UAV and Airborne LiDAR Data for Interpreting Kinematic Evolution of Landslide Movements: The Case Study of the Montescaglioso Landslide (Southern Italy)
Abstract
:1. Introduction
2. The Montescaglioso Landslide
2.1. Landslide Setting
2.2. Landslide Field Surveys and Monitoring
3. Data Collection and Methodology
4. Landslide Kinematic Interpretation: Results and Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Corsini, A.; Borgatti, L.; Coren, F.; Vellico, M. Use of multitemporal airborne LiDAR surveys to analyse post-failure behaviour of earth slides. Can. J. Remote Sens. 2007, 33, 116–120. [Google Scholar] [CrossRef]
- Lollino, G.; Manconi, A.; Giordan, D.; Allasia, P.; Baldo, M. Infrastructure in geohazard contexts: The importance of automatic and near-real-time monitoring. In Environmental Security of the European Cross-Border Energy Supply Infrastructure; Springer: Dordrecht, The Netherlands, 2015; pp. 73–89. ISBN 9789401795388. [Google Scholar]
- Casagli, N.; Frodella, W.; Morelli, S.; Tofani, V.; Ciampalini, A.; Intrieri, E.; Raspini, F.; Rossi, G.; Tanteri, L.; Lu, P. Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. Geoenviron. Disasters 2017, 4, 9. [Google Scholar] [CrossRef]
- Spilotro, G.; Pellicani, R.; Canora, F.; Allasia, P.; Giordan, D.; Lollino, G. Evolution of techniques for monitoring unstable slopes. Ital. J. Eng. Geol. Environ. 2017, 17, 5–17. [Google Scholar] [CrossRef]
- Manfreda, S.; McCabe, M.; Miller, P.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.; Ciraolo, G.; et al. On the use of unmanned aerial systems for environmental monitoring. Remote Sens. 2018, 10, 641. [Google Scholar] [CrossRef]
- Toschi, I.; Allocca, M.; Remondino, F. Geomatics mapping of natural hazards: Overview and experiences. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-3/W4, 505–512. [Google Scholar] [CrossRef]
- Kakooei, M.; Baleghi, Y. Fusion of satellite, aircraft, and UAV data for automatic disaster damage assessment. Int. J. Remote Sens. 2017, 38, 2511–2534. [Google Scholar] [CrossRef]
- He, Y.; Song, Z.; Liu, Z. Updating highway asset inventory using airborne LiDAR. Meas. J. Int. Meas. Confed. 2017, 104, 132–141. [Google Scholar] [CrossRef]
- Neugirg, F.; Stark, M.; Kaiser, A.; Vlacilova, M.; Della Seta, M.; Vergari, F.; Schmidt, J.; Becht, M.; Haas, F. Erosion processes in calanchi in the Upper Orcia Valley, Southern Tuscany, Italy based on multitemporal high-resolution terrestrial LiDAR and UAV surveys. Geomorphology 2016, 269, 8–22. [Google Scholar] [CrossRef]
- Cawood, A.J.; Bond, C.E.; Howell, J.A.; Butler, R.W.H.; Totake, Y. LiDAR, UAV or compass-clinometer? Accuracy, coverage and the effects on structural models. J. Struct. Geol. 2017, 98, 67–82. [Google Scholar] [CrossRef]
- Cook, K.L. An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology 2017, 278, 195–208. [Google Scholar] [CrossRef]
- Silva, O.L.; Bezerra, F.H.R.; Maia, R.P.; Cazarin, C.L. Karst landforms revealed at various scales using LiDAR and UAV in semi-arid Brazil: Consideration on karstification processes and methodological constraints. Geomorphology 2017, 295, 611–630. [Google Scholar] [CrossRef]
- Elsner, P.; Dornbusch, U.; Thomas, I.; Amos, D.; Bovington, J.; Horn, D. Coincident beach surveys using UAS, vehicle mounted and airborne laser scanner: Point cloud inter-comparison and effects of surface type heterogeneity on elevation accuracies. Remote Sens. Environ. 2018, 208, 15–26. [Google Scholar] [CrossRef]
- Khan, S.; Aragão, L.; Iriarte, J. A UAV–LiDAR system to map Amazonian rainforest and its ancient landscape transformations. Int. J. Remote Sens. 2017, 38, 2313–2330. [Google Scholar] [CrossRef]
- Johnson, K.M.; Ouimet, W.B. An observational and theoretical framework for interpreting the landscape palimpsest through airborne LiDAR. Appl. Geogr. 2018, 91, 32–44. [Google Scholar] [CrossRef]
- Masini, N.; Marzo, C.; Manzari, P.; Belmonte, A.; Sabia, C.; Lasaponara, R. On the characterization of temporal and spatial patterns of archaeological crop-marks. J. Cult. Herit. 2018. [Google Scholar] [CrossRef]
- Sankey, T.T.; McVay, J.; Swetnam, T.L.; McClaran, M.P.; Heilman, P.; Nichols, M. UAV hyperspectral and LiDAR data and their fusion for arid and semi-arid land vegetation monitoring. Remote Sens. Ecol. Conserv. 2017. [Google Scholar] [CrossRef]
- Nie, S.; Wang, C.; Xi, X.; Luo, S.; Li, S.; Tian, J. Estimating the height of wetland vegetation using airborne discrete-return LiDAR data. Optik (Stuttg.) 2018, 154, 267–274. [Google Scholar] [CrossRef]
- Aicardi, I.; Chiabrando, F.; Lingua, A.M.; Noardo, F.; Piras, M.; Vigna, B. A methodology for acquisition and processing of thermal data acquired by UAVs: A test about subfluvial springs’ investigations. Geomat. Nat. Hazards Risk 2017, 8, 5–17. [Google Scholar] [CrossRef]
- Pagliari, D.; Rossi, L.; Passoni, D.; Pinto, L.; De Michele, C.; Avanzi, F. Measuring the volume of flushed sediments in a reservoir using multi-temporal images acquired with UAS. Geomat. Nat. Hazards Risk 2017, 8, 150–166. [Google Scholar] [CrossRef]
- Civico, R.; Pucci, S.; De Martini, P.M.; Pantosti, D. Morphotectonic analysis of the long-term surface expression of the 2009 L’Aquila earthquake fault (Central Italy) using airborne LiDAR data. Tectonophysics 2015, 644, 108–121. [Google Scholar] [CrossRef]
- Nissen, E.; Maruyama, T.; Ramon Arrowsmith, J.; Elliott, J.R.; Krishnan, A.K.; Oskin, M.E.; Saripalli, S. Coseismic fault zone deformation revealed with differential LiDAR: Examples from Japanese Mw ~7 intraplate earthquakes. Earth Planet. Sci. Lett. 2014, 405, 244–256. [Google Scholar] [CrossRef]
- Valkaniotis, S.; Papathanassiou, G.; Ganas, A. Mapping an earthquake-induced landslide based on UAV imagery; case study of the 2015 Okeanos landslide, Lefkada, Greece. Eng. Geol. 2018, 245, 141–152. [Google Scholar] [CrossRef]
- Bonali, F.L.; Tibaldi, A.; Marchese, F.; Fallati, L.; Russo, E.; Corselli, C.; Savini, A. UAV-based surveying in volcano-tectonics: An example from the Iceland rift. J. Struct. Geol. 2019, 121, 46–64. [Google Scholar] [CrossRef]
- De Beni, E.; Cantarero, M.; Messina, A. UAVs for volcano monitoring: A new approach applied on an active lava flow on Mt. Etna (Italy), during the 27 February–02 March 2017 eruption. J. Volcanol. Geotherm. Res. 2019, 369, 250–262. [Google Scholar] [CrossRef]
- Zhou, Z.; Gong, J.; Hu, X. Community-scale multi-level post-hurricane damage assessment of residential buildings using multi-temporal airborne LiDAR data. Autom. Constr. 2019, 98, 30–45. [Google Scholar] [CrossRef]
- Silva, L.D.O.; de Bandeira, R.A.M.; Campos, V.B.G. Proposal to planning facility location using UAV and geographic information systems in a post-disaster scenario. Int. J. Disaster Risk Reduct. 2019, 27, 101080. [Google Scholar] [CrossRef]
- Giordan, D.; Manconi, A.; Remondino, F.; Nex, F. Use of unmanned aerial vehicles in monitoring application and management of natural hazards. Geomat. Nat. Hazards Risk 2017, 8, 1–4. [Google Scholar] [CrossRef]
- Ventura, G.; Vilardo, G.; Terranova, C.; Sessa, E.B. Tracking and evolution of complex active landslides by multi-temporal airborne LiDAR data: The Montaguto landslide (Southern Italy). Remote Sens. Environ. 2011, 115, 3237–3248. [Google Scholar] [CrossRef]
- Fiorucci, F.; Giordan, D.; Santangelo, M.; Dutto, F.; Rossi, M.; Guzzetti, F. Criteria for the optimal selection of remote sensing optical images to map event landslides. Nat. Hazards Earth Syst. Sci. 2018, 18, 405–417. [Google Scholar] [CrossRef] [Green Version]
- Mora, O.E.; Liu, J.; Lenzano, M.G.; Toth, C.K.; Grejner-Brzezinska, D. Small Landslide Susceptibility and Hazard Assessment Based on Airborne LiDAR Data. Photogramm. Eng. Remote Sens. 2015, 81, 239–247. [Google Scholar] [CrossRef]
- Giordan, D.; Allasia, P.; Manconi, A.; Baldo, M.; Santangelo, M.; Cardinali, M.; Corazza, A.; Albanese, V.; Lollino, G.; Guzzetti, F. Morphological and kinematic evolution of a large earthflow: The Montaguto landslide, southern Italy. Geomorphology 2013, 187, 61–79. [Google Scholar] [CrossRef]
- Rothmund, S.; Vouillamoz, N.; Joswig, M. Mapping slow-moving alpine landslides by UAV—Opportunities and limitations. Lead. Edge 2017, 36, 571–579. [Google Scholar] [CrossRef]
- Harwin, S.; Lucieer, A. Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery. Remote Sens. 2012, 4, 1573–1599. [Google Scholar] [CrossRef] [Green Version]
- Westoby, M.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reyonds, M.J. Structure-from Motion photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- Furukawa, Y.; Ponce, J. Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1362–1376. [Google Scholar] [CrossRef] [PubMed]
- James, M.R.; Robson, S. Straightforward reconstruction of 3d surfaces and topography with a camera:Accuracy and geoscience application. J. Geophys. Res. Earth Surf. 2012, 117, F03017. [Google Scholar] [CrossRef]
- Eltner, A.; Kaiser, A.; Castillo, C.; Rock, G.; Neugirg, F.; Abellán, A. Image-based surface reconstruction ingeomorphometry—Merits, limits and developments. Earth Surf. Dyn. 2016, 4, 359–389. [Google Scholar] [CrossRef]
- Lucieer, A.; Jong, S.M.D.; Turner, D. Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Prog. Phys. Geogr. 2014, 38, 97–116. [Google Scholar] [CrossRef]
- Clapuyt, F.; Vanacker, V.; Van Oost, K.; Schlunegger, F. Very-high resolution monitoring of movement of surface material within a landslide. In Geomorphometry; Naukowe, B.W., Mickiewicz, A., Eds.; University in Poznań—Institute of Geoecology and Geoinformation: Poznań, Poland, 2015; ISBN 978-83-7986-059-3. [Google Scholar]
- Giordan, D.; Manconi, A.; Allasia, P.; Bertolo, D. Brief Communication: On the rapid and efficient monitoring results dissemination in landslide emergency scenarios: The Mont de la Saxe case study. Nat. Hazards Earth Syst. Sci. 2015, 15, 2009–2017. [Google Scholar] [CrossRef]
- Giordan, D.; Manconi, A.; Tannant, D.D.; Allasia, P. UAV: Low-cost remote sensing for high-resolution investigation of landslides. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 5344–5347. [Google Scholar]
- Peppa, M.V.; Mills, J.P.; Moore, P.; Miller, P.E.; Chambers, J.E. Accuracy assessment of a uav-based landslide monitoring system. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2016, 41, 895–902. [Google Scholar] [CrossRef]
- D’ecclesiis, G.; Lorenzo, P. Frane relitte nei depositi della fossa bradanica: La frana di Madonna della Nuova (Montescaglioso, Basilicata). Giornale di Geologia Applicata 2006, 4, 257–262. (In Italian) [Google Scholar] [CrossRef]
- Bozzano, F.; Caporossi, P.; Esposito, C.; Martino, S.; Mazzanti, P.; Moretto, S.; Mugnozza, G.S.; Rizzo, A.M. Mechanism of the Montescaglioso Landslide (Southern Italy) Inferred by Geological Survey and Remote Sensing. In Advancing Culture of Living with Landslides; Mikos, M., Tiwari, B., Yin, Y., Sassa, K., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 2, pp. 97–106. ISBN 978-3-319-53498-5. [Google Scholar]
- Manconi, A.; Casu, F.; Ardizzone, F.; Bonano, M.; Cardinali, M.; De Luca, C.; Gueguen, E.; Marchesini, I.; Parise, M.; Vennari, C.; et al. Brief Communication: Rapid mapping of landslide events: The 3 December 2013 Montescaglioso landslide, Italy. Nat. Hazards Earth Syst. Sci. 2014, 14, 1835–1841. [Google Scholar] [CrossRef]
- Manconi, A.; Casu, F.; Ardizzone, F.; Bonano, M.; Cardinali, M.; De Luca, C.; Gueguen, E.; Marchesini, I.; Parise, M.; Vennari, C.; et al. Supplement of Brief Communication: Rapid mapping of landslide events: The 3 December 2013 Montescaglioso landslide, Italy. Hazards Earth Syst. Sci. 2014, 14, 1835–1841. [Google Scholar] [CrossRef]
- Amanti, M.; Chiessi, V.; Guarino, P.M.; Spizzichino, D.; Troccoli, A.; Vizzini, G. Relazione finale di cui all’art. 5 (b) della Convenzione Operativa tra il Commissario Delegato, O.C.D.P.C. n. 151 del 21.2.2014 e l’Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA) per monitoraggio e studi sulla frana di Montescaglioso (MT) del 3 dicembre 2013; ISPRA—Istituto Superiore per la Protezione e la Ricerca Ambientale: Rome, Italy, 2014. (In Italian) [Google Scholar]
- Allasia, P.; Lollino, P.; Limoni, P.P. Relazione finale relativa alle attività dell’Istituto di Ricerca per la Protezione Idrogeologica (IRPI) per monitoraggio e studi sulla frana di Montescaglioso (MT) del 3 Dicembre 2013; CNR—IRPI: Turin, Italy, 2017; p. 23. (In Italian) [Google Scholar]
- Lollino, P.; Parise, M.; Limoni, P.P. Bollettino delle misure inclinometriche eseguite sulla frana di Montescaglioso; CNR Istituto di Ricerca per la Protezione Idrogeologica: Torino, Italy, 2014. (In Italian) [Google Scholar]
- Raspini, F.; Ciampalini, A.; Del Conte, S.; Lombardi, L.; Nocentini, M.; Gigli, G.; Ferretti, A.; Casagli, N. Exploitation of Amplitude and Phase of Satellite SAR Images for Landslide Mapping: The Case of Montescaglioso (South Italy). Remote Sens. 2015, 7, 14576–14596. [Google Scholar] [CrossRef] [Green Version]
- Pellicani, R.; Spilotro, G.; Ermini, R.; Sdao, F. The large montescaglioso landslide of December 2013 after prolonged and severe seasonal climate conditions. In Landslides and Engineered Slopes. Experience, Theory and Practice; Aversa, S., Cascini, L., Picarelli, L., Scavia, C., Eds.; CRC Press: Boca Raton, FL, USA, 2016; Volume 3, pp. 1591–1597. ISBN 9781498788076. [Google Scholar]
- Spilotro, G.; Sdao, F.; Ermini, R.; Pellicani, R.; Ataoui, R. Rapporto finale sull’attività tecnico—Scientifica di studio del movimento franoso del 3.12.2013 in Montescaglioso e validazione schede di progetti di messa in sicurezza; Università della Basilicata: Matera, Italy, 2014; 39p. (In Italian) [Google Scholar]
- Caporossi, P.; Mazzanti, P.; Bozzano, F.; Caporossi, P.; Mazzanti, P.; Bozzano, F. Digital Image Correlation (DIC) Analysis of the 3 December 2013 Montescaglioso Landslide (Basilicata, Southern Italy): Results from a Multi-Dataset Investigation. ISPRS Int. J. Geo-Inf. 2018, 7, 372. [Google Scholar] [CrossRef]
- Lazzari, M.; Piccarreta, M. Landslide Disasters Triggered by Extreme Rainfall Events: The Case of Montescaglioso (Basilicata, Southern Italy). Geosciences 2018, 8, 377. [Google Scholar] [CrossRef]
- RSDI—Geoportale Basilicata. Available online: http://rsdi.regione.basilicata.it/ (accessed on 13 June 2018).
- Nex, F.; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geomat. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Cilloccu, F.; Dequal, S.; Brovelli, M.A.; Crespi, M.; Lingua, A. Ortoimmagini 1:1000 e modelli altimetrici—Linee guida; CISIS: Ottawa, ON, Canada, 2009; ISBN 9788885386976. [Google Scholar]
- Crosta, G.B.; Lollino, G.; Paolo, F.; Giordan, D.; Andrea, T.; Carlo, R.; Davide, B. Rockslide Monitoring Through Multi-temporal LiDAR DEM and TLS Data Analysis. In Engineering Geology for Society and Territory; Lollino, G., Giordan, D., Crosta, G.B., Corominas, J., Azzam, R., Wasowski, J., Sciarra, N., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 2, pp. 613–617. ISBN 978-3-319-09057-3. [Google Scholar]
- Spilotro, G.; Coviello, L.; Trizzino, R. Post Failure Behaviour of Landslide Bodies. In Landslides in Research, Theory and Practice; Bromhead, E., Dixon, N., Ibsen, M.L., Eds.; Thomas Teldorf: Cardiff, Wales, 2000; pp. 1379–1386. [Google Scholar]
Research Group | Activity | Result |
---|---|---|
CNR-IRPI | Field surveys and aerial photo interpretation | Geomorphological map |
CNR-IRPI | Topographic monitoring with total station | Superficial displacements of 26 points |
DST-UNIFI 1 and CNR-IMAA 2 | GBInSAR 3 | Superficial displacements |
DST-UNIFI DST-UNIROMA 4 | InSAR with COSMO-SkyMed imagery | Superficial displacements |
CNR-IRPI | Inclinometer monitoring | Deep displacements |
DiCEM-UNIBAS 5 | Stratigraphical and hydrogeological analyses | Stratigraphic sequence, thickness of saturated aquifer |
DiCEM-UNIBAS | TDR monitoring, gamma-log measures and borehole video inspections | Location of sliding surface |
DiCEM-UNIBAS | Laser monitoring | Superficial displacements |
LiDAR Summary | Technical Features |
---|---|
Vehicle | Twin engine P68B Victor Vulcanair aircraft |
Sensors | 80 Mp resolution aerial camera-Phase One IXA 180 RIEGL LMS-Q680i Positioning and orientation system |
Pulse repetition | 400 kHz |
Scan speed | 185.2 Km/h |
GSD | 0.9 m |
Flight speed | 180 Km/h |
Flight height | About 9000 Km |
Post-processing software | RIEGL |
UAV Summary | Technical Features |
---|---|
Vehicle | Expanded polypropylene motor glider “Bixler” |
Sensors | Single board computer Ardupilot 16 Mp resolution camera Canon A2300 |
Shutter speed | 1/2000 s |
Acquisition rate | 4 s |
Flight speed | 36 Km/h |
Flight height | 130 m |
Number of images | 1000 |
Post-processing software | Agisoft’s PhotoScan |
Survey | Pre-event LiDAR | 1st Post-event LiDAR | 2nd Post-event LiDAR | UAV |
---|---|---|---|---|
Date | July 2013 | 7 December 2013 (dec2013DTM) | 29 November 2016 (nov2016DTM) | 21 December 2013 to 5 February 2014 |
Products | Orthophoto DTM (jul2013DTM) | Orthophoto DTM (dec2013DTM) | Orthophoto DTM (nov2016DTM) | Orthophoto DSM |
Orthophoto | ||||
Spatial resolution | 0.2 m | 0.12 m | 0.12 m | 0.5 m |
DTM/DSM | ||||
Planar accuracy | 0.2 m * | 0.3 m * | 0.3 m * | 0.5 m |
Vertical accuracy | 0.3 m * | 0.3 m * | 0.3 m * | 1 m |
Resolution | 5 m * | 1 m * | 1 m * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pellicani, R.; Argentiero, I.; Manzari, P.; Spilotro, G.; Marzo, C.; Ermini, R.; Apollonio, C. UAV and Airborne LiDAR Data for Interpreting Kinematic Evolution of Landslide Movements: The Case Study of the Montescaglioso Landslide (Southern Italy). Geosciences 2019, 9, 248. https://doi.org/10.3390/geosciences9060248
Pellicani R, Argentiero I, Manzari P, Spilotro G, Marzo C, Ermini R, Apollonio C. UAV and Airborne LiDAR Data for Interpreting Kinematic Evolution of Landslide Movements: The Case Study of the Montescaglioso Landslide (Southern Italy). Geosciences. 2019; 9(6):248. https://doi.org/10.3390/geosciences9060248
Chicago/Turabian StylePellicani, Roberta, Ilenia Argentiero, Paola Manzari, Giuseppe Spilotro, Cosimo Marzo, Ruggero Ermini, and Ciro Apollonio. 2019. "UAV and Airborne LiDAR Data for Interpreting Kinematic Evolution of Landslide Movements: The Case Study of the Montescaglioso Landslide (Southern Italy)" Geosciences 9, no. 6: 248. https://doi.org/10.3390/geosciences9060248
APA StylePellicani, R., Argentiero, I., Manzari, P., Spilotro, G., Marzo, C., Ermini, R., & Apollonio, C. (2019). UAV and Airborne LiDAR Data for Interpreting Kinematic Evolution of Landslide Movements: The Case Study of the Montescaglioso Landslide (Southern Italy). Geosciences, 9(6), 248. https://doi.org/10.3390/geosciences9060248