Correlation of Elastic Moduli and Serpentine Content in Ultramafic Rocks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological Background
2.1.1. TS Sample (Twin Sisters Dunite)
2.1.2. BC Sample (Bushveld Complex Pyroxenite)
2.1.3. JC and ND Samples (Jackson County and Newdale Dunites)
2.1.4. CP, OP, WP and HP Samples (Point Sal Samples 1–4)
3. Results
3.1. Measurements of Density and Porosity
Density Variation with Serpentine Content
3.2. Estimating Seismic Velocities
3.3. Estimating Elastic Moduli and Poisson’s Ratio
Elastic Moduli Variation with Serpentine Content
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Christensen, N.I. Serpentinites, peridotites, and seismology. Int. Geol. Rev. 2004, 46, 795–816. [Google Scholar] [CrossRef]
- Lowell, R.P. Circulation in fractures, hot springs, and convective heat transport on mid-ocean ridge crests. Geophys. J. R. Astron. Soc. 1975, 40, 351–365. [Google Scholar] [CrossRef]
- Bickle, M.J.; Teagle, D.A. Strontium alteration in the Troodos ophiolite: Implications for fluid fluxes and geochemical transport in mid-ocean ridge hydrothermal systems. Earth Planet. Sci. Lett. 1992, 113, 219–237. [Google Scholar] [CrossRef]
- Elderfield, H.; Wheat, C.G.; Mottl, M.J.; Monnin, C.; Spiro, B. Fluid and geochemical transport through oceanic crust: A transect across the eastern flank of the Juan de Fuca Ridge. Earth Planet. Sci. Lett. 1999, 172, 151–165. [Google Scholar] [CrossRef]
- Hyndman, R.D.; Wang, K. Thermal constraints on the zone of major thrust earthquake failure: The Cascadia subduction zone. J. Geophys. Res. Solid Earth 1993, 98, 2039–2060. [Google Scholar] [CrossRef]
- Gamage, K.; Screaton, E.; Bekins, B.; Aiello, I. Permeability–porosity relationships of subduction zone sediments. Mar. Geol. 2011, 279, 19–36. [Google Scholar] [CrossRef]
- Pruess, K. Enhanced geothermal systems (EGS) using CO2 as working fluid—A novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics 2006, 35, 351–367. [Google Scholar] [CrossRef]
- Taron, J.; Elsworth, D. Thermal–hydrologic–mechanical–chemical processes in the evolution of engineered geothermal reservoirs. Int. J. Rock Mech. Min. Sci. 2009, 46, 855–864. [Google Scholar] [CrossRef]
- Byerlee, J.D. Model for episodic flow of high-pressure water in fault zones before earthquakes. Geology 1993, 21, 303–306. [Google Scholar] [CrossRef]
- Sleep, N.H.; Blanpied, M.L. Ductile creep and compaction: A mechanism for transiently increasing fluid pressure in mostly sealed fault zones. Pure Appl. Geophys. 1994, 143, 9–40. [Google Scholar] [CrossRef]
- O’Hanley, D.S. Solution to the volume problem in serpentinization. Geology 1992, 20, 705–708. [Google Scholar] [CrossRef]
- Escartin, J.; Hirth, G.; Evans, B. Nondilatant brittle deformation of serpentinites: Implications for Mohr-Coulomb theory and the strength of faults. J. Geophys. Res. Solid Earth 1997, 102, 2897–2913. [Google Scholar] [CrossRef]
- Miller, D.J.; Christensen, N.I. Seismic Velocities of Lower Crustal and Upper Mantle Rocks from the Slow-Spreading Mid-Atlantic Ridge, South of the Kane Transform Zone (MARK). In Proceedings-Ocean Drilling Program Scientific Results; National Science Foundation: Alexandria, VA, USA, 1997; pp. 437–456. [Google Scholar]
- Oufi, O.; Cannat, M.; Horen, H. Magnetic properties of variably serpentinized abyssal peridotites. J. Geophys. Res. Solid Earth 2002, 107, EPM-3. [Google Scholar] [CrossRef]
- Früh-Green, G.L.; Connolly, J.A.; Plas, A.; Kelley, D.S.; Grobéty, B. Serpentinization of oceanic peridotites: Implications for geochemical cycles and biological activity. Subseafloor Biosph. Mid-Ocean Ridges 2004, 144, 119–136. [Google Scholar]
- Paulick, H.; Bach, W.; Godard, M.; De Hoog, J.C.M.; Suhr, G.; Harvey, J. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15 20′ N, ODP Leg 209): Implications for fluid/rock interaction in slow spreading environments. Chem. Geol. 2006, 234, 179–210. [Google Scholar] [CrossRef]
- Deschamps, F.; Godard, M.; Guillot, S.; Hattori, K. Geochemistry of subduction zone serpentinites: A review. Lithos 2013, 178, 96–127. [Google Scholar] [CrossRef]
- Nichols, J.; Warren, N.; Luyendyk, B.P.; Spudich, P. Seismic velocity structure of the ophiolite at Point Sal, southern California, determined from laboratory measurements. Geophys. J. Int. 1980, 63, 165–185. [Google Scholar] [CrossRef]
- Christensen, N.I. Elasticity of ultrabasic rocks. J. Geophys. Res. 1966, 71, 5921–5931. [Google Scholar] [CrossRef]
- Christensen, N.I. The abundance of serpentinites in the oceanic crust. J. Geol. 1972, 80, 709–719. [Google Scholar] [CrossRef]
- Christensen, N.I. Ophiolites, seismic velocities and oceanic crustal structure. Tectonophysics 1978, 47, 131–157. [Google Scholar] [CrossRef]
- Schreiber, E.; Fox, P.J. Density and P-wave velocity of rocks from the FAMOUS region and their implication to the structure of the oceanic crust. Geol. Soc. Am. Bull. 1977, 88, 600–608. [Google Scholar] [CrossRef]
- Christensen, N.I.; Smewing, J.D. Geology and seismic structure of the northern section of the Oman ophiolite. J. Geophys. Res. Solid Earth 1981, 86, 2545–2555. [Google Scholar] [CrossRef]
- Iturrino, G.J.; Miller, D.J.; Christensen, N.I. Velocity Behavior of Lower Crustal and Upper Mantle Rocks from a Fast-Spreading Ridge at Hess DEEP1. Proc. Ocean Drill. Program Sci. Results 1996, 147, 417–440. [Google Scholar]
- Escartin, J.; Hirth, G.; Evans, B. Strength of slightly serpentinized peridotites: Implications for the tectonics of oceanic lithosphere. Geology 2001, 29, 1023–1026. [Google Scholar] [CrossRef]
- Falcon-Suarez, I.; Bayrakci, G.; Minshull, T.A.; North, L.J.; Best, A.I.; Rouméjon, S. Elastic and electrical properties and permeability of serpentinites from Atlantis Massif, Mid-Atlantic Ridge. Geophys. J. Int. 2017, 211, 686–699. [Google Scholar] [CrossRef]
- Horen, H.; Zamora, M.; Dubuisson, G. Seismic waves velocities and anisotropy in serpentinized peridotites from xigaze ophiolite: Abundance of serpentine in slow spreading ridge. Geophys. Res. Lett. 1996, 23, 9–12. [Google Scholar] [CrossRef]
- Ramana, Y.V.; Rao, M.V.M.S. Compressional Velocities in Ultramafic Rocks of India at Pressures to Five Kilobars. Geophys. J. Int. 1974, 37, 207–212. [Google Scholar] [CrossRef]
- Watts, A.; Burov, E. Lithospheric strength and its relationship to the elastic and seismogenic layer thickness. Earth Planet. Sci. Lett. 2003, 213, 113–131. [Google Scholar] [CrossRef]
- Brace, W.F.; Paulding, B.W.; Scholz, C. Dilatancy in the fracture of crystalline rocks. J. Geophys. Res. Space Phys. 1966, 71, 3939–3953. [Google Scholar] [CrossRef]
- Saad, A.H. Magnetic Properties of Ultramafic Rocks from Red Mountain, California. Geophysics 1969, 34, 974–987. [Google Scholar] [CrossRef]
- Christensen, N.I. Fabric, Seismic Anisotropy, and Tectonic History of the Twin Sisters Dunite, Washington. GSA Bull. 1971, 82, 1681. [Google Scholar] [CrossRef]
- Ragan, D.M. Emplacement of the Twin Sisters dunite, Washington. Am. J. Sci. 1963, 261, 549–565. [Google Scholar] [CrossRef]
- Misch, P. Tectonic Evolution of the Northern Cascades of Washington. In A Symposium on the Tectonic History and Mineral Deposits of the Western Cordillera in British Columbia and Neighboring Parts of the United States; Special Volume 8; Canadian Institute of Mining, Metallurgy and Petroleum: Montreal, QC, Canada, 1966; pp. 101–148. [Google Scholar]
- Hatton, C. Mantle plume origin for the Bushveld and Ventersdorp magmatic provinces. J. Afr. Earth Sci. 1995, 21, 571–577. [Google Scholar] [CrossRef]
- Cawthorn, R.G.; Walraven, F. Emplacement and Crystallization Time for the Bushveld Complex. J. Pet. 1998, 39, 1669–1687. [Google Scholar] [CrossRef]
- Misra, K.C.; Keller, F.B. Ultramafic bodies in the Southern Appalachians; a review. Am. J. Sci. 1978, 278, 389–418. [Google Scholar] [CrossRef]
- Hunter, C.E. Forsterite olivine deposits of North Carolina and Georgia: North Carolina Department of Conservation and Development. Div. Miner. Resour. Bull. 1941, 41, 117. [Google Scholar]
- Lipin, B.R. Chromite from the Blue Ridge Province of North Carolina. Am. J. Sci. 1984, 284, 507–529. [Google Scholar] [CrossRef]
- Hopson, C.A.; Mattinson, J.M.; Pessagno, E.A. Coast Range Ophiolite, Western California. In The Geotectonic Development of California; Ernst, W.G., Ed.; Prentice-Hall: Bergen, NJ, USA, 1981; pp. 419–510. [Google Scholar]
- Menzies, M.; Blanchard, D.; Brannon, J.; Korotev, R. Rare earth and trace element geochemistry of a fragment of jurassic seafloor, Point Sal, California. Geochim. Cosmochim. Acta 1977, 41, 1419–1430. [Google Scholar] [CrossRef]
- Schiffman, P.; Bettison, L.; Williams, A. Hydrothermal metamorphism of the Point Sal remnant, California Coast Range ophiolite. In Proceedings of the 5th International Syrup on Water-Rock Interactions, Reykjavík, Iceland, 8–17 August 1986. [Google Scholar]
- Bettison, L.A.; Schiffman, P. Compositional and structural variations of phyllosilicates from the Point Sal ophiolite, California. Am. Mineral. 1988, 73, 62–76. [Google Scholar]
- Karasch, A.K.; Farough, A.; Lowell, R.P. The Correlation Between Porosity, Density and Degree of Serpentinization in Ophiolites from Point Sal, California: Implications for Strength of Oceanic Lithosphere. In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2017. [Google Scholar]
- Reynard, B.; Hilairet, N.; Balan, E.; Lazzeri, M. Elasticity of serpentines and extensive serpentinization in subduction zones. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Christensen, N.I.; Shaw, G.H. Elasticity of Mafic Rocks from the Mid-Atlantic Ridge. Geophys. J. Int. 1970, 20, 271–284. [Google Scholar] [CrossRef] [Green Version]
- Turcotte, D.; Schubert, G. Geodynamics; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Hyndman, R.D.; Peacock, S.M. Serpentinization of the forearc mantle. Earth Planet. Sci. Lett. 2003, 212, 417–432. [Google Scholar] [CrossRef]
- Long, M.D.; Wirth, E.A. Mantle flow in subduction systems: The mantle wedge flow field and implications for wedge processes. J. Geophys. Res. Solid Earth 2013, 118, 583–606. [Google Scholar] [CrossRef]
- Dobson, D.P.; Meredith, P.G.; Boon, S.A. Simulation of subduction zone seismicity by dehydration of serpentine. Science 2002, 298, 1407–1410. [Google Scholar] [CrossRef] [PubMed]
- Obara, K. Nonvolcanic Deep Tremor Associated with Subduction in Southwest Japan. Science 2002, 296, 1679–1681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bezacier, L.; Reynard, B.; Cardon, H.; Montagnac, G.; Bass, J.D. High-pressure elasticity of serpentine and seismic properties of the hydrated mantle wedge. J. Geophys. Res. Solid Earth 2013, 118, 527–535. [Google Scholar] [CrossRef]
- Jung, H.; Ii, H.W.G.; Dobrzhinetskaya, L.F. Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change. Nature 2004, 428, 545–549. [Google Scholar] [CrossRef]
- Jung, H.; Green, H.W. Experimental Faulting of Serpentinite during Dehydration: Implications for Earthquakes, Seismic Low-Velocity Zones, and Anomalous Hypocenter Distributions in Subduction Zones. Int. Geol. Rev. 2004, 46, 1089–1102. [Google Scholar] [CrossRef]
- Meade, C.; Jeanloz, R. Deep-focus earthquakes and recycling of water into the Earth’s mantle. Science 1991, 252, 68–72. [Google Scholar] [CrossRef]
- Mookherjee, M.; Stixrude, L. Structure and elasticity of serpentine at high-pressure. Earth Planet. Sci. Lett. 2009, 279, 11–19. [Google Scholar] [CrossRef]
- Reinen, L.A. Seismic and aseismic slip indicators in serpentinite gouge. Geology 2000, 28, 135. [Google Scholar] [CrossRef]
- Mookherjee, M.; Capitani, G.C. Trench parallel anisotropy and large delay times: Elasticity and anisotropy of antigorite at high pressures. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Peacock, S.M.; Hacker, B.R.; Abers, G.A. Subduction factory Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J. Geophys. Res. Space Phys. 2003, 108. [Google Scholar] [CrossRef]
- Wiens, D.A.; Conder, J.A.; Faul, U.H. The Seismic Structure and Dynamics of the Mantle Wedge. Annu. Rev. Earth Planet. Sci. 2008, 36, 421–455. [Google Scholar] [CrossRef] [Green Version]
- Bostock, M.G.; Hyndman, R.D.; Rondenay, S.; Peacock, S.M. An inverted continental Moho and serpentinization of the forearc mantle. Nature 2002, 417, 536–538. [Google Scholar] [CrossRef]
- Gerya, T.V.; Yuen, D.A.; Maresch, W.V. Thermomechanical modelling of slab detachment. Earth Planet. Sci. Lett. 2004, 226, 101–116. [Google Scholar] [CrossRef]
- Tolstoy, M.; Harding, A.J.; Orcutt, J.A. Crustal Thickness on the Mid-Atlantic Ridge: Bull’s-Eye Gravity Anomalies and Focused Accretion. Science 1993, 262, 726–729. [Google Scholar] [CrossRef] [Green Version]
- Tucholke, B.E.; Lin, J. A geological model for the structure of ridge segments in slow spreading ocean crust. J. Geophys. Res. Space Phys. 1994, 99, 11937–11958. [Google Scholar] [CrossRef]
- Cannat, M.; Mevel, C.; Maia, M.; Deplus, C.; Durand, C.; Gente, P.; Reynolds, J. Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22–24 N). Geology 1995, 23, 49–52. [Google Scholar] [CrossRef]
- Fryer, P. Recent Studies of Serpentinite Occurrences in the Oceans: Mantle-Ocean Interactions in the Plate Tectonic Cycle. Geochemistry 2002, 62, 257–302. [Google Scholar] [CrossRef]
- Jung, H. Seismic anisotropy produced by serpentine in mantle wedge. Earth Planet. Sci. Lett. 2011, 307, 535–543. [Google Scholar] [CrossRef]
- Carlson, R.L. The abundance of ultramafic rocks in Atlantic Ocean crust. Geophys. J. Int. 2001, 144, 37–48. [Google Scholar] [CrossRef] [Green Version]
Name | Label | Major Phase * | Other Phases * | Serpentine Content β % ** |
---|---|---|---|---|
Twin Sisters dunite | TS | Olivine | Serpentine, Enstatite | 5 |
Bushveld Complex pyroxenite | BC | Pyroxene | Serpentine, Plagioclase | 10 |
Jackson County dunite | JC | Olivine | Serpentine, Talc | 30 |
Newdale dunite | ND | Olivine | Serpentine, Talc | 40 |
Point Sal sample 1 | CP | Serpentine | Diopside | 60 |
Point Sal sample 2 | OP | Serpentine | Diopside | 75 |
Point Sal sample 3 | WP | Serpentine | Diopside | 85 |
Point Sal sample 4 | HP | Serpentine | Talc | 95 |
Sample | ρ kg/m3 | φ % | ρs kg/m3 |
---|---|---|---|
TS | 3200 | 3.8 | 3328 |
BC | 3080 | 2.3 | 3152 |
JC | 3070 | 2.7 | 3154 |
ND | 2790 | 8.4 | 3047 |
CP | 3030 | 2.3 | 3102 |
OP | 2800 | 4.9 | 2944 |
WP | 2820 | 2.1 | 2881 |
HP | 2540 | 3.9 | 2644 |
Sample | Vp (m/s) | Vs (m/s) | Vp/Vs | μ (GPa) | K (GPa) | E (GPa) | ν |
---|---|---|---|---|---|---|---|
TS | 7759.5 | 4262 | 1.82 | 58.1 | 115 | 76.4 | 0.28 |
BC | 7597 | 4153 | 1.83 | 53.1 | 107 | 71.5 | 0.28 |
JC | 6947 | 3717 | 1.87 | 42.4 | 91.6 | 63.3 | 0.29 |
ND | 6622 | 3499 | 1.89 | 34.2 | 76.8 | 54.03 | 0.30 |
CP | 5972 | 3063 | 1.95 | 28.4 | 70.2 | 51.2 | 0.32 |
OP | 5484.5 | 2736 | 2.00 | 21.0 | 56.3 | 42.3 | 0.33 |
WP | 5159.5 | 2518 | 2.05 | 17.9 | 51.2 | 39.3 | 0.34 |
HP | 4834.5 | 2300 | 2.10 | 13.4 | 41.5 | 32.5 | 0.35 |
Horen et al., [27] Samples | Vp (m/s) | Vs (m/s) | µ* (Gpa) | µ** (Gpa) | Mean | STD | K* (Gpa) | K** (Gpa) | Mean | STD | E* (Gpa) | E** (Gpa) | Mean | STD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PF1 | 7759 | 4353 | 61.77 | 56.15 | 58.96 | 3.98 | 113.90 | 112.72 | 113.31 | 0.83 | 72.71 | 75.28 | 61.20 | 1.81 |
PF2 | 7346 | 4172 | 55.70 | 50.38 | 53.04 | 3.76 | 98.42 | 103.40 | 100.91 | 3.52 | 61.29 | 69.80 | 56.94 | 6.02 |
PS2 | 6722 | 3552 | 37.85 | 40.77 | 39.31 | 2.07 | 85.09 | 87.86 | 86.47 | 1.96 | 59.86 | 60.67 | 50.62 | 0.58 |
PS1 | 6788 | 3579 | 39.20 | 40.77 | 39.98 | 1.11 | 88.73 | 87.86 | 88.30 | 0.62 | 62.60 | 60.67 | 46.59 | 1.37 |
PS3 | 6355 | 3333 | 32.55 | 35.97 | 34.26 | 2.42 | 74.93 | 80.09 | 77.51 | 3.65 | 53.23 | 56.10 | 42.71 | 2.03 |
PS4 | 5864 | 3081 | 25.72 | 23.95 | 24.84 | 1.25 | 58.89 | 60.67 | 59.78 | 1.26 | 41.74 | 44.69 | 39.28 | 2.09 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farough, A.; Karrasch, A.K. Correlation of Elastic Moduli and Serpentine Content in Ultramafic Rocks. Geosciences 2019, 9, 494. https://doi.org/10.3390/geosciences9120494
Farough A, Karrasch AK. Correlation of Elastic Moduli and Serpentine Content in Ultramafic Rocks. Geosciences. 2019; 9(12):494. https://doi.org/10.3390/geosciences9120494
Chicago/Turabian StyleFarough, Aida, and Alexander K. Karrasch. 2019. "Correlation of Elastic Moduli and Serpentine Content in Ultramafic Rocks" Geosciences 9, no. 12: 494. https://doi.org/10.3390/geosciences9120494
APA StyleFarough, A., & Karrasch, A. K. (2019). Correlation of Elastic Moduli and Serpentine Content in Ultramafic Rocks. Geosciences, 9(12), 494. https://doi.org/10.3390/geosciences9120494