Time Decomposition and Short-Term Forecasting of Hydrometeorological Conditions in the South Baltic Coastal Zone of Poland
Abstract
:1. Introduction
- Identification of time-series characteristics (identifying the trend and seasonality of hydrometeorological data, determining the need for data transformation or data differentiation, application of diagnostic tests confirming the stationarity of the time-series, selection of additive or multiplicative time decomposition model).
- Estimation of parameters and diagnostic testing of models (selection of models including non-seasonal [ARIMA(p,d,q)] and seasonal [SARIMA(p,d,q)(P,D,Q)s] factors based on goodness-of-fit criteria (Akaike Information Criterion (AIC), Corrected Akaike Information Criterion (AICC), Bayesian Information Criterion (BIC)), prediction-error criteria (mean absolute error (MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE), mean absolute scaled error (MASE), Vє,) and verification of residuals normality by the Shapiro–Wilk test).
- Model implementation and forecasting (out-of-sample accuracy analysis and short-term forecast for prediction intervals containing confidence levels of 80% and 95%).
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Identification of Time-Series Characteristics
2.2.2. Estimation of Parameters and Diagnostic Testing of Models
2.2.3. Implementation of Models for Short-Term Forecasts
3. Results
3.1. Meteorological Background
3.2. Identification of Time-Series Characteristics
3.3. Estimation of Parameters and Diagnostic Testing of Models
3.4. Model Implementation and Forecasting
4. Discussion and Conclusions
- The additive model best presented the time decomposition of hydrometeorological conditions on the Baltic coast.
- The ARIMA models used for the Polish Baltic coastal zone are somewhat spatially homogenous for average monthly air temperature and sea level. Monthly values for these conditions are, thus, heavily influenced by regional and continental factors. However, atmospheric precipitation is characterized by high spatial heterogeneity and significant influence of local factors.
- Among the parameters modelled, autoregressive factors AR(p) were found to have a significantly greater impact on hydrometeorological conditions than moving averages MA(q) with an influence of up to three parameters.
- In the years 1966–2015, hydrometeorological conditions showed a large variation in values. However, time decomposition of hydrometeorological conditions based on monthly data did not reveal long-term trends.
- The forecast of hydrometeorological conditions for the years 2016–2020 did not show significant deviations of monthly values. This did not exclude the occurrence of extreme events, where hydrometeorological values will exceed the range of 95% trust level.
- Climate change causes irregular hydrometeorological conditions and more frequent occurrence of extreme events. Therefore, short-term (several-year) forecasting of hydrometeorological conditions in a short time interval (hourly, daily) is difficult. A lower risk of errors occurs in the case of a monthly interval.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis: Forecasting and Control, 3rd ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 1994; pp. 1–592. [Google Scholar]
- West, M. Time series decomposition. Biometrika 1997, 84, 489–494. [Google Scholar] [CrossRef]
- Zagdański, A.; Suchwałko, A. Analysis and Forecasting of Time Series. A Practical Introduction Based on the R Environment; PWN: Warsaw, Poland, 2016; pp. 1–340. ISBN 978-83-0118-356-1. [Google Scholar]
- Conley, D.J.; Carstensen, J.; Ertebjerg, J.; Christensen, P.B.; Dalsgaard, T.; Hansen, J.L.S.; Josefson, A.B. Long-term changes and impacts of hypoxia in Danish coastal waters. Ecol. Appl. 2007, 17, 165–184. [Google Scholar] [CrossRef]
- Findley, D.F.; Monsell, B.C.; Bell, W.R.; Otto, M.C.; Chen, B.C. New capabilities and methods of the X-12-ARIMA seasonal-adjustment program. J. Bus. Econ. Stat. 1998, 16, 127–152. [Google Scholar]
- Hänninen, J.; Vuorinen, I.; Hjelt, P. Climatic factors in the Atlantic control the oceanographic and ecological changes in the Baltic Sea. Limnol. Oceanogr. 2000, 45, 703–710. [Google Scholar] [CrossRef] [Green Version]
- Murat, M.; Malinowska, I.; Gos, M.; Krzyszczak, J. Forecasting daily meteorological time series using ARIMA and regression models. Int. Agrophys. 2018, 32, 253–264. [Google Scholar] [CrossRef]
- Akpanta, C.A.; Okorie, I.E.; Okoye, N.N. SARIMA Modelling of the frequency of monthly rainfall in Umuahia, Abia state of Nigeria. Am. J. Math. Stat. 2015, 5, 82–87. [Google Scholar] [CrossRef]
- Anitha, K.; Boiroju, N.K.; Reddy, P.R. Forecasting of monthly mean of maximum surface air temperature in India. Int. J. Stat. Math. 2014, 9, 14–19. [Google Scholar]
- Balyani, Y.; Niya, G.F.; Bayaat, A. A study and prediction of annual temperature in Shiraz using ARIMA model. J. Geogr. Space 2014, 12, 127–144. [Google Scholar]
- Yusof, F.; Kane, I.L. Modelling monthly rainfall time series using ETS state space and SARIMA models. Int. J. Curr. Res. 2012, 4, 195–200. [Google Scholar]
- He, Z.; Tao, H. Epidemiology and ARIMA model of positive-rate of influenza viruses among children in Wuhan, China: A nine-year retrospective study. Int. J. Infect. Dis. 2018, 74, 61–70. [Google Scholar] [CrossRef]
- Andrysiak, T.; Saganowski, Ł.; Maszewski, M.; Marchewka, A. Detection of Network Attacks Using Hybrid ARIMA-GARCH Model. Adv. Depend. Eng. Complex Syst. 2017, 1–12. [Google Scholar]
- Li, S.; Yang, X.; Li, R. Forecasting China’s Coal Power Installed Capacity: A Comparison of MGM, ARIMA, GM-ARIMA, and NMGM Models. Sustainability 2018, 10, 506. [Google Scholar] [CrossRef]
- Rudnicki, M. The ARIMA Model for Forecasting Short-term Volume of Passenger Traffic—The Example of International Airport Kraków-Balice. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Krakowie 2012, 885, 175–191. [Google Scholar]
- Balke, I.; Dorosiewicz, S. Forecasting the economic situation in the road freight transport in Poland. Logistyka 2014, 3, 231–237. [Google Scholar]
- Miller, J.W. ARIMA Time Series Models for Full Truckload Transportation Prices. Forecasting 2018, 1, 9. [Google Scholar] [CrossRef]
- Jadevicius, A.; Huston, S. ARIMA modelling of Lithuanian house price index. Int. J. Hous. Mark. Anal. 2015, 8, 135–147. [Google Scholar] [CrossRef]
- Będowska-Sójka, B. Unemployment rates forecasts—Unobserved component models versus SARIMA models in Central and Eastern European countries. Comp. Econ. Res. 2017, 20, 91–107. [Google Scholar] [CrossRef]
- Borgosz-Koczwara, M.; Kozłowski, M.; Misiorek, A.; Piesiewicz, T. Analysis of forecasting methods for the electric energy demand. Energetyka 2001, 12, 759–764. [Google Scholar]
- Gao, G.; Lo, K.; Fan, F.L. Comparison of ARIMA and ANN Models Used in electricity price forecasting for power market. Energy Power Eng. 2017, 9, 120–126. [Google Scholar] [CrossRef]
- Kavasseri, R.G.; Seetharaman, K. Day-ahead wind speed forecasting using f-ARIMA models. Renew. Energy 2009, 34, 1388–1393. [Google Scholar] [CrossRef]
- Wang, W.C.; Chau, K.W.; Xu, D.M.; Chen, X.Y. Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition. Water Resour. Manag. 2015, 29, 2655–2755. [Google Scholar] [CrossRef]
- Mini, K.G.; Kuriakose, S.; Sathianandan, T.V. Modeling CPUE series for the fishery along northeast coast of India: A comparison between the Holt-Winters, ARIMA and NNAR models. J. Mar. Biol. Assoc. India 2015, 57, 75–82. [Google Scholar] [CrossRef]
- Fernández-Manso, A.; Quintano, C.; Fernández-Manso, O. Forecast of NDVI in coniferous areas using temporal ARIMA analysis and climatic data at a regional scale. Int. J. Remote Sens. 2011, 32, 1595–1617. [Google Scholar] [CrossRef]
- Barbosa, S.M.; Donner, R.V. Long-term changes in the seasonality of Baltic sea level. Tellus A Dyn. Meteorol. Oceanogr. 2016, 68, 30540. [Google Scholar] [CrossRef]
- Barbosa, S.M.; Silva, M.E.; Fernandes, M.J. Changing seasonality in North Atlantic coastal sea level from the analysis of long tide gauge records. Tellus A Dyn. Meteorol. Oceanogr. 2008, 60, 165–177. [Google Scholar] [CrossRef]
- Weymer, B.A.; Wernette, P.; Everett, M.E.; Houser, Ch. Statistical modeling of the long-range-dependent structure of barrier island framework geology and surface geomorphology. Earth Surf. Dyn. 2018, 6, 431–450. [Google Scholar] [CrossRef]
- Vuorinen, I.; Hänninen, J.; Kornilovs, G. Transfer-function modelling between environmental variation and mesozooplankton in the Baltic Sea. Progress Oceanogr. 2003, 59, 339–356. [Google Scholar] [CrossRef]
- Yoo, J.; Kim, D.; Kim, H.; Kim, T.W. Application of copula functions to construct confidence intervals of bivariate drought frequency curve. J. Hydro-Environ. Res. 2016, 11, 113–122. [Google Scholar] [CrossRef]
- Park, J.; Onof, C.; Kim, D.A. Hybrid Stochastic Rainfall Model that Reproduces Rainfall Characteristics at Hourly through Yearly Time Scale. Hydrol. Earth Syst. Sci. Discuss. 2018, 267. [Google Scholar] [CrossRef]
- Jai, G.; Mallick, B. A study of time series models ARIMA and ETS. J. Mod. Educ. Comput. Sci. 2017, 4, 57–63. [Google Scholar] [CrossRef]
- Chen, P.; Niu, A.; Liu, D.; Jiang, W.; Ma, B. Time Series Forecasting of Temperatures using SARIMA: An Example from Nanjing. IOP Conf. Ser. Mater. Sci. Eng. 2018, 394, 052024. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice. Free Online Book. 2013. Available online: www.otext.org/OTexts.org/fpp2/ (accessed on 1 March 2017).
- Brockwell, P.J.; Davis, R.A. Time Series: Theory and Methods, 2nd ed; Springer: New York, NY, USA, 1991; pp. 1–498. [Google Scholar]
- Cleveland, R.B.; Cleveland, W.S.; Mcrae, J.E.; Terpenning, I. A seasonal-trend decomposition procedure based on loess. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Harvey, A.; Peters, S. Estimation procedures for structural time series models. J. Forecast. 1990, 9, 89–108. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Box, G.E.P.; Pierce, D.A. Distribution of the Residual Autocorrelations in Autoregressive-Integrated Moving-Average Time Series Models. J. Am. Stat. Assoc. 1970, 65, 1509–1520. [Google Scholar] [CrossRef]
- Okołowicz, W. General Climatology; PWN: Warsaw, Poland, 1969; pp. 1–395. [Google Scholar]
- Wolski, T. Temporal and Spatial Characterization of Extreme Baltic Sea Levels; Scientific Publisher of the University of Szczecin: Szczecin, Poland, 2017; ISBN 978-83-7972-091-0. [Google Scholar]
- Stramska, M.; Kowalewska-Kalkowska, H.; Świrgoń, M. Seasonal variability in the Baltic Sea level. Oceanologia 2013, 55, 787–807. [Google Scholar] [CrossRef]
- Stramska, M.; Chudziak, N. Recent mutiyear trends in the Baltic Sea level. Oceanologia 2013, 55, 319–337. [Google Scholar] [CrossRef]
- Winowski, M. The activity of landslides on the cliff coast on the Wolin Island under the influence of hydrometeorological events with high morphogenetic potential (Bay of Pomerania—Southern Baltic). Landf. Anal. 2015, 28, 87–102. [Google Scholar] [CrossRef]
- Kostrzewski, A.; Zwoliński, Z.; Winowski, M.; Tylkowski, J.; Samołyk, M. Cliff top recession rate and cliff hazards for the sea coast of Wolin Island (Southern Baltic). Baltica 2015, 28, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.-L.; Fichefet, T.; Friedlingstein, P.; Wehner, M. Long-term climate change: Projections, commitments and irreversibility. In IPCC, Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 1029–1136. [Google Scholar]
- Tylkowski, J.; Hojan, M. Threshold values of extreme hydrometeorological events on the Polish Baltic coast. Water 2018, 10, 1337. [Google Scholar] [CrossRef]
- Lehmann, A.; Getzlaff, K.; Harlaß, J. Detailed assessment of climate variability in the Baltic Sea area for the period 1958 to 2009. Clim. Res. 2011, 46, 185–196. [Google Scholar] [CrossRef] [Green Version]
- HELCOM. Climate Change in the Baltic Sea Area—HELCOM Thematic Assessment in 2013. Baltic Sea Environ. Proc. 2013, 137, 1–66. [Google Scholar]
- Omstedt, A.; Pettersen, C.; Rodhe, J.; Winsor, P. Baltic Sea climate: 200 yr of data on air temperature, sea level variations, ice cover and atmospheric circulation. Clim. Res. 2004, 25, 205–216. [Google Scholar] [CrossRef]
- Tylkowski, J. Temporal and spatial variability of air temperature and precipitation at the Polish coastal zone of the southern Baltic Sea. Baltica 2013, 26, 83–94. [Google Scholar] [CrossRef]
- Tylkowski, J. The temporal and spatial variability of coastal dune erosion in the Polish Baltic coastal zone. Baltica 2017, 30, 97–106. [Google Scholar] [CrossRef]
- Russell, G.L.; Gornitz, V.; Miller, J.R. Regional sea level changes projected by the NASA/GISS atmosphere-ocean model. Clim. Dyn. 2000, 16, 789–797. [Google Scholar] [CrossRef]
- Nerem, R.S.; Chambers, D.P.; Choe, C.; Mitchum, G.T. Estimating mean sea level change from the TOPEX and Jason altimeter missions. Mar. Geod. 2010, 33, 435–446. [Google Scholar] [CrossRef]
- Jędrasik, J. Retrospective Modelling and Forecasting of Baltic Sea Hydrodynamics; Wyd. UG: Gdańsk, Poland, 2014; pp. 1–178. [Google Scholar]
- Richter, A.; Groh, A.; Dietrich, R. Geodetic observation of sea-level change and crustal deformation in the Baltic Sea region. Phys. Chem. Earth 2012, 53, 43–53. [Google Scholar] [CrossRef]
- Christensen, O.B.; Kjellström, E.; Zorita, E. Projected Change—Atmosphere. In Second Assessment of Climate Change for the Baltic Sea Basin; The BACC II Author Team, Ed.; Regional Climate Studies; Springer: Cham, Switzerland, 2015; ISBN 978-3-319-16006-1. [Google Scholar]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D. Sea level change. In Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 1137–1216. [Google Scholar]
- Grinsted, A. Projected Change—Sea Level. In Second Assessment of Climate Change for the Baltic Sea Basin; BACC II Author Team, Ed.; Springer: London, UK, 2015; pp. 253–263. ISBN 978-3-319-16006-1. [Google Scholar] [Green Version]
- El-Mallah, E.S.; Elsharkawy, S.G. Time-series modeling and short term prediction of annual temperature trend on Coast Libya using the box-Jenkins ARIMA Model. Adv. Res. 2016, 6, 1–11. [Google Scholar] [CrossRef]
- Ye, L.; Yang, G.; Van Ranst, E.; Tang, H. Time-series modeling and prediction of global monthly absolute temperature for environmental decision making. Adv. Atmos. Sci. 2013, 30, 382–396. [Google Scholar] [CrossRef] [Green Version]
Place | Hydromoeteorological Condition | Model (p,d,q)(P,D,Q)S | AIC | AICC | BIC |
---|---|---|---|---|---|
Świnoujście | Air temperature (mean) | (2,0,1)(2,1,0)12 | 2636.53 | 2636.69 | 2662.41 |
Ustka | (2,0,1)(2,1,0)12 | 2354.47 | 2354.68 | 2384.82 | |
Hel | (2,0,1)(2,1,0)12 | 2261.75 | 2261.95 | 2292.10 | |
Świnoujście | Precipitation (total) | (1,0,0)(1,1,0)12 | 5528.70 | 5528.77 | 5546.04 |
Ustka | (0,0,3)(2,1,0)12 | 5784.25 | 5784.40 | 5810.26 | |
Hel | (0,0,0)(2,1,0)12 | 5510.82 | 5510.86 | 5523.83 | |
Świnoujście | Sea level (mean) | (1,0,0)(1,1,0)12 | 4500.35 | 4500.42 | 4517.69 |
Ustka | (1,0,0)(1,1,0)12 | 4658.98 | 4659.05 | 4676.32 | |
Hel | (2,0,2)(2,1,0)12 | 4655.67 | 4655.93 | 4690.35 |
Place | Hydrometeorological Condition | Model (p,d,q)(P,D,Q)S | W | p |
---|---|---|---|---|
Świnoujście | Air temperature (mean) | (2,0,1)(2,1,0)12 | 0.98 | <0.001 |
Ustka | (2,0,1)(2,1,0)12 | 0.99 | <0.001 | |
Hel | (2,0,1)(2,1,0)12 | 0.99 | 0.002 | |
Świnoujście | Precipitation (total) | (1,0,0)(1,1,0)12 | 0.97 | <0.001 |
Ustka | (0,0,3)(2,1,0)12 | 0.96 | <0.001 | |
Hel | (0,0,0)(2,1,0)12 | 0.98 | <0.001 | |
Świnoujście | Sea level (mean) | (1,0,0)(1,1,0)12 | 0.99 | 0.001 |
Ustka | (1,0,0)(1,1,0)12 | 0.99 | 0.011 | |
Hel | (2,0,2)(2,1,0)12 | 0.99 | 0.002 |
Place | Hydrometeorological Condition | Model (p,d,q)(P,D,Q)S | MAE | RMSE | MAPE | MASE | Vє |
---|---|---|---|---|---|---|---|
Świnoujście | Air temperature (mean) | (2,0,1)(2,1,0)12 | 1.92 | 2.58 | 201.07 | 0.35 | 0.8 |
Ustka | (2,0,1)(2,1,0)12 | 1.47 | 1.92 | 205.41 | 0.49 | 1.4 | |
Hel | (2,0,1)(2,1,0)12 | 1.35 | 1.77 | 354.11 | 0.48 | 1.5 | |
Świnoujście | Precipitation (total) | (1,0,0)(1,1,0)12 | 23.74 | 32.21 | 146.04 | 0.49 | 0.4 |
Ustka | (0,0,3)(2,1,0)12 | 29.35 | 40.14 | 111.05 | 0.46 | −0.01 | |
Hel | (0,0,0)(2,1,0)12 | 23.85 | 31.70 | 140.03 | 0.47 | 0.4 | |
Świnoujście | Sea level (mean) | (1,0,0)(1,1,0)12 | 9.80 | 12.93 | 451.68 | 0.44 | 1.6 |
Ustka | (1,0,0)(1,1,0)12 | 11.39 | 14.89 | 185.61 | 0.44 | 1.2 | |
Hel | (2,0,2)(2,1,0)12 | 11.20 | 14.71 | 160.70 | 0.42 | 0.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tylkowski, J.; Hojan, M. Time Decomposition and Short-Term Forecasting of Hydrometeorological Conditions in the South Baltic Coastal Zone of Poland. Geosciences 2019, 9, 68. https://doi.org/10.3390/geosciences9020068
Tylkowski J, Hojan M. Time Decomposition and Short-Term Forecasting of Hydrometeorological Conditions in the South Baltic Coastal Zone of Poland. Geosciences. 2019; 9(2):68. https://doi.org/10.3390/geosciences9020068
Chicago/Turabian StyleTylkowski, Jacek, and Marcin Hojan. 2019. "Time Decomposition and Short-Term Forecasting of Hydrometeorological Conditions in the South Baltic Coastal Zone of Poland" Geosciences 9, no. 2: 68. https://doi.org/10.3390/geosciences9020068
APA StyleTylkowski, J., & Hojan, M. (2019). Time Decomposition and Short-Term Forecasting of Hydrometeorological Conditions in the South Baltic Coastal Zone of Poland. Geosciences, 9(2), 68. https://doi.org/10.3390/geosciences9020068