Children’s Psychological Representation of Earthquakes: Analysis of Written Definitions and Rasch Scaling
Abstract
:1. Introduction
1.1. Children’s Abilities to Represent the World
1.2. Knowledge of Children’s Representation of Earthquakes
1.3. Some Methodologies to Investigate Children’s Representation of Earthquakes
1.4. Aims and Objectives of the Present Study
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Materials and Coding
2.3.1. Written Definition Task
2.3.2. Online Recognition Task
2.3.3. Sociodemographic Data and Experience of Earthquakes
2.4. Data Analysis
3. Results
3.1. Written Definition Task (Objectives 1a and 1b)
Definitions’ Content Types: Salience, Age, and Gender Differences
3.2. Online Recognition Task (Objectives 2a and 2b)
3.2.1. Rasch Model: Scaling of Drawings
3.2.2. Drawings: Age and Gender Differences
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scolobig, A.; De Marchi, B.; Borga, M. The missing link between flood risk awareness and preparedness: Findings from case studies in an Alpine Region. Nat. Hazards 2012, 63, 499–520. [Google Scholar] [CrossRef]
- INGV, Istituto Nazionale di Geofisica e Vulcanologia [National Institute of Geophysics and Volcanology]. Available online: www.ingvterremoti.wordpress.com (accessed on 24 February 2019).
- Shoshani, A.; Slone, M. The drama of media coverage of terrorism: Emotional and attitudinal impact of the audience. Stud. Confl. Terror. 2008, 31, 627–640. [Google Scholar] [CrossRef]
- Fergusson, D.M.; Boden, J.M. The psychological impacts of major disasters. Aust. N. Z. J. Psychiatry 2014, 48, 597–599. [Google Scholar] [CrossRef]
- Galambos, C.M. Natural disasters: Health and mental health considerations. Health. Soc. Work 2005, 30, 83–86. [Google Scholar] [CrossRef]
- Neria, Y.; Nandi, A.; Galea, S. Post-traumatic stress disorder following disasters: A systematic review. Psychol. Med. 2008, 38, 467–480. [Google Scholar] [CrossRef]
- Ben-Zur, H.; Gil, S.; Shamshins, Y. The relationship between exposure to terror through the media, coping strategies and resources, and distress and secondary traumatization. Int. J. Stress Manag. 2012, 19, 132–150. [Google Scholar] [CrossRef]
- Furr, J.M.; Comer, J.S.; Edmunds, J.M.; Kendall, P.C. Disasters and youth: A meta-analytic examination of posttraumatic stress. J. Consult. Clin. Psychol. 2010, 78, 765–780. [Google Scholar] [CrossRef] [PubMed]
- Masten, A.S.; Osofsky, J.D. Disasters and their impact on child development: Introduction to the special section. Child. Dev. 2010, 81, 1029–1039. [Google Scholar] [CrossRef]
- Raccanello, D.; Burro, R.; Brondino, M.; Pasini, M. Relevance of terrorism for Italian students not directly exposed to it: The affective impact of the 2015 Paris and the 2016 Brussels attacks. Stress Health 2018, 34, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Kar, N. Psychological impact of disasters on children: Review of assessment and interventions. World J. Pediatr. 2009, 5, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Allen, M. Preschool children’s taxonomic knowledge of animal species. J. Res. Sci. Teach. 2015, 52, 107–134. [Google Scholar] [CrossRef]
- Schulz, L.E.; Gopnik, A. Causal learning across domains. Dev. Psychol. 2004, 40, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Wellman, H.M.; Gelman, S.A. Cognitive development: Foundational theories of core domains. Annu. Rev. Psychol. 1992, 43, 337–375. [Google Scholar] [CrossRef]
- Wellman, H.M.; Inagaki, K.E. (Eds.) The Emergence of Core Domains of Thought: Children’s Reasoning about Physical, Psychological, and Biological Phenomena; Jossey-Bass: San Francisco, CA, USA, 1997. [Google Scholar]
- Zhu, L.; Liu, G. Preschool children’s understanding of illness. Acta Psychol. Sin. 2007, 39, 96–103. [Google Scholar]
- Carey, S. On the origin of causal understanding. In Causal Cognition: A Multidisciplinary Debate; Sperber, D., Premack, D., Premack, A.J., Eds.; Clarendon Press: Oxford, UK, 1995; pp. 268–302. [Google Scholar]
- Inagaki, K.; Hatano, G. Children’s understanding of mind-body relationships. In Children’s Understanding of Biology and Health; Siegal, M., Peterson, C.C., Eds.; Cambridge University Press: Cambridge, UK, 1999; pp. 23–44. [Google Scholar]
- Siegal, M.; Peterson, C.C. (Eds.) Children’s Understanding of Biology and Health; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Hughes, C.; Leekam, S. What are the links between theory of mind and social relations? Review, reflections and new directions for studies of typical and atypical development. Soc. Dev. 2004, 13, 590–619. [Google Scholar] [CrossRef]
- Wellman, H.M. The Child’s Theory of Mind; Bradford Books/MIT Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Brown, J.; Dunn, J. Continuities in emotion understanding from three to six years. Child Dev. 1996, 67, 789–802. [Google Scholar] [CrossRef]
- Wimmer, H.; Perner, J. Beliefs about beliefs: Representation and constraining function of wrong beliefs in young children’s understanding of deception. Cognition 1983, 13, 103–128. [Google Scholar] [CrossRef]
- King, T.A.; Tarrant, R.A.C. Children’s knowledge, cognitions and emotions surrounding natural disasters: An investigation of Year 5 students, Wellington, New Zealand. AJDTS 2013, 1, 17–26. [Google Scholar]
- Laçin Şimşek, C. Children’s ideas about earthquakes. Int. J. Environ. Sci. Educ. 2007, 2, 14–19. [Google Scholar]
- Raccanello, D.; Burro, R.; Hall, R. Children’s emotional experience two years after an earthquake: An exploration of knowledge of earthquakes and associated emotions. PLoS ONE 2017, 12, e0189633. [Google Scholar] [CrossRef]
- Ross, K.E.; Shuell, T.J. Children’s beliefs about earthquakes. Sci. Educ. 1993, 77, 191–205. [Google Scholar] [CrossRef]
- Raccanello, D.; Vicentini, G.; Brondino, M.; Burro, R. Technology-based trainings on emotions: A web application on earthquake-related emotional prevention with children. In International Conference in Methodologies and Intelligent Systems for Technology Enhanced Learning; Springer: Cham, Switzerland, in press.
- Pekrun, R.; Bühner, M. Self-report measures of academic emotions. In International Handbook of Emotions in Education; Pekrun, R., Linnenbrink-Garcia, L., Eds.; Taylor & Francis: New York, NY, USA, 2014; pp. 561–579. [Google Scholar]
- Gobbo, C.; Raccanello, D. Personal narratives about states of suffering and wellbeing: Children’s conceptualization in terms of physical and psychological domain. Appl. Cogn. Psychol. 2011, 25, 386–394. [Google Scholar] [CrossRef]
- Raccanello, D. L’adozione dal punto di vista dei bambini: Ruolo di età e coinvolgimento personale [Adoption from children’s point of view: Role of age and personal involvement]. Psic. Clin. Svil. 2012, 16, 507–529. [Google Scholar]
- Raccanello, D.; Hall, R.; Burro, R. Salience of primary and secondary school students’ achievement emotions and perceived antecedents: Interviews on literacy and mathematics domains. Learn. Individ. Differ. 2018, 65, 65–79. [Google Scholar] [CrossRef]
- Shaughnessy, J.J.; Zechmeister, E.B.; Zechmeister, J.S. Research Methods in Psychology; McGraw-Hill: New York, NY, USA, 2012. [Google Scholar]
- Otto, B.W. Language Development in Early Childhood Education, 3rd ed.; Pearson: Boston, MA, USA, 2010. [Google Scholar]
- Burro, R. To be objective in experimental phenomenology: A psychophysics application. Springerplus 2016, 5, 1720. [Google Scholar] [CrossRef] [PubMed]
- Chimi, C.J.; Russell, D.L. The Likert scale: A proposal for improvement using quasi-continuous variables. In Proceedings of the ISECON, Washington, DC, USA, 5–8 November 2009. [Google Scholar]
- Henson, R.K.; Hull, D.M.; Williams, C.S. Methodology in our education research culture. Educ. Res. 2010, 39, 229–240. [Google Scholar] [CrossRef]
- Harwell, M.R.; Gatti, G.G. Rescaling ordinal data to interval data in educational research. Rev. Educ. Res. 2001, 71, 105–131. [Google Scholar] [CrossRef]
- Jamieson, S. Likert scales: How to (ab)use them. Med. Educ. 2004, 38, 1212–1218. [Google Scholar] [CrossRef] [PubMed]
- Knapp, T.R. Treating ordinal scales as interval scales: An attempt to resolve the controversy. Nurs. Res. 1990, 39, 121–123. [Google Scholar] [CrossRef]
- Andrich, D. Rasch Models for Measurement; Sage Publications: Beverly Hills, LA, USA, 1988. [Google Scholar]
- Bond, T.G.; Fox, C.M. Applying the Rasch Model: Fundamental Measurement in the Human Sciences, 2nd ed.; Includes Rasch software on CD-ROM; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2007. [Google Scholar]
- Rasch, G. Probabilistic Models for Some Intelligence and Attainment Tests; Copenhagen, Danish Institute for Educational Research, expanded edition (1980) with foreword and afterword by B.D. Wright; The University of Chicago Press: Chicago, IL, USA, 1980. [Google Scholar]
- Luce, R.D.; Krantz, D.H.; Suppes, P.; Tversky, A. Foundations of Measurement; Academic: San Diego, CA, USA, 1990; Volume 3. [Google Scholar]
- Cavanagh, R.F.; Romanoski, J.T. Rating scale instruments and measurement. Learn. Environ. Res. 2007, 9, 273–289. [Google Scholar] [CrossRef]
- Bianchi, I.; Savardi, U.; Burro, R. Perceptual ratings of opposite spatial properties: Do they lie on the same dimension? Acta Psychol. 2011, 138, 405–418. [Google Scholar] [CrossRef]
- Burro, R.; Pasini, M.; Raccanello, D. Using Rasch Models for developing fast technology enhanced learning solutions: An example with emojis. In International Conference in Methodologies and Intelligent Systems for Technology Enhanced Learning; Springer: Cham, Switzerland, in press.
- Burro, R.; Pasini, M.; Raccanello, D. Emojis’ psychophysics: Measuring emotions in technology enhanced learning contexts. In International Conference in Methodologies and Intelligent Systems for Techhnology Enhanced Learning; Springer: Cham, Switzerland, 2019; Volume 804, pp. 70–78. [Google Scholar]
- Burro, R.; Sartori, R.; Vidotto, G. The method of constant stimuli with three rating categories and the use of Rasch models. Qual. Quant. 2011, 45, 43–58. [Google Scholar] [CrossRef]
- Burro, R.; Savardi, U.; Annunziata, M.A.; De Paoli, P.; Bianchi, I. The perceived severity of a disease and the impact of the vocabulary used to convey information: Using Rasch scaling in a simulated oncological scenario. Patient Prefer Adherence 2018, 12, 2553–2573. [Google Scholar] [CrossRef]
- Wright, B.D. Fundamental measurement for psychology. In The New Rules of Measurement: What Every Educator and Psychologist should Know; Embretson, S.E., Hershberger, S.L., Eds.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1999; pp. 65–104. [Google Scholar]
- Pasini, M.; Brondino, M.; Burro, R.; Raccanello, D.; Gallo, S. The use of different multiple devices for an ecological assessment. In Methodologies and Intelligent Systems for Technology Enhanced Learning; Springer: Cham, Switzerland, 2016; Volume 478, pp. 121–129. [Google Scholar]
- Raccanello, D.; Brondino, M.; Crane, M.; Pasini, M. Antecedents of achievement emotions: Mixed-device assessment with Italian and Australian university students. In Methodologies and Intelligent Systems for Technology Enhanced Learning; Springer: Cham, Switzerland, 2016; Volume 478, pp. 183–191. [Google Scholar]
- Raccanello, D.; Burro, R.; Brondino, M.; Pasini, M. Use of internet and wellbeing: A mixed-device survey. In Methodologies and Intelligent Systems for Technology Enhanced Learning; Springer: Cham, Switzerland, 2017; Volume 617, pp. 65–73. [Google Scholar]
- Toepoel, V.; Lugtig, P. Online surveys are mixed-device surveys. Issues associated with the use of different (mobile) devices in web surveys. MDA 2015, 9, 155–162. [Google Scholar] [CrossRef]
- Kreuter, F.; Presser, S.; Tourangeau, R. Social desirability bias in CATI, IVR, and web surveys: The effects of mode and question sensitivity. Public Opin. Q. 2008, 72, 847–865. [Google Scholar] [CrossRef]
- Bowling, A. Mode of questionnaire administration can have serious effects on data quality. J. Public Health 2005, 27, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Shiffman, S.; Stone, A.A.; Hufford, M.R. Ecological momentary assessment. Annu. Rev. Clin. Psychol. 2008, 4, 1–32. [Google Scholar] [CrossRef]
- Axinn, W.; Gatny, H.; Wagner, J. Maximizing data quality using mode switching in mixed-device survey design: Nonresponse bias and models of demo-graphic behaviour. MDA 2015, 9, 163–184. [Google Scholar] [CrossRef]
- Flay, B.R.; Biglan, A.; Boruch, R.F.; Castro, F.G.; Gottfredson, D.; Kellam, S.; Moscicki, E.K.; Schinke, S.; Valentine, J.C.; Ji, P. Standards of evidence: Criteria for efficacy, effectiveness and dissemination. Prev. Sci. 2005, 6, 151–175. [Google Scholar] [CrossRef] [PubMed]
- Gottfredson, D.C.; Cook, T.D.; Gardner, F.E.M.; Gorman-Smith, D.; Howe, G.W.; Sandler, I.S.; Zafft, K.M. Standards of evidence for efficacy, effectiveness, and scale-up research in prevention science: Next generation. Prev. Sci. 2018, 16, 893–926. [Google Scholar] [CrossRef]
- Raccanello, D.; Brondino, M.; Pasini, M.; Landuzzi, M.G.; Scarpanti, D.; Vicentini, G.; Massaro, M.; Burro, R. The usability. In International Conference in Methodologies and Intelligent Systems for Techhnology Enhanced Learning; Springer: Cham, Switzerland, 2019; Volume 804, pp. 79–87. [Google Scholar]
- Raccanello, D.; Gobbo, C. Understanding coexistence of internal states in children and adults. Eur. J. Dev. Psychol. 2015, 12, 158–176. [Google Scholar] [CrossRef]
- Nolen, S.B. Young children’s motivation to read and write: Development in social contexts. Cogn. Instruct. 2007, 25, 219–270. [Google Scholar] [CrossRef]
- Raccanello, D.; Hall, R.; Burro, R. Formative evaluation of emojis to signal earthquake events. Unpublished work. 2019. [Google Scholar]
- Burro, R.; Raccanello, D.; Pasini, M.; Brondino, M. An estimation of a nonlinear dynamic process using Latent Class extended Mixed Models. Affect profiles after terrorist attacks. Nonlinear Dyn. Psychol. Life Sci. 2018, 22, 35–52. [Google Scholar]
- Schmitz, C. LimeSurvey: An Open Source Survey Tool; LimeSurvey Project: Hamburg, Germany, 2015; Available online: http://www.limesurvey.org (accessed on 19 April 2019).
- Raccanello, D.; Barnaba, V.; Burro, R. Adults’ representation of children’s emotions and coping strategies related to earthquakes. In Proceedings of the 19th European Congress of Developmental Psychology, Athens, Greece, 29 August–1 September 2019. [Google Scholar]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Wien, Austria, 2019. [Google Scholar]
- Barr, D.J. Random effects structure for testing interactions in linear mixedeffects models. Front. Psychol. 2013, 4. [Google Scholar] [CrossRef]
- Barr, D.J.; Levy, R.; Scheepers, C.; Tily, H.J. Random effects structure for confirmatory hypothesis testing: Keep it maximal. J. Mem. Lang. 2013, 68, 255–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastianello, T.; Majorano, M.; Burro, R. Children’s attention in a word learning interactive context with educators and vocabulary growth. Early Child. Dev. Care 2018. [Google Scholar] [CrossRef]
- Bates, D.; Kliegl, R.; Vasishth, S.; Baayen, H. Parsimonious Mixed Models. 2015. Available online: https://arxiv.org/pdf/1506.04967.pdf (accessed on 19 April 2019).
- Bianchi, I.; Branchini, E.; Burro, R.; Capitani, E.; Savardi, U. Overtly prompting people to “think in opposites” supports insight problem solving. Think. Reason. 2019. [Google Scholar] [CrossRef]
- Bianchi, I.; Canestrari, C.; Roncoroni, A.M.; Burro, R.; Branchini, E.; Savardi, U. The effects of modulating contrast in verbal irony as a cue for giftedness. Humor 2017, 30, 383–415. [Google Scholar] [CrossRef]
- Branchini, E.; Bianchi, I.; Burro, R.; Capitani, E.; Savardi, U. Can contraries prompt intuition in insight problem solving? Front. Psychol. 2016, 7. [Google Scholar] [CrossRef]
- Branchini, E.; Burro, R.; Bianchi, I.; Savardi, U. Contraries as an effective strategy in geometrical problem solving. Think. Reason. 2015, 21, 397–430. [Google Scholar] [CrossRef]
- Canestrari, C.; Branchini, E.; Bianchi, I.; Savardi, U.; Burro, R. Pleasures of the mind: What makes jokes and insight problems enjoyable. Front. Psychol. 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Raccanello, D.; Gobbo, C.; Corona, L.; De Bona, G.; Hall, R.; Burro, R. Long-term intergenerational transmission of memories of the Vajont disaster. Memory. in press.
- Rigon, J.; Burro, R.; Guariglia, C.; Maini, M.; Marin, D.; Ciurli, P.; Bivona, U.; Formisano, R. Self-awareness rehabilitation after traumatic brain injury: A pilot study to compare two group therapies. Restor. Neurol. Neurosci. 2017, 35, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Lenth, R. Emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package Version 1.3.3.; The University of Iowa: Iowa City, IA, USA, 2019. [Google Scholar]
- Olivier, J.; May, W.L.; Bell, M.L. Relative effect sizes for measures of risk. Commun. Stat. Theory Methods 2017, 46, 6774–6781. [Google Scholar] [CrossRef]
- Chen, H.; Cohen, P.; Chen, S. How big is a big odds ratio? Interpreting the magnitudes of odds ratios in epidemiological studies. Commun. Stat. Simul. Comput. 2010, 39, 860–864. [Google Scholar] [CrossRef]
- Andrich, D.; Sheridan, B.S.; Luo, G. RUMM 2030: Rasch Unidimensional Models for Measurement; Version 5.1; RUMM Laboratory: Perth, Australia, 2010. [Google Scholar]
- RUMM Laboratory Pty Ltd. 1997–2017. Available online: www.rummlab.com (accessed on 19 April 2019).
- Kreiner, S. The Rasch model for dichotomous items. In Rasch Models in Health. Applied Mathematics Series; Christensen, K.B., Kreiner, S., Mesbah, M., Eds.; ISTE Ltd.: London, UK; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 5–25. [Google Scholar]
- Tennant, A.; Conaghan, P.G. The Rasch measurement model in rheumatology: What is it and why use it? When should it be applied, and what should one look for in a Rasch paper? Arthritis Care Res. 2007, 57, 1358–1362. [Google Scholar] [CrossRef] [Green Version]
- Marais, I. Local dependence. In Rasch Models in Health. Applied Mathematics Series; Christensen, K.B., Kreiner, S., Mesbah, M., Eds.; ISTE Ltd.: London, UK; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 111–130. [Google Scholar]
- Smith, E. Detecting and evaluating the impact of multidimensionality using item fit statistics and principal component analysis of residuals. J. Appl. Meas. 2002, 3, 205–231. [Google Scholar]
- Pallant, J.F.; Tennant, A. An introduction to the Rasch measurement model: An example using the Hospital Anxiety and Depression Scale (HADS). Br. J. Clin. Psychol. 2007, 46, 1–18. [Google Scholar] [CrossRef]
- Tennant, A.; Penta, M.; Tesio, L.; Grimby, G.; Thonnard, J.L.; Slade, A.; Lawton, G.; Simone, A.; Carter, J.; Lundgren-Nilsson, Å.; et al. Assessing and adjusting for cross-cultural validity of impairment and activity limitation scales through differential item functioning within the framework of the Rasch model: The PRO-ESOR project. Med. Care 2004, 42, I37–I48. [Google Scholar] [CrossRef]
- Hobart, J.; Cano, S. Improving the evaluation of therapeutic interventions in multiple sclerosis: The role of new psychometric methods. Health Technol. Assess. 2009, 13, 1–177. [Google Scholar] [CrossRef] [PubMed]
- Kreiner, S.; Christensen, K.B. Person parameter estimation and measurement in Rasch Models. In Rasch Models in Health. Applied Mathematics Series; Christensen, K.B., Kreiner, S., Mesbah, M., Eds.; ISTE Ltd.: London, UK; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 63–67. [Google Scholar]
- Wright, B.D.; Masters, G.N. Rating Scale Analysis; MESA Press: Chicago, IL, USA, 1982. [Google Scholar]
- Fisher, W.P.J. Rating scale instrument quality criteria. RMT 2007, 21, 1095. [Google Scholar]
- Vanhoutte, E.K.; Faber, C.G.; van Nes, S.I.; Jacobs, B.C.; van Doorn, P.A.; van Koningsveld, R.; Cornblath, D.R.; van der Kooi, A.J.; Cats, E.A.; van den Berg, L.H.; et al. Modifying the Medical Research Council grading system through Rasch analyses. Brain 2012, 135, 1639–1649. [Google Scholar] [CrossRef] [PubMed]
- Reeve, B.B.; Hays, R.D.; Bjorner, J.B.; Cook, K.F.; Crane, P.K.; Teresi, J.A.; Thissen, D.; Revicki, D.A.; Weiss, D.J.; Hambleton, R.K.; et al. Psychometric evaluation and calibration of health-related quality of life item banks: Plans for Patient-Report Outcomes Measurement Information System (PROMIS). Med. Care 2007, 45, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Vosniadou, S. The development of students’ understanding of science. Front. Educ. 2019, 4. [Google Scholar] [CrossRef]
- Mutch, C.; Gawith, E. The role of schools in disaster setting: Learning from the 2010-2011 New Zealand earthquakes. Int. J. Educ. Dev. 2015, 41, 283–291. [Google Scholar] [CrossRef]
- Bateman, A.; Danby, S. Recovering from the earthquake: Early childhood teachers and children collaboratively telling stories about their experiences. Disaster Prev. Manag. 2013, 22, 467–479. [Google Scholar] [CrossRef] [Green Version]
- Mutch, C.; Gawith, E. The New Zealand earthquakes and the role of schools in engaging children in emotional processing of disaster experiences. Pastor. Care Educ. 2014, 32, 54–67. [Google Scholar] [CrossRef]
Person-Related Elements | Absent | Behavioral | Biological | Affective |
---|---|---|---|---|
Natural elements | ||||
Man-made elements |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raccanello, D.; Vicentini, G.; Burro, R. Children’s Psychological Representation of Earthquakes: Analysis of Written Definitions and Rasch Scaling. Geosciences 2019, 9, 208. https://doi.org/10.3390/geosciences9050208
Raccanello D, Vicentini G, Burro R. Children’s Psychological Representation of Earthquakes: Analysis of Written Definitions and Rasch Scaling. Geosciences. 2019; 9(5):208. https://doi.org/10.3390/geosciences9050208
Chicago/Turabian StyleRaccanello, Daniela, Giada Vicentini, and Roberto Burro. 2019. "Children’s Psychological Representation of Earthquakes: Analysis of Written Definitions and Rasch Scaling" Geosciences 9, no. 5: 208. https://doi.org/10.3390/geosciences9050208
APA StyleRaccanello, D., Vicentini, G., & Burro, R. (2019). Children’s Psychological Representation of Earthquakes: Analysis of Written Definitions and Rasch Scaling. Geosciences, 9(5), 208. https://doi.org/10.3390/geosciences9050208