green Version]
- Haywood, A.M.; Dowsett, H.J.; Dolan, A.M.; Rowley, D.; Abe-Ouchi, A.; Otto-Bliesner, B.; Chandler, M.A.; Hunter, S.J.; Lunt, D.J.; Pound, M.; et al. The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: Scientific objectives and experimental design. Clim. Past 2016, 12, 663–675. [Google Scholar] [CrossRef]
- de Boer, B.; Dolan, A.M.; Bernales, J.; Gasson, E.; Goelzer, H.; Golledge, N.R.; Sutter, J.; Huybrechts, P.; Lohmann, G.; Rogozhina, I.; et al. Simulating the Antarctic ice sheet in the late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project. Cryosphere 2015, 9, 881–903. [Google Scholar] [CrossRef] [Green Version]
- Lunt, D.J.; Huber, M.; Anagnostou, E.; Baatsen, M.L.J.; Caballero, R.; DeConto, R.; Dijkstra, H.A.; Donnadieu, Y.; Evans, D.; Feng, R.; et al. The DeepMIP contribution to PMIP4: Experimental design for model simulations of the EECO, PETM, and pre-PETM (version 1.0). Geosci. Model Dev. 2017, 10, 889–901. [Google Scholar] [CrossRef]
- Waelbroeck, C.; Paul, A.; Kucera, M.; Rosell-Mele, A.; Weinelt, M.; Schneider, R.; Mix, A.C.; Abelmann, A.; Armand, L.; Bard, E.; et al. Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nat. Geosci. 2009, 2, 127–132. [Google Scholar] [CrossRef]
- Turney, C.S.M.; Jones, R.T. Does the Agulhas Current amplify global temperatures during super-interglacials? J. Quat. Sci. 2010, 25, 839–843. [Google Scholar] [CrossRef]
- Capron, E.; Govin, A.; Stone, E.J.; Masson-Delmotte, V.; Mulitza, S.; Otto-Bliesner, B.; Rasmussen, T.L.; Sime, L.C.; Waelbroeck, C.; Wolff, E.W. Temporal and spatial structure of multi-millennial temperature changes at high latitudes during the Last Interglacial. Quat. Sci. Rev. 2014, 103, 116–133. [Google Scholar] [CrossRef] [Green Version]
- Dowsett, H.; Barron, J.; Poore, R. Middle Pliocene sea surface temperatures: A global reconstruction. Mar. Micropaleontol. 1996, 27, 13–25. [Google Scholar] [CrossRef]
- Dutton, A.; Carlson, A.E.; Long, A.J.; Milne, G.A.; Clark, P.U.; DeConto, R.; Horton, B.P.; Rahmstorf, S.; Raymo, M.E. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 2015, 349. [Google Scholar] [CrossRef] [PubMed]
- Laskar, J.; Gastineau, M.; Joutel, F.; Levrard, B.; Robutel, P. A New Astronomical Solution for the Long Term Evolution of the Insolation Quantities of Mars. In Proceedings of the 35th Lunar and Planetary Science Conference, League City, TX, USA, 15–19 March 2004. [Google Scholar]
- Luthi, D.; Le Floch, M.; Bereiter, B.; Blunier, T.; Barnola, J.M.; Siegenthaler, U.; Raynaud, D.; Jouzel, J.; Fischer, H.; Kawamura, K.; et al. High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature 2008, 453, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Pagani, M.; Liu, Z.H.; LaRiviere, J.; Ravelo, A.C. High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations. Nat. Geosci. 2010, 3, 27–30. [Google Scholar] [CrossRef]
- Stoll, H.M.; Guitian, J.; Hernandez-Almeida, I.; Mejia, L.M.; Phelps, S.; Polissar, P.; Rosenthal, Y.; Zhang, H.R.; Ziveri, P. Upregulation of phytoplankton carbon concentrating mechanisms during low CO2 glacial periods and implications for the phytoplankton pCO(2) proxy. Quat. Sci. Rev. 2019, 208, 1–20. [Google Scholar] [CrossRef]
- Beerling, D.J.; Royer, D.L. Convergent Cenozoic CO2 history. Nat. Geosci. 2011, 4, 418–420. [Google Scholar] [CrossRef]
- Vacchi, M.; Marriner, N.; Morhange, C.; Spada, G.; Fontana, A.; Rovere, A. Multiproxy assessment of Holocene relative sea-level changes in the western Mediterranean: Sea-level variability and improvements in the definition of the isostatic signal. Earth-Sci. Rev. 2016, 155, 172–197. [Google Scholar] [CrossRef] [Green Version]
- Miller, K.G.; Kominz, M.A.; Browning, J.V.; Wright, J.D.; Mountain, G.S.; Katz, M.E.; Sugarman, P.J.; Cramer, B.S.; Christie-Blick, N.; Pekar, S.F. The phanerozoic record of global sea-level change. Science 2005, 310, 1293–1298. [Google Scholar] [CrossRef]
- Pusz, A.E.; Thunell, R.C.; Miller, K.G. Deep water temperature, carbonate ion, and ice volume changes across the Eocene-Oligocene climate transition. Paleoceanography 2011, 26. [Google Scholar] [CrossRef] [Green Version]
- Kingslake, J.; Scherer, R.P.; Albrecht, T.; Coenen, J.; Powell, R.D.; Reese, R.; Stansell, N.D.; Tulaczyk, S.; Wearing, M.G.; Whitehouse, P.L. Extensive retreat and re-advance of the West Antarctic Ice Sheet during the Holocene. Nature 2018, 558, 430. [Google Scholar] [CrossRef]
- Lamy, F.; Kilian, R.; Arz, H.W.; Francois, J.-P.; Kaiser, J.; Prange, M.; Steinke, T. Holocene changes in the position and intensity of the southern westerly wind belt. Nat. Geosci. 2010, 3, 695–699. [Google Scholar] [CrossRef] [Green Version]
- Bentley, M.J.; Cofaigh, C.O.; Anderson, J.B.; Conway, H.; Davies, B.; Graham, A.G.C.; Hillenbrand, C.-D.; Hodgson, D.A.; Jamieson, S.S.R.; Larter, R.D.; et al. A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. Quat. Sci. Rev. 2014, 100, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Strugnell, J.M.; Pedro, J.B.; Wilson, N.G. Dating Antarctic ice sheet collapse: Proposing a molecular genetic approach. Quat. Sci. Rev. 2018, 179, 153–157. [Google Scholar] [CrossRef]
- Naish, T.; Powell, R.; Levy, R.; Wilson, G.; Scherer, R.; Talarico, F.; Krissek, L.; Niessen, F.; Pompilio, M.; Wilson, T.; et al. Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 2009, 458, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Cook, C.P.; van de Flierdt, T.; Williams, T.; Hemming, S.R.; Iwai, M.; Kobayashi, M.; Jimenez-Espejo, F.J.; Escutia, C.; Gonzalez, J.J.; Khim, B.K.; et al. Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth. Nat. Geosci. 2013, 6, 765–769. [Google Scholar] [CrossRef]
- Gulick, S.P.S.; Shevenell, A.E.; Montelli, A.; Fernandez, R.; Smith, C.; Warny, S.; Bohaty, S.M.; Sjunneskog, C.; Leventer, A.; Frederick, B.; et al. Initiation and long-term instability of the East Antarctic Ice Sheet. Nature 2017, 552, 225. [Google Scholar] [CrossRef] [PubMed]
- Dowsett, H.; Thompson, R.; Barron, J.; Cronin, T.; Fleming, F.; Ishman, S.; Poore, R.; Willard, D.; Holtz, T. Joint investigations of the middle pliocene Climate 1. PRISM paleoenvironmental reconstructions. Glob. Planet. Chang. 1994, 9, 169–195. [Google Scholar] [CrossRef]
- Gasson, E.; DeConto, R.M.; Pollard, D.; Levy, R.H. Dynamic Antarctic ice sheet during the early to mid-Miocene. Proc. Nat. Acad. Sci. USA 2016, 113, 3459–3464. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.H.; Meyers, S.R.; Naish, T.R.; Golledge, N.R.; McKay, R.M.; Crampton, J.S.; DeConto, R.M.; De Santis, L.; Florindo, F.; Gasson, E.G.W.; et al. Antarctic ice-sheet sensitivity to obliquity forcing enhanced through ocean connections. Nat. Geosci. 2019, 12, 132. [Google Scholar] [CrossRef]
- Sangiorgi, F.; Bijl, P.K.; Passchier, S.; Salzmann, U.; Schouten, S.; McKay, R.; Cody, R.D.; Pross, J.; van de Flierdt, T.; Bohaty, S.M.; et al. Southern Ocean warming and Wilkes Land ice sheet retreat during the mid-Miocene. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef]
- Liu, Z.; He, Y.; Jiang, Y.; Wang, H.; Liu, W.; Bohaty, S.M.; Wilson, P.A. Transient temperature asymmetry between hemispheres in the Palaeogene Atlantic Ocean. Nat. Geosci. 2018, 11, 656. [Google Scholar] [CrossRef]
- Meure, C.M.; Etheridge, D.; Trudinger, C.; Steele, P.; Langenfelds, R.; van Ommen, T.; Smith, A.; Elkins, J. Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Siegenthaler, U.; Monnin, E.; Kawamura, K.; Spahni, R.; Schwander, J.; Stauffer, B.; Stocker, T.F.; Barnola, J.M.; Fischer, H. Supporting evidence from the EPICA Dronning Maud Land ice core for atmospheric CO2 changes during the past millennium. Tellus Ser. B-Chem. Phys. Meteorol. 2005, 57, 51–57. [Google Scholar] [CrossRef]
- Ahn, J.; Brook, E.J.; Mitchell, L.; Rosen, J.; McConnell, J.R.; Taylor, K.; Etheridge, D.; Rubino, M. Atmospheric CO2 over the last 1000 years: A high-resolution record from the West Antarctic Ice Sheet (WAIS) Divide ice core. Glob. Biogeochem. Cycles 2012, 26. [Google Scholar] [CrossRef]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang.-Hum. Policy Dimens. 2017, 42, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Koehler, P.; Nehrbass-Ahles, C.; Schmitt, J.; Stocker, T.F.; Fischer, H. A 156 kyr smoothed history of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing. Earth Syst. Sci. Data 2017, 9. [Google Scholar] [CrossRef]
- Tan, N.; Ladant, J.-B.; Ramstein, G.; Dumas, C.; Bachem, P.; Jansen, E. Dynamic Greenland ice sheet driven by pCO(2) variations across the Pliocene Pleistocene transition. Nat. Commun. 2018, 9, 4755. [Google Scholar] [CrossRef] [PubMed]
- Colleoni, F.; De Santis, L.; Montoli, E.; Olivo, E.; Sorlien, C.C.; Bart, P.J.; Gasson, E.G.W.; Bergamasco, A.; Sauli, C.; Wardell, N.; et al. Past continental shelf evolution increased Antarctic ice sheet sensitivity to climatic conditions. Sci. Rep. 2018, 8, 11323. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.X.; Starz, M.; Gohl, K.; Knorr, G.; Lohmann, G. Impact of Weddell Sea shelf progradation on Antarctic bottom water formation during the Miocene. Paleoceanography 2017, 32, 304–317. [Google Scholar] [CrossRef] [Green Version]
- Simkins, L.M.; Anderson, J.B.; Greenwood, S.L.; Gonnermann, H.M.; Prothro, L.O.; Halberstadt, A.R.W.; Stearns, L.A.; Pollard, D.; DeConto, R.M. Anatomy of a meltwater drainage system beneath the ancestral East Antarctic ice sheet. Nat. Geosci. 2017, 10, 691. [Google Scholar] [CrossRef]
- De Santis, L.; Prato, S.; Brancolini, G.; Lovo, M.; Torelli, L. The Eastern Ross Sea continental shelf during the Cenozoic, implications for the West Antarctic ice sheet development. Glob. Planet. Chang. 1999, 23, 173–196. [Google Scholar] [CrossRef]
- DeConto, R.M.; Pollard, D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 2003, 421, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Ganopolski, A.; Brovkin, V. Simulation of climate, ice sheets and CO2 evolution during the last four glacial cycles with an Earth system model of intermediate complexity. Clim. Past 2017, 13, 1695–1716. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Otto-Bliesner, B.L.; He, F.; Brady, E.C.; Tomas, R.; Clark, P.U.; Carlson, A.E.; Lynch-Stieglitz, J.; Curry, W.; Brook, E.; et al. Transient Simulation of Last Deglaciation with a New Mechanism for Bolling-Allerod Warming. Science 2009, 325, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Notz, D.; Tietsche, S.; Marotzke, J. The Transient versus the Equilibrium Response of Sea Ice to Global Warming. J. Clim. 2013, 26, 5624–5636. [Google Scholar] [CrossRef] [Green Version]
- Manabe, S.; Stouffer, R.J. Two Stable Equilibria of a Coupled Ocean-Atmosphere Model. J. Clim. 1988, 1, 841–866. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Lohmann, G.; Knorr, G.; Xu, X. Different ocean states and transient characteristics in Last Glacial Maximum simulations and implications for deglaciation. Clim. Past 2013, 9, 2319–2333. [Google Scholar] [CrossRef] [Green Version]
- Bakker, P.; Masson-Delmotte, V.; Martrat, B.; Charbit, S.; Renssen, H.; Groger, M.; Krebs-Kanzow, U.; Lohmann, G.; Lunt, D.J.; Pfeiffer, M.; et al. Temperature trends during the Present and Last Interglacial periods—A multi-model-data comparison. Quat. Sci. Rev. 2014, 99, 224–243. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Kageyama, M.; Braconnot, P.; Charbit, S.; Krinner, G.; Ritz, C.; Guilyardi, E.; Jouzel, J.; Abe-Ouchi, A.; Crucifix, M.; et al. Past and future polar amplification of climate change: Climate model intercomparisons and ice-core constraints. Clim. Dyn. 2006, 26, 513–529. [Google Scholar] [CrossRef]
- Sime, L.C.; Hodgson, D.; Bracegirdle, T.J.; Allen, C.; Perren, B.; Roberts, S.; de Boer, A.M. Sea ice led to poleward-shifted winds at the Last Glacial Maximum: The influence of state dependency on CMIP5 and PMIP3 models. Clim. Past 2016, 12, 2241–2253. [Google Scholar] [CrossRef]
- Rojas, M. Sensitivity of Southern Hemisphere circulation to LGM and 4xCO2 climates. Geophys. Res. Lett. 2013, 40, 965–970. [Google Scholar] [CrossRef]
- Li, X.Y.; Jiang, D.B.; Zhang, Z.S.; Zhang, R.; Tian, Z.P.; Yan, Q. Mid-Pliocene westerlies from PlioMIP simulations. Adv. Atmos. Sci. 2015, 32, 909–923. [Google Scholar] [CrossRef]
- Heuze, C.; Heywood, K.J.; Stevens, D.P.; Ridley, J.K. Southern Ocean bottom water characteristics in CMIP5 models. Geophys. Res. Lett. 2013, 40. [Google Scholar] [CrossRef]
- Dolan, A.M.; Haywood, A.M.; Hill, D.J.; Dowsett, H.J.; Hunter, S.J.; Lunt, D.J.; Pickering, S.J. Sensitivity of Pliocene ice sheets to orbital forcing. Palaeogeog. Palaeoclimatol. Palaeoecol. 2011, 309, 98–110. [Google Scholar] [CrossRef]
- Haywood, A.M.; Dowsett, H.J.; Dolan, A.M. Integrating geological archives and climate models for the mid-Pliocene warm period. Nat. Commun. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Dowsett, H.J.; Robinson, M.M.; Haywood, A.M.; Hill, D.J.; Dolan, A.M.; Stoll, D.K.; Chan, W.-L.; Abe-Ouchi, A.; Chandler, M.A.; Rosenbloom, N.A.; et al. Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models. Nat. Clim. Chang. 2012, 2, 365–371. [Google Scholar] [CrossRef]
- Harrison, S.P.; Bartlein, P.J.; Prentice, I.C. What have we learnt from palaeoclimate simulations? J. Quat. Sci. 2016, 31, 363–385. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, G.A.; Annan, J.D.; Bartlein, P.J.; Cook, B.I.; Guilyardi, E.; Hargreaves, J.C.; Harrison, S.P.; Kageyama, M.; LeGrande, A.N.; Konecky, B.; et al. Using palaeo-climate comparisons to constrain future projections in CMIP5. Clim. Past 2014, 10, 221–250. [Google Scholar] [CrossRef] [Green Version]
- DeConto, R.M.; Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 2016, 531, 591–597. [Google Scholar] [CrossRef]
- Edwards, T.L.; Brandon, M.A.; Durand, G.; Edwards, N.R.; Golledge, N.R.; Holden, P.B.; Nias, I.J.; Payne, A.J.; Ritz, C.; Wernecke, A. Revisiting Antarctic ice loss due to marine ice-cliff instability. Nature 2019, 566, 58. [Google Scholar] [CrossRef]
- Golledge, N.R.; Thomas, Z.A.; Levy, R.H.; Gasson, E.G.W.; Naish, T.R.; McKay, R.M.; Kowalewski, D.E.; Fogwill, C.J. Antarctic climate and ice-sheet configuration during the early Pliocene interglacial at 4.23 Ma. Clim. Past 2017, 13, 959–975. [Google Scholar] [CrossRef] [Green Version]
- Sutter, J.; Gierz, P.; Grosfeld, K.; Thoma, M.; Lohmann, G. Ocean temperature thresholds for Last Interglacial West Antarctic Ice Sheet collapse. Geophys. Res. Lett. 2016, 43, 2675–2682. [Google Scholar] [CrossRef] [Green Version]
- Golledge, N.R.; Menviel, L.; Carter, L.; Fogwill, C.J.; England, M.H.; Cortese, G.; Levy, R.H. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Asay-Davis, X.S.; Jourdain, N.C.; Nakayama, Y.J.C.C.C.R. Developments in Simulating and Parameterizing Interactions Between the Southern Ocean and the Antarctic Ice Sheet. Curr. Clim. Chang. Rep. 2017, 3, 316–329. [Google Scholar] [CrossRef]
- Wainer, I.; Prado, L.F.; Khodri, M.; Otto-Bliesner, B. Reconstruction of the South Atlantic Subtropical Dipole index for the past 12,000 years from surface temperature proxy. Sci. Rep. 2014, 4. [Google Scholar] [CrossRef] [PubMed]
- Mckay, R.M.; De Santis, L.; Kuhlhanek, D.K. Expedition 374 Scientific Prospectus: Ross Sea West Antarctic Ice Sheet History. 2017. Available online: http://publications.iodp.org/scientific_prospectus/374/ (accessed on 15 May 2019).
- Jones, J.M.; Gille, S.T.; Goosse, H.; Abram, N.J.; Canziani, P.O.; Charman, D.J.; Clem, K.R.; Crosta, X.; de Lavergne, C.; Eisenman, I.; et al. Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat. Clim. Chang. 2016, 6, 917–926. [Google Scholar] [CrossRef]
- Mayewski, P.A.; Frezzotti, M.; Bertler, N.; Van Ommen, T.; Hamilton, G.; Jacka, T.H.; Welch, B.; Frey, M.; Qin, D.; Ren, J.W.; et al. The International Trans-Antarctic Scientific Expedition (ITASE): An overview. Ann. Glaciol. 2005, 41, 180–185. [Google Scholar] [CrossRef]
- Dixon, D.A.; Mayewski, P.A.; Goodwin, I.D.; Marshall, G.J.; Freeman, R.; Maasch, K.A.; Sneed, S.B. An ice-core proxy for northerly air mass incursions into West Antarctica. Int. J. Climatol. 2012, 32, 1455–1465. [Google Scholar] [CrossRef]
- Thomas, E.R.; Bracegirdle, T.J. Precipitation pathways for five new ice core sites in Ellsworth Land, West Antarctica. Clim. Dyn. 2015, 44, 2067–2078. [Google Scholar] [CrossRef]
- Thomas, E.R.; Hosking, J.S.; Tuckwell, R.R.; Warren, R.A.; Ludlow, E.C. Twentieth century increase in snowfall in coastal West Antarctica. Geophys. Res. Lett. 2015, 42, 9387–9393. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, I.; de Angelis, M.; Pook, M.; Young, N.W. Snow accumulation variability in Wilkes Land, East Antarctica, and the relationship to atmospheric ridging in the 130õ-170õE region since 1930. J. Geophys. Res. 2003, 108, 4673–4674. [Google Scholar] [CrossRef]
- Thomas, E.R.; van Wessem, J.M.; Roberts, J.; Isaksson, E.; Schlosser, E.; Fudge, T.J.; Vallelonga, P.; Medley, B.; Lenaerts, J.; Bertler, N.; et al. Regional Antarctic snow accumulation over the past 1000 years. Clim. Past 2017, 13, 1491–1513. [Google Scholar] [CrossRef] [Green Version]
- Masson-Delmotte, V.; Hou, S.; Ekaykin, A.; Jouzel, J.; Aristarain, A.; Bernardo, R.T.; Bromwich, D.; Cattani, O.; Delmotte, M.; Falourd, S.; et al. A review of Antarctic surface snow isotopic composition: Observations, atmospheric circulation, and isotopic modeling. J. Clim. 2008, 21, 3359–3387. [Google Scholar] [CrossRef]
- Stenni, B.; Curran, M.A.J.; Abram, N.J.; Orsi, A.; Goursaud, S.; Masson-Delmotte, V.; Neukom, R.; Goosse, H.; Divine, D.; Van Ommen, T.; et al. Antarctic climate variability on regional and continental scales over the last 2000 years. Clim. Past 2017, 13, 1609–1634. [Google Scholar] [CrossRef] [Green Version]
- Agosta, C.; Amory, C.; Kittel, C.; Orsi, A.; Favier, V.; Gallee, H.; van den Broeke, M.R.; Lenaerts, J.T.M.; van Wessem, J.M.; van de Berg, W.J.; et al. Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes. Cryosphere 2019, 13, 281–296. [Google Scholar] [CrossRef]
- Favier, V.; Agosta, C.; Parouty, S.; Durand, G.; Delaygue, G.; Gallee, H.; Drouet, A.S.; Trouvilliez, A.; Krinner, G. An updated and quality controlled surface mass balance dataset for Antarctica. Cryosphere 2013, 7, 583–597. [Google Scholar] [CrossRef] [Green Version]
- van Wessem, J.M.; Reijmer, C.H.; Morlighem, M.; Mouginot, J.; Rignot, E.; Medley, B.; Joughin, I.; Wouters, B.; Depoorter, M.A.; Bamber, J.L.; et al. Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. J. Glaciol. 2014, 60, 761–770. [Google Scholar] [CrossRef] [Green Version]
- Medley, B.; Thomas, E.R. Increased snowfall over the Antarctic Ice Sheet mitigated twentieth-century sea-level rise. Nat. Clim. Chang. 2019, 9, 34. [Google Scholar] [CrossRef]
- Lenaerts, J.T.M.; Ligtenberg, S.R.M.; Medley, B.; Van de Berg, W.J.; Konrad, H.; Nicolas, J.P.; Van Wessem, J.M.; Trusel, L.D.; Mulvaney, R.; Tuckwell, R.J.; et al. Climate and surface mass balance of coastal West Antarctica resolved by regional climate modelling. Ann. Glaciol. 2018, 59, 29–41. [Google Scholar] [CrossRef]
- Wang, Y.; Thomas, E.R.; Hou, S.; Huai, B.; Wu, S.; Sun, W.; Qi, S.; Ding, M.; Zhang, Y. Snow Accumulation Variability Over the West Antarctic Ice Sheet Since 1900: A Comparison of Ice Core Records With ERA-20C Reanalysis. Geophys. Res. Lett. 2017, 44, 11482–11490. [Google Scholar] [CrossRef]
- Dalaiden, Q.; Goosse, H.; Klein, F.; Lenaerts, J.; Holloway, M.; Sime, L.; Thomas, E.R. Surface Mass Balance of the Antarctic Ice Sheet and its link with surface temperature change in model simulations and reconstructions. Geosciences. Submitted. [CrossRef]
- Smith, K.L.; Polvani, L.M. Spatial patterns of recent Antarctic surface temperature trends and the importance of natural variability: Lessons from multiple reconstructions and the CMIP5 models. Clim. Dyn. 2017, 48, 2653–2670. [Google Scholar] [CrossRef]
- Abram, N.J.; McGregor, H.V.; Tierney, J.E.; Evans, M.N.; McKay, N.P.; Kaufman, D.S.; Kaustubh, T.; Martrat, B.; Goosse, H.; Phipps, S.J.; et al. Early onset of industrial-era warming across the oceans and continents. Nature 2016, 536, 411. [Google Scholar] [CrossRef] [PubMed]
- Raible, C.C.; Casty, C.; Luterbacher, J.; Pauling, A.; Esper, J.; Frank, D.C.; Buntgen, U.; Roesch, A.C.; Tschuck, P.; Wild, M.; et al. Climate variability-observations, reconstructions, and model simulations for the Atlantic-European and Alpine region from 1500–2100 AD. Clim. Chang. 2006, 79, 9–29. [Google Scholar] [CrossRef]
- Pages2k-PMIP3-Group; Bothe, O.; Evans, M.; Donado, L.F.; Bustamante, E.G.; Gergis, J.; Gonzalez-Rouco, J.F.; Goosse, H.; Hegerl, G.; Hind, A.; et al. Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium. Clim. Past 2015, 11, 1673–1699. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, G.A.; Jungclaus, J.H.; Ammann, C.M.; Bard, E.; Braconnot, P.; Crowley, T.J.; Delaygue, G.; Joos, F.; Krivova, N.A.; Muscheler, R.; et al. Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci. Model Dev. 2011, 4, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Neukom, R.; Schurer, A.P.; Steiger, N.J.; Hegerl, G.C. Possible causes of data model discrepancy in the temperature history of the last Millennium. Sci. Rep. 2018, 8, 7572. [Google Scholar] [CrossRef] [PubMed]
- Marshall, G.J.; Bracegirdle, T.J. An examination of the relationship between the Southern Annular Mode and Antarctic surface air temperatures in the CMIP5 historical runs. Clim. Dyn. 2015, 45, 1513–1535. [Google Scholar] [CrossRef]
- Goodwin, I.D.; Browning, S.; Lorrey, A.M.; Mayewski, P.A.; Phipps, S.J.; Bertler, N.A.N.; Edwards, R.P.; Cohen, T.J.; van Ommen, T.; Curran, M.; et al. A reconstruction of extratropical Indo-Pacific sea-level pressure patterns during the Medieval Climate Anomaly. Clim. Dyn. 2014, 43, 1197–1219. [Google Scholar] [CrossRef]
- Turner, J.; Phillips, T.; Thamban, M.; Rahaman, W.; Marshall, G.J.; Wille, J.D.; Favier, V.; Winton, V.H.L.; Thomas, E.; Wang, Z.; et al. The Dominant Role of Extreme Precipitation Events in Antarctic Snowfall Variability. Geophys. Res. Lett. 2019, 46, 3502–3511. [Google Scholar] [CrossRef] [Green Version]
- Phipps, S.J.; McGregor, H.V.; Gergis, J.; Gallant, A.J.E.; Neukom, R.; Stevenson, S.; Ackerley, D.; Brown, J.R.; Fischer, M.J.; van Ommen, T.D. Paleoclimate Data-Model Comparison and the Role of Climate Forcings over the Past 1500 Years. J. Clim. 2013, 26, 6915–6936. [Google Scholar] [CrossRef]
- Dee, S.; Emile-Geay, J.; Evans, M.N.; Allam, A.; Steig, E.J.; Thompson, D.M. PRYSM: An open-source framework for PRoxY System Modeling, with applications to oxygen-isotope systems. J. Adv. Modeling Earth Syst. 2015, 7, 1220–1247. [Google Scholar] [CrossRef]
- Jouzel, J.; Merlivat, L. Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation. J. Geophys. Res. 1984, 89, 11749–11757. [Google Scholar] [CrossRef]
- Klein, F.; Abram, N.J.; Curran, M.A.J.; Goosse, H.; Goursaud, S.; Masson-Delmotte, V.; Moy, A.; Neukom, R.; Orsi, A.; Sjolte, J.; et al. Assessing the robustness of Antarctic temperature reconstructions over the past 2 millennia using pseudoproxy and data assimilation experiments. Clim. Past 2019, 15, 661–684. [Google Scholar] [CrossRef] [Green Version]
- Favier, V.; Krinner, G.; Amory, C.; Gallee, H.; Beaumet, J.; Agosta, C. Antarctica-Regional Climate and Surface Mass Budget. Curr. Clim. Chang. Rep. 2017, 3, 303–315. [Google Scholar] [CrossRef] [Green Version]
- Lenaerts, J.T.M.; Vizcaino, M.; Fyke, J.; van Kampenhout, L.; van den Broeke, M.R. Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model. Clim. Dyn. 2016, 47, 1367–1381. [Google Scholar] [CrossRef] [Green Version]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kaercher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res.-Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Libois, Q.; Picard, G.; France, J.L.; Arnaud, L.; Dumont, M.; Carmagnola, C.M.; King, M.D. Influence of grain shape on light penetration in snow. Cryosphere 2013, 7, 1803–1818. [Google Scholar] [CrossRef] [Green Version]
- Libois, Q.; Picard, G.; Dumont, M.; Arnaud, L.; Sergent, C.; Pougatch, E.; Sudul, M.; Vial, D. Experimental determination of the absorption enhancement parameter of snow. J. Glaciol. 2014, 60, 714–724. [Google Scholar] [CrossRef] [Green Version]
- Kokhanovsky, A.; Lamare, M.; Di Mauro, B.; Picard, G.; Arnaud, L.; Dumont, M.; Tuzet, F.; Brockmann, C.; Box, J.E. On the reflectance spectroscopy of snow. Cryosphere 2018, 12, 2371–2382. [Google Scholar] [CrossRef] [Green Version]
- Otto-Bliesner, B.L.; Brady, E.C.; Fasullo, J.; Jahn, A.; Landrum, L.; Stevenson, S.; Rosenbloom, N.; Mai, A.; Strand, G. CLIMATE VARIABILITY AND CHANGE SINCE 850 CE An Ensemble Approach with the Community Earth System Model. Bull. Am. Meteorol. Soc. 2016, 97, 735–754. [Google Scholar] [CrossRef]
- Schneider, D.P.; Fogt, R.L. Artifacts in Century-Length Atmospheric and Coupled Reanalyses Over Antarctica Due To Historical Data Availability. Geophys. Res. Lett. 2018, 45, 964–973. [Google Scholar] [CrossRef]
- Turney, C.S.M.; Fogwill, C.J.; Palmer, J.G.; van Sebille, E.; Thomas, Z.; McGlone, M.; Richardson, S.; Wilmshurst, J.M.; Fenwick, P.; Zunz, V.; et al. Tropical forcing of increased Southern Ocean climate variability revealed by a 140-year subantarctic temperature reconstruction. Clim. Past 2017, 13, 231–248. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.M.; Fogt, R.L.; Widmann, M.; Marshall, G.J.; Jones, P.D.; Visbeck, M. Historical SAM Variability. Part I: Century-Length Seasonal Reconstructions. J. Clim. 2009, 22, 5319–5345. [Google Scholar] [CrossRef]
- Fogt, R.L.; Perlwitz, J.; Monaghan, A.J.; Bromwich, D.H.; Jones, J.M.; Marshall, G.J. Historical SAM Variability. Part II: Twentieth-Century Variability and Trends from Reconstructions, Observations, and the IPCC AR4 Models. J. Clim. 2009, 22, 5346–5365. [Google Scholar] [CrossRef]
- Fogt, R.L.; Goergens, C.A.; Jones, M.E.; Witte, G.A.; Lee, M.Y.; Jones, J.M. Antarctic station-based seasonal pressure reconstructions since 1905: 1. Reconstruction evaluation. J. Geophys. Res.-Atmos. 2016, 121, 2814–2835. [Google Scholar] [CrossRef]
- Fogt, R.L.; Schneider, D.P.; Goergens, C.A.; Jones, J.M.; Clark, L.N.; Garberoglio, M.J. Seasonal Antarctic pressure variability during the twentieth century from spatially complete reconstructions and CAM5 simulations. Clim. Dyn. 2019. [Google Scholar] [CrossRef]
- Abram, N.J.; Mulvaney, R.; Vimeux, F.; Phipps, S.J.; Turner, J.; England, M.H. Evolution of the Southern Annular Mode during the past millennium. Nat. Clim. Chang. 2014, 4, 564–569. [Google Scholar] [CrossRef] [Green Version]
- Villalba, R.; Lara, A.; Masiokas, M.H.; Urrutia, R.; Luckman, B.H.; Marshall, G.J.; Mundo, I.A.; Christie, D.A.; Cook, E.R.; Neukom, R.; et al. Unusual Southern Hemisphere tree growth patterns induced by changes in the Southern Annular Mode. Nat. Geosci. 2012, 5, 793–798. [Google Scholar] [CrossRef]
- Raphael, M.N.; Marshall, G.J.; Turner, J.; Fogt, R.L.; Schneider, D.; Dixon, D.A.; Hosking, J.S.; Jones, J.M.; Hobbs, W.R. The amundsen sea low variability, Change, and Impact on Antarctic Climate. Bull. Am. Meteorol. Soc. 2016, 97, 111–121. [Google Scholar] [CrossRef]
- Harvey, B.J.; Shaffrey, L.C.; Woollings, T.J. Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models. Clim. Dyn. 2014, 43, 1171–1182. [Google Scholar] [CrossRef]
- McGraw, M.C.; Barnes, E.A. Seasonal Sensitivity of the Eddy-Driven Jet to Tropospheric Heating in an Idealized AGCM. J. Clim. 2016, 29, 5223–5240. [Google Scholar] [CrossRef]
- Brohan, P.; Allan, R.; Freeman, E.; Wheeler, D.; Wilkinson, C.; Williamson, F. Constraining the temperature history of the past millennium using early instrumental observations. Clim. Past 2012, 8, 1551–1563. [Google Scholar] [CrossRef] [Green Version]
- Steiger, N.J.; Steig, E.J.; Dee, S.G.; Roe, G.H.; Hakim, G.J. Climate reconstruction using data assimilation of water isotope ratios from ice cores. J. Geophys. Res.-Atmos. 2017, 122, 1545–1568. [Google Scholar] [CrossRef]
- Stott, P.A.; Kettleborough, J.A.; Allen, M.R. Uncertainty in continental-scale temperature predictions. Geophys. Res. Lett. 2006, 33, L02708. [Google Scholar] [CrossRef]
- Connolley, W.M. Variability in annual mean circulation in southern high latitudes. Clim. Dyn. 1997, 13, 745–756. [Google Scholar] [CrossRef]
- Hawkins, E.; Smith, R.S.; Gregory, J.M.; Stainforth, D.A. Irreducible uncertainty in near-term climate projections. Clim. Dyn. 2016, 46, 3807–3819. [Google Scholar] [CrossRef]
- Hawkins, E.; Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. 2012, 39, L01702. [Google Scholar] [CrossRef]
- Bracegirdle, T.J.; Turner, J.; Hosking, J.S.; Phillips, T. Sources of uncertainty in projections of 21st century westerly wind changes over the Amundsen Sea, West Antarctica, in CMIP5 climate models. Clim. Dyn. 2014, 43, 2093–2104. [Google Scholar] [CrossRef]
- Allen, M.R.; Stott, P.A. Estimating signal amplitudes in optimal fingerprinting, part I: Theory. Clim. Dyn. 2003, 21, 477–491. [Google Scholar] [CrossRef]
- Swart, N.C.; Gille, S.T.; Fyfe, J.C.; Gillett, N.P. Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nat. Geosci. 2018, 11, 836. [Google Scholar] [CrossRef]
- Gillett, N.P.; Stone, D.A.; Stott, P.A.; Nozawa, T.; Karpechko, A.Y.; Hegerl, G.C.; Wehner, M.F.; Jones, P.D. Attribution of polar warming to human influence. Nat. Geosci. 2008, 1, 750–754. [Google Scholar] [CrossRef]
- Abram, N.J.; Wolff, E.W.; Curran, M.A.J. A review of sea ice proxy information from polar ice cores. Quat. Sci. Rev. 2013, 79, 168–183. [Google Scholar] [CrossRef]
- Lenaerts, J.T.M.; Fyke, J.; Medley, B. The Signature of Ozone Depletion in Recent Antarctic Precipitation Change: A Study With the Community Earth System Model. Geophys. Res. Lett. 2018, 45, 12931–12939. [Google Scholar] [CrossRef]
- Krinner, G.; Guicherd, B.; Ox, K.; Genthon, C.; Magand, O. Influence of oceanic boundary conditions in simulations of Antarctic climate and surface mass balance change during the coming century. J. Clim. 2008, 21, 938–962. [Google Scholar] [CrossRef]
- Ferreira, D.; Marshall, J.; Bitz, C.M.; Solomon, S.; Plumb, A. Antarctic Ocean and Sea Ice Response to Ozone Depletion: A Two-Time-Scale Problem. J. Clim. 2015, 28, 1206–1226. [Google Scholar] [CrossRef] [Green Version]
- Previdi, M.; Polvani, L.M. Anthropogenic impact on Antarctic surface mass balance, currently masked by natural variability, to emerge by mid-century. Environ. Res. Lett. 2016, 11. [Google Scholar] [CrossRef]
- Gillett, N.P.; Fyfe, J.C.; Parker, D.E. Attribution of observed sea level pressure trends to greenhouse gas, aerosol, and ozone changes. Geophys. Res. Lett. 2013, 40, 2302–2306. [Google Scholar] [CrossRef]
- Christidis, N.; Stott, P.A. Changes in the geopotential height at 500hPa under the influence of external climatic forcings. Geophys. Res. Lett. 2015, 42, 10798–10806. [Google Scholar] [CrossRef]
- Marshall, G.J. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 2003, 16, 4134–4143. [Google Scholar] [CrossRef]
- Marshall, G.J.; Stott, P.A.; Turner, J.; Connolley, W.M.; King, J.C.; Lachlan-Cope, T.A. Causes of exceptional atmospheric circulation changes in the Southern Hemisphere. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Miller, R.L.; Schmidt, G.A.; Shindell, D.T. Forced annular variations in the 20th century Intergovernmental Panel on Climate Change Fourth Assessment Report models. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Gagne, M.E.; Gillett, N.P.; Fyfe, J.C. Observed and simulated changes in Antarctic sea ice extent over the past 50 years. Geophys. Res. Lett. 2015, 42, 90–95. [Google Scholar] [CrossRef]
- Bitz, C.M.; Polvani, L.M. Antarctic climate response to stratospheric ozone depletion in a fine resolution ocean climate model. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Haumann, F.A.; Notz, D.; Schmidt, H. Anthropogenic influence on recent circulation-driven Antarctic sea ice changes. Geophys. Res. Lett. 2014, 41, 8429–8437. [Google Scholar] [CrossRef]
- Sigmond, M.; Fyfe, J.C. The Antarctic Sea Ice Response to the Ozone Hole in Climate Models. J. Clim. 2014, 27, 1336–1342. [Google Scholar] [CrossRef]
- Purich, A.; England, M.H.; Cai, W.; Chikamoto, Y.; Timmermann, A.; Fyfe, J.C.; Frankcombe, L.; Meehl, G.A.; Arblaster, J.M. Tropical Pacific SST Drivers of Recent Antarctic Sea Ice Trends. J. Clim. 2016, 29, 8931–8948. [Google Scholar] [CrossRef]
- Meehl, G.A.; Arblaster, J.M.; Bitz, C.M.; Chung, C.T.Y.; Teng, H.Y. Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nat. Geosci. 2016, 9, 590. [Google Scholar] [CrossRef]
- Lecomte, O.; Goosse, H.; Fichefet, T.; de Lavergne, C.; Barthelemy, A.; Zunz, V. Vertical ocean heat redistribution sustaining sea-ice concentration trends in the Ross Sea. Nat. Commun. 2017, 8, 258. [Google Scholar] [CrossRef]
- Schneider, D.P.; Deser, C. Tropically driven and externally forced patterns of Antarctic sea ice change: Reconciling observed and modeled trends. Clim. Dyn. 2017. [Google Scholar] [CrossRef]
- Dufour, C.O.; Morrison, A.K.; Griffies, S.M.; Frenger, I.; Zanowski, H.; Winton, M. Preconditioning of the Weddell Sea Polynya by the Ocean Mesoscale and Dense Water Overflows. J. Clim. 2017, 30, 7719–7737. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, W.; Curran, M.; Abram, N.; Thomas, E.R. Century-scale perspectives on observed and simulated Southern Ocean sea ice trends from proxy reconstructions. J. Geophys. Res.-Ocean. 2016, 121, 7804–7818. [Google Scholar] [CrossRef] [Green Version]
- Curran, M.A.J.; Vanommen, T.D.; Morgan, V.I.; Phillips, K.L.; Palmer, A.S. Ice core evidence for Antarctic sea ice decline since the 1950s. Science 2003, 302, 1203–1206. [Google Scholar] [CrossRef] [PubMed]
- Abram, N.J.; Thomas, E.R.; McConnell, J.R.; Mulvaney, R.; Bracegirdle, T.J.; Sime, L.C.; Aristarain, A.J. Ice core evidence for a 20th century decline of sea ice in the Bellingshausen Sea, Antarctica. J. Geophys. Res.-Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Thomas, E.R.; Abram, N.J. Ice core reconstruction of sea ice change in the Amundsen-Ross Seas since 1702 AD. Geophys. Res. Lett. 2016, 43, 5309–5317. [Google Scholar] [CrossRef]
- Turner, J.; Hosking, J.S.; Marshall, G.J.; Phillips, T.; Bracegirdle, T.J. Antarctic sea ice increase consistent with intrinsic variability of the Amundsen Sea Low. Clim. Dyn. 2016, 46, 2391–2402. [Google Scholar] [CrossRef]
- Holland, M.M.; Landrum, L.; Raphael, M.N.; Kwok, R. The Regional, Seasonal, and Lagged Influence of the Amundsen Sea Low on Antarctic Sea Ice. Geophys. Res. Lett. 2018, 45, 11227–11234. [Google Scholar] [CrossRef]
- Landrum, L.L.; Holland, M.M.; Raphael, M.N.; Polvani, L.M. Stratospheric Ozone Depletion: An Unlikely Driver of the Regional Trends in Antarctic Sea Ice in Austral Fall in the Late Twentieth Century. Geophys. Res. Lett. 2017, 44, 11062–11070. [Google Scholar] [CrossRef]
- Fan, T.; Deser, C.; Schneider, D.P. Recent Antarctic sea ice trends in the context of Southern Ocean surface climate variations since 1950. Geophys. Res. Lett. 2014, 41, 2419–2426. [Google Scholar] [CrossRef]
- Turner, J.; Orr, A.; Gudmundsson, G.H.; Jenkins, A.; Bingham, R.G.; Hillenbrand, C.D.; Bracegirdle, T.J. Atmosphere-ocean-ice interactions in the Amundsen Sea Embayment, West Antarctica. Rev. Geophys. 2017, 55, 235–276. [Google Scholar] [CrossRef] [Green Version]
- Kostov, Y.; Marshall, J.; Hausmann, U.; Armour, K.C.; Ferreira, D.; Holland, M.M. Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models. Clim. Dyn. 2017, 48, 1595–1609. [Google Scholar] [CrossRef]
Period | CO2 (ppm) | Sea Level (Relative to Present) | Status of Antarctica | Oceanic Polar Front |
---|---|---|---|---|
Holocene (since ~11.7 ka) | 280–260 | Below present-day | WAIS: partially retreated at 10 ka but then re-advanced [43] | Southward migrating northward [44] |
LGM (~21 ka) | 190 | −130 m | Advance almost to continental shelf edge [45] | Northward |
LIG (~128 ka, MIS 5) | 287 | + 6–9 m | Potential WAIS contribution [18,46] | Southward |
MIS 11 (~424–374 ka) | 270 | + 6–13 m | Potential WAIS contribution [34] | Southward |
mPWP (~3.3–3 Ma) | 400–420 | + 10–15 m | WAIS: frequent substantial retreats or collapses [47]; EAIS: retreats in Wilkes Land and Aurora basin [48,49] | Southward [50] |
MMCO (~17–14 Ma) | 400–600 | δ18O fluctuation of circa 35 m SLE (glacial/interglacial) | Highly dynamical ice sheet [51,52]; Ice retreat in Wilkes Land [53] | Southward [18] |
EOT (~34 Ma) | > 1000–700 | δ18O fluctuation of circa 63–70 m SLE at the transition | Presumed onset of glaciation at ~34 Ma [21] | Northward migrating southward [54] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bracegirdle, T.J.; Colleoni, F.; Abram, N.J.; Bertler, N.A.N.; Dixon, D.A.; England, M.; Favier, V.; Fogwill, C.J.; Fyfe, J.C.; Goodwin, I.; et al. Back to the Future: Using Long-Term Observational and Paleo-Proxy Reconstructions to Improve Model Projections of Antarctic Climate. Geosciences 2019, 9, 255. https://doi.org/10.3390/geosciences9060255
Bracegirdle TJ, Colleoni F, Abram NJ, Bertler NAN, Dixon DA, England M, Favier V, Fogwill CJ, Fyfe JC, Goodwin I, et al. Back to the Future: Using Long-Term Observational and Paleo-Proxy Reconstructions to Improve Model Projections of Antarctic Climate. Geosciences. 2019; 9(6):255. https://doi.org/10.3390/geosciences9060255
Chicago/Turabian StyleBracegirdle, Thomas J., Florence Colleoni, Nerilie J. Abram, Nancy A. N. Bertler, Daniel A. Dixon, Mark England, Vincent Favier, Chris J. Fogwill, John C. Fyfe, Ian Goodwin, and et al. 2019. "Back to the Future: Using Long-Term Observational and Paleo-Proxy Reconstructions to Improve Model Projections of Antarctic Climate" Geosciences 9, no. 6: 255. https://doi.org/10.3390/geosciences9060255
APA StyleBracegirdle, T. J., Colleoni, F., Abram, N. J., Bertler, N. A. N., Dixon, D. A., England, M., Favier, V., Fogwill, C. J., Fyfe, J. C., Goodwin, I., Goosse, H., Hobbs, W., Jones, J. M., Keller, E. D., Khan, A. L., Phipps, S. J., Raphael, M. N., Russell, J., Sime, L., ... Wainer, I. (2019). Back to the Future: Using Long-Term Observational and Paleo-Proxy Reconstructions to Improve Model Projections of Antarctic Climate. Geosciences, 9(6), 255. https://doi.org/10.3390/geosciences9060255