Landslide Susceptibility Assessment of Mauritius Island (Indian Ocean)
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. Landslide Controlling Factors
3.1.1. Slope
3.1.2. Aspect
3.1.3. Topographic Curvature
3.1.4. Drainage Pattern
3.1.5. Vegetation Cover
3.1.6. Lithology and Soil Cover Deposits
3.1.7. Rainfall
4. Results
4.1. Preliminary GIS-Based Landslide Susceptibility Map
4.2. Photogeological Analysis
4.3. Geomorphological Field Survey
4.4. Landslide Distribution
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kerekes, A.H.; Horváth, C.s. Landslide susceptibility evaluation using GIS. Case study: Silvanie Hills (Romania). Stud. UBB Geogr. LXI 2016, 2, 85–99. [Google Scholar]
- Dolean, B.E. Landslide susceptibility assessment using Spatial Analysis and GIS modeling in Cluj-Napoca Metropolitan Area, Romania. Cinq Cont. 2017, 7, 23–41. [Google Scholar]
- Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z. Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng. Geol. 2008, 102, 99–111. [Google Scholar] [CrossRef]
- Brabb, E.E. Innovative approaches to landslide hazard and risk mapping. In Proceedings of the IVth International Conference and Field Workshop in Landslides, Tokyo, Japan, 23–31 August 1985; pp. 17–22. [Google Scholar]
- Guzzetti, F.; Reichenbach, P.; Ardizzone, F.; Cardinali, M.; Galli, M. Estimating the quality of landslide susceptibility models. Geomorphology 2006, 81, 166–184. [Google Scholar] [CrossRef]
- Rossi, M.; Guzzetti, F.; Reichenbach, P.; Mondini, A.C.; Peruccacci, S. Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology 2010, 114, 129–142. [Google Scholar] [CrossRef]
- Soeters, R.; Van Westen, C.J. Slope instability recognition, analysis, and zonation. In Landslides, Investigation and Mitigation (Transportation Research Board, National Research Council, Special Report; 247); Turner, A.K., Schuster, R.L., Eds.; National Academy Press: Washington, DC, USA, 1996; pp. 129–177. ISBN 0-309-06151-2. [Google Scholar]
- Van Westen, C.J.; Rengers, N.; Terlien, M.T.J.; Soeters, R. Prediction of the occurrence of slope instability phenomenal through GIS-based hazard zonation. Geol. Rundschau 1997, 86, 404–414. [Google Scholar] [CrossRef]
- Aleotti, P.; Chowdhury, R. Landslide hazard assessment: Summary review and new perspectives. Bull. Eng. Geol. Environ. 1999, 58, 21–44. [Google Scholar] [CrossRef]
- Conoscenti, C.; Di Maggio, C.; Rotigliano, E. GIS analysis to assess landslide susceptibility in a fluvial basin of NW Sicily (Italy). Geomorphology 2008, 94, 325–339. [Google Scholar] [CrossRef]
- Melelli, L.; Taramelli, A.; Nucci, G. L’analisi statistica bivariata in ambiente GIS: Un esempio applicato alla valutazione della suscettibilità da frana. Mem. Descr. della Cart. Geol. d’Italia 2008, 78, 169–182. [Google Scholar]
- Van Den Eeckhaut, M.; Reichenbach, P.; Guzzetti, F.; Rossi, M.; Poesen, J. Combined landslide inventory and susceptibility assessment based on different mapping units: An example from the Flemish Ardennes, Belgium. Nat. Hazards Earth Syst. Sci. 2009, 9, 507–521. [Google Scholar] [CrossRef]
- Petschko, H.; Brenning, A.; Bell, R.; Goetz, J.; Glade, T. Assessing the quality of landslide susceptibility maps—Case study Lower Austria. Nat. Hazards Earth Syst. Sci. 2014, 14, 95–118. [Google Scholar] [CrossRef]
- Rahman, M.S.; Ahmed, B.; Di, L. Landslide initiation and runout susceptibility modeling in the context of hill cutting and rapid urbanization: a combined approach of weights of evidence and spatial multi-criteria. J. Mt. Sci. 2017, 14, 1919–1937. [Google Scholar] [CrossRef]
- Moradi, H.; Avand, M.; Janizadeh, S. Landslide Susceptibility Survey Using Modeling Methods. In Spatial Modeling in GIS and R for Earth and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2019; pp. 259–275. [Google Scholar] [CrossRef]
- De Graff, J.V.; Romesburg, H.C.; Ahmad, R.; McCalpin, J.P. Producing landslide-susceptibility maps for regional planning in data-scarce regions. Nat. Hazards 2012, 64, 729–749. [Google Scholar] [CrossRef]
- Ali, S.; Biermanns, P.; Haider, R.; Reicherter, K. Landslide susceptibility mapping by using a geographic information system (GIS) along the China-Pakistan Economic Corridor (Karakoram Highway), Pakistan. Nat. Hazards Earth Syst. Sci. 2019, 19, 999–1022. [Google Scholar] [CrossRef]
- Pardeshi, S.D.; Autade, S.E.; Pardeshi, S.S. Landslide hazard assessment: Recent trends and techniques. Springerplus 2013, 2, 11. [Google Scholar] [CrossRef]
- Antoniou, V.; Lappas, S.; Leoussis, C.; Nomikou, P. Landslide Risk Assessment of the Santorini Volcanic Group. In Proceedings of the 3rd International Conference on Geographical Information Systems Theory, Applications and Management (GISTAM 2017), Porto, Portugal, 27–28 April 2017; pp. 131–141. [Google Scholar] [CrossRef]
- Chalkias, C.; Polykretis, C.; Ferentinou, M.; Karymbalis, E. Integrating Expert Knowledge with Statistical Analysis for Landslide Susceptibility Assessment at Regional Scale. Geosciences 2016, 6, 14. [Google Scholar] [CrossRef]
- Nel, W.; Hauptfleisch, A.; Sumner, P.D.; Boojhawon, R.; Rughooputh, S.D.D.V.; Dhurmea, K.R. Intra-event characteristics of extreme erosive rainfall on Mauritius. Phys. Geogr. 2016, 37, 264–275. [Google Scholar] [CrossRef]
- Nigel, R.; Rughooputh, S.D.D.V. A Water Accumulation Flooding Potentiality Index (WAFPI) for rating the risk of flooding- A case study of Mauritius Island. Univ. Mauritius Res. J. 2008, 14, 93–111. [Google Scholar]
- Nigel, R.; Rughooputh, S.D.D.V. A Landslide Potentiality Mapping on Mauritius Island. Available online: https://www.geospatialworld.net/article/a-landslide-potentiality-mapping-on-mauritius-island/ (accessed on 23 November 2019).
- Nigel, R.; Rughooputh, S.D.D.V. Soil erosion risk mapping with new datasets: An improved identification and prioritisation of high erosion risk areas. Catena 2010, 82, 191–205. [Google Scholar] [CrossRef]
- Nel, W.; Mongwa, T.; Sumner, P.; Anderson, R.; Dhurmea, K.; Boodhoo, Y.; Boojhawon, R.; Rughooputh, S.D.D.V. The Nature of Erosive Rainfall on a Tropical Volcanic Island with an Elevated Interior. Phys. Geogr. 2012, 33, 269–284. [Google Scholar] [CrossRef]
- Dai, F.C.; Lee, C.F.; Li, J.; Xu, Z.W. Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ. Geol. 2001, 40, 381–391. [Google Scholar] [CrossRef]
- Miller, S.; Degg, M. Landslide susceptibility mapping in North-East Wales. Geomatics, Nat. Hazards Risk 2012, 3, 133–159. [Google Scholar] [CrossRef]
- Grozavu, A.; Pleşcan, S.; Patriche, C.V.; Mărgărint, M.C.; Roşca, B. Landslide susceptibility assessment: GIS application to a complex mountainous environment. In Environmental Science and Engineering (Subseries: Environmental Science); Springer: Berlin/Heidelberg, Germany, 2013; pp. 31–44. [Google Scholar] [CrossRef]
- Chalkias, C.; Kalogirou, S.; Ferentinou, M. Landslide susceptibility Peloponnese Peninsula in South Greece. J. Maps 2014, 10, 211–222. [Google Scholar] [CrossRef]
- Shirzadi, A.; Chapi, K.; Shahabi, H.; Solaimani, K.; Kavian, A.; Ahmad, B.B. Rock fall susceptibility assessment along a mountainous road: an evaluation of bivariate statistic, analytical hierarchy process and frequency ratio. Environ. Earth Sci. 2017, 76, 4. [Google Scholar] [CrossRef]
- National Geographic World Map, Digital Topographic Basemap of the World. Available online: https://services.arcgisonline.com/ArcGIS/rest/services/NatGeo_World_Map/MapServer (accessed on 30 July 2019).
- Ministry of Energy and Public Utilities. Hydrology Data Book 2006–2010. Available online: http://www.gov.mu/portal/site/mpusite (accessed on 29 March 2019).
- Boodhoo, S.Y. The Changing Climate of Mauritius; Mauritius Meteorological Services: Vacoas-Phoenix, Mauritius, 2008. [Google Scholar]
- Mauritius Meteorological Service Climate of Mauritius. Available online: http://metservice.intnet.mu/ (accessed on 23 January 2019).
- Saddul, P. Mauritius: A Geomorphological Analysis; The Mahatma Gandhi Institute Press: Moka, Mauritius, 1995; pp. 28–32. [Google Scholar]
- Sentenac, R. Recherches d’eau Souterraine a l’ile Maurice; MSIRI Occasional Paper; Mauritius Sugar Industry Research Institute: Moka, Mauritius, 1964; Volume 17, pp. 1–21. [Google Scholar]
- McDougall, I.; Chamalaun, F.H. Isotopic dating and geomagnetic polarity studies on volcanic rocks from Mauritius, Indian Ocean. Bull. Geol. Soc. Am. 1969, 80, 1419–1442. [Google Scholar] [CrossRef]
- Baxter, A.N. Magmatic Evolution of Mauritius–Western Indian Ocean. Ph.D. Thesis, University of Edinburgh, Edinburgh, UK, 1972. [Google Scholar]
- Hantke, R.; Seheidegger, A.E. Morphotectonics of the Mascarene Islands. Ann. di Geofis. 1998, 41, 165–181. [Google Scholar] [CrossRef]
- Giorgi, L.; Borchiellini, S.; Delucchi, L. Geologic Map—Hydrogeological Scheme, 1:50,000 and Explanatory Notes; Coorperation et Francophonie and Water Resources Unit: Rose Hill, Mauritius, 1999. (In French) [Google Scholar]
- Montgomery, D.R.; Dietrich, W.E. A physically based model for the topographic control on shallow landsliding. Water Resour. Res. 1994, 30, 1153–1171. [Google Scholar] [CrossRef]
- Aristizábal, E.; García, E.; Martínez, C. Susceptibility assessment of shallow landslides triggered by rainfall in tropical basins and mountainous terrains. Nat. Hazards 2015, 78, 621–634. [Google Scholar] [CrossRef]
- Griffiths, J.S.; Smith, M.J.; Paron, P. Introduction to Applied Geomorphological Mapping. In Developments in Earth Surface Processes; Elsevier: Amsterdam, The Netherlands, 2011; pp. 3–11. [Google Scholar] [CrossRef]
- Pellegrini, G.B.; Carton, A.; Castaldini, D.; Cavallin, A.; D’Alessandro, L.; Dramis, F.; Gentili, B.; Laureti, L.; Prestininzi, A.; Rodolfi, G.; et al. Proposta di legenda geomorfologica ad indirizzo applicativo. Geogr. Fis. E Din. Quat. 1993, 16, 129–152. [Google Scholar]
- SGN. Guida al Rilevamento della Carta Geomorfologica D’ITALIA, 1:50.000; Quad. Ser. III del Serv. Geol. Naz.; Servizio Geologico d’IItalia: Rome, Italy, 1994. [Google Scholar]
- ISPRA; AIGEO. Aggiornamento ed Integrazione delle Linee Guida della Carta Geomorfologica D’italia in Scala 1:50.000; Quad. Ser. III del Serv. Geol. Naz.; Servizio Geologico d’Italia: Rome, Italy, 2018. [Google Scholar]
- Miccadei, E.; Paron, P.; Piacentini, T. The SW escarpment of Montagna del Morrone (Abruzzi, Central Italy): Geomorphology of a fault-generated mountain front. Geogr. Fis. E Din. Quat. 2004, 27, 55–87. [Google Scholar]
- Miccadei, E.; Orrù, P.; Piacentini, T.; Mascioli, F.; Puliga, G. Geomorphological map of the Tremiti Islands (Puglia, Southern Adriatic Sea, Italy), scale 1:15,000. J. Maps 2012, 8, 74–87. [Google Scholar] [CrossRef]
- Miccadei, E.; Piacentini, T.; Pozzo, A.D.; La Corte, M.; Sciarra, M. Morphotectonic map of the Aventino-Lower Sangro valley (Abruzzo, Italy), scale 1:50,000. J. Maps 2013, 9, 390–409. [Google Scholar] [CrossRef]
- Miccadei, E.; Carabella, C.; Paglia, G.; Piacentini, T. Paleo-Drainage Network, Morphotectonics, and Fluvial Terraces: Clues from the Verde Stream in the Middle Sangro River (Central Italy). Geosciences 2018, 8, 337. [Google Scholar] [CrossRef] [Green Version]
- Parlagreco, L.; Mascioli, F.; Miccadei, E.; Antonioli, F.; Gianolla, D.; Devoti, S.; Leoni, G.; Silenzi, S. New data on Holocene relative sea level along the Abruzzo coast (Central Adriatic, Italy). Quat. Int. 2011, 232, 179–186. [Google Scholar] [CrossRef]
- Willaime, P.; Chauviat, C.; Danard, M.; Hosanee, A.; Jhoty, I.; Laidat, D.; Seguin, L. Pedology Map of Mauritius, 1:50,000; Mauritius Sugar Industry Research Institute (MSIRI) and Office de la Recherche Scientifique et Technique Outre-Mer (ORSTOM): Paris, France, 1983. (In French) [Google Scholar]
- Nigel, R.; Rughooputh, S.D.D.V.; Boojhawon, R. Land cover of Mauritius Island. J. Maps 2015, 11, 217–224. [Google Scholar] [CrossRef]
- DOS-MSIRI Soil Map of Mauritius (Provisional Classification) at 1:100,000; Directorate of Overseas Survey (DOS): London, UK, 1962.
- Carrara, A.; Cardinali, M.; Detti, R.; Guzzetti, F.; Pasqui, V.; Reichenbach, P. GIS techniques and statistical models in evaluating landslide hazard. Earth Surf. Process. Landforms 1991, 16, 427–445. [Google Scholar] [CrossRef]
- Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 1991, 31, 181–216. [Google Scholar] [CrossRef]
- Baeza, C.; Corominas, J. Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surf. Process. Landforms 2001, 26, 1251–1263. [Google Scholar] [CrossRef]
- Ercanoglu, M.; Gokceoglu, C. Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Eng. Geol. 2004, 75, 229–250. [Google Scholar] [CrossRef]
- Baum, R.L.; Coe, J.A.; Godt, J.W.; Harp, E.L.; Reid, M.E.; Savage, W.Z.; Schulz, W.H.; Brien, D.L.; Chleborad, A.F.; McKenna, J.P.; et al. Regional landslide-hazard assessment for Seattle, Washington, USA. Landslides 2005, 2, 266–279. [Google Scholar] [CrossRef]
- Flentje, P.; Stirling, D.; Chowdhury, R. Landslide Susceptibility and Hazard Derived from a Landslide Inventory Using Data Mining—An Australian Case Study. Available online: https://ro.uow.edu.au/engpapers/368/ (accessed on 23 November 2019).
- Ayalew, L.; Yamagishi, H.; Ugawa, N. Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides 2004, 1, 73–81. [Google Scholar] [CrossRef]
- Foumelis, M.; Lekkas, E.; Parcharidis, I. Landslide susceptibility mapping by GIS-based qualitative weighting procedure in Corinth area. Bull. Geol. Soc. Greece 2004, 36, 904–912. [Google Scholar] [CrossRef] [Green Version]
- Moradi, M.; Bazyar, M.H.; Mohammadi, Z. GIS-based landslide susceptibility mapping by AHP method, a case study, Dena City, Iran. J. Basic Appl. Sci. Res. 2012, 2, 6715–6723. [Google Scholar]
- Roslee, R.; Mickey, A.C.; Simon, N.; Norhisham, M.N. Landslide susceptibility analysis (LSA) using weighted overlay method (WOM) along the Genting Sempah to Bentong highway, Pahang. Malaysian J. Geosci. 2018, 1, 13–19. [Google Scholar] [CrossRef]
- Lee, S.; Min, K. Statistical analysis of landslide susceptibility at Yongin, Korea. Environ. Geol. 2001, 40, 1095–1113. [Google Scholar] [CrossRef]
- Romeo, R.W.; Mari, M.; Floris, M.; Pappafico, G.; Gori, U. Un approccio per coniugare la suscettività spaziale e temporale da frana: Un’applicazione nella regione marche (Italia Centrale). Ital. J. Eng. Geol. Environ. 2011, 2, 63–78. [Google Scholar]
- Basharat, M.; Shah, H.R.; Hameed, N. Landslide susceptibility mapping using GIS and weighted overlay method: a case study from NW Himalayas, Pakistan. Arab. J. Geosci. 2016, 9, 292. [Google Scholar] [CrossRef]
- Carabella, C.; Miccadei, E.; Paglia, G.; Sciarra, N. Post-Wildfire Landslide Hazard Assessment: The Case of The 2017 Montagna Del Morrone Fire (Central Apennines, Italy). Geosciences 2019, 9, 175. [Google Scholar] [CrossRef] [Green Version]
- Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar] [CrossRef]
- Dou, J.; Bui, D.T.; Yunus, A.P.; Jia, K.; Song, X.; Revhaug, I.; Xia, H.; Zhu, Z. Optimization of causative factors for landslide susceptibility evaluation using remote sensing and GIS data in parts of Niigata, Japan. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [Green Version]
- Costanzo, D.; Rotigliano, E.; Irigaray, C.; Jiménez-Perálvarez, J.D.; Chacón, J. Factors selection in landslide susceptibility modelling on large scale following the gis matrix method: Application to the river Beiro basin (Spain). Nat. Hazards Earth Syst. Sci. 2012, 12, 327–340. [Google Scholar] [CrossRef]
- Çevik, E.; Topal, T. GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environ. Geol. 2003, 44, 949–962. [Google Scholar] [CrossRef]
- Yalcin, A.; Reis, S.; Aydinoglu, A.C.; Yomralioglu, T. A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 2011, 85, 274–287. [Google Scholar] [CrossRef]
- Süzen, M.L.; Doyuran, V. Data driven bivariate landslide susceptibility assessment using geographical information systems: A method and application to Asarsuyu catchment, Turkey. Eng. Geol. 2004, 71, 303–321. [Google Scholar] [CrossRef]
- Komac, M. A landslide susceptibility model using the Analytical Hierarchy Process method and multivariate statistics in perialpine Slovenia. Geomorphology 2006, 74, 17–28. [Google Scholar] [CrossRef]
- Wilson, J.P.; Gallant, J.C. Digital Terrain Analysis. In Terrain Analysis: Principles and Applications; Wiley & Sons: New York, NY, USA, 2000; pp. 1–27. [Google Scholar]
- Hungr, O.; Wilson, P. Stability of slopes curved in plain—An example. In Proceedings of the 59th Canadian Geotechnical Conference, Vancouver, BC, Canada, 1–4 October 2006. [Google Scholar]
- Conforti, M.; Aucelli, P.P.C.; Robustelli, G.; Scarciglia, F. Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Nat. Hazards 2011, 56, 881–898. [Google Scholar] [CrossRef]
- Yesilnacar, E.; Topal, T. Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng. Geol. 2005, 79, 251–266. [Google Scholar] [CrossRef]
- Ding, J.; Yang, Z.; Shang, Y.; Zhou, S.; Yin, J. A new method for spatio-temporal prediction of rainfall-induced landslide. Sci. China, Ser. D Earth Sci. 2006, 49, 421–430. [Google Scholar] [CrossRef]
- Lepore, C.; Kamal, S.A.; Shanahan, P.; Bras, R.L. Rainfall-induced landslide susceptibility zonation of Puerto Rico. Environ. Earth Sci. 2012, 66, 1667–1681. [Google Scholar] [CrossRef]
- Segoni, S.; Tofani, V.; Rosi, A.; Catani, F.; Casagli, N. Combination of Rainfall Thresholds and Susceptibility Maps for Dynamic Landslide Hazard Assessment at Regional Scale. Front. Earth Sci. 2018, 6, 85. [Google Scholar] [CrossRef] [Green Version]
- Piacentini, T.; Galli, A.; Marsala, V.; Miccadei, E. Analysis of soil erosion induced by heavy rainfall: A case study from the NE Abruzzo Hills Area in Central Italy. Water 2018, 10, 1314. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, J.S.; Mather, A.E.; Stokes, M. Mapping landslides at different scales. Q. J. Eng. Geol. Hydrogeol. 2015, 48, 29–40. [Google Scholar] [CrossRef]
Factors | Classes | Li | W |
---|---|---|---|
Aspect | Flat | 3.6933 | 0 |
North | 10.3748 | 61 | |
Northeast | 13.9633 | 94 | |
East | 14.6110 | 100 | |
Southeast | 14.1709 | 96 | |
South | 10.8813 | 66 | |
Southwest | 10.0864 | 59 | |
West | 10.8134 | 65 | |
Northwest | 13.3353 | 88 | |
Topographic Curvature | Concave | 3.9874 | 0 |
Planar | 5.5731 | 2 | |
Convex | 90.9802 | 100 | |
Drainage Pattern | Subdendritic | 0.6838 | 4 |
Subdendritic with meanders | 18.6742 | 100 | |
Radial | 0.7771 | 4 | |
Rectangular | 0.0038 | 0 | |
Parallel | 0.1688 | 1 | |
Parallel with meanders | 0.0731 | 0 | |
Centripetal | 0.0064 | 0 | |
Absent with lake | 0.0009 | 0 | |
Absent | 0.0006 | 0 | |
Vegetation Cover | Grass | 0.6905 | 1 |
Sparse trees | 11.0480 | 18 | |
Heavy tree canopy | 15.4641 | 26 | |
Shrub | 0.0065 | 1 | |
Shrub crops | 60.0157 | 100 | |
Tree crops | 0.1558 | 0 | |
Absent with lake | 0.0095 | 1 | |
Absent | 11.3788 | 19 | |
Lithology | Superficial deposits | 11.4012 | 11 |
Recent Lava Series | 6.7308 | 0 | |
Intermediate Lava Series | 32.8782 | 62 | |
Ancient Lava Series | 49.1925 | 100 | |
Soil Cover | Variably rocky, brown to red-brown soil | 11.0524 | 26 |
Variably rocky red-brown soil | 12.4840 | 31 | |
Red-brown soil with rocky fragments | 2.3900 | 0 | |
Brown rocky soil | 9.3969 | 21 | |
Moderately rocky soil | 16.6108 | 43 | |
Thick red-brown soil | 35.3307 | 100 | |
Basalt outcrops | 5.1546 | 8 | |
Mainly thick soil | 7.6720 | 16 | |
Average Summer Rainfall (mm) | 0–200 | 1.4451 | 0 |
200–500 | 9.8541 | 40 | |
500–800 | 22.2566 | 100 | |
800–1000 | 16.6550 | 73 | |
1000–1200 | 19.1520 | 85 | |
1200–1500 | 14.3273 | 62 | |
1500–2400 | 16.3115 | 71 |
Slope | Rock falls | Landslides | Earth Flows | ||||
---|---|---|---|---|---|---|---|
Class | Value (°) | Li | W | Li | W | Li | W |
1 | 0–5 | 0 | 0 | 0.0002 | 5 | 0.0004 | 5 |
2 | 5–15 | 0.0048 | 1 | 0.0034 | 100 | 0.0057 | 100 |
3 | 15–25 | 0.0083 | 2 | 0.0008 | 23 | 0.0030 | 23 |
4 | 25–35 | 0.0221 | 5 | 0.0002 | 6 | 0.0027 | 6 |
5 | 35–45 | 0.0416 | 10 | 0.0002 | 6 | 0.0046 | 6 |
6 | 45–50 | 0.0755 | 19 | 0 | 0 | 0.0038 | 0 |
7 | 50–55 | 0.1544 | 39 | 0 | 0 | 0.0033 | 0 |
8 | 58–65 | 0.2391 | 60 | 0 | 0 | 0.0021 | 0 |
9 | 67–73 | 0.3979 | 100 | 0 | 0 | 0 | 0 |
10 | >73 | 0.3662 | 92 | 0 | 0 | 0 | 0 |
Factors | Contribution Ratio | ||
---|---|---|---|
Rockfalls | Landslides | Earth Flows | |
Slope | 1.2 | 1.2 | 1.2 |
Aspect | 0.3 | 0.3 | 0.3 |
Profile curvature | 1.2 | 1 | 1.2 |
Planar curvature | 0.1 | 0.1 | 0.1 |
Drainage pattern | 0.1 | 0.2 | 0.2 |
Vegetation cover | 0.2 | 0.2 | 0.2 |
Lithology | 1 | 1 | 1 |
Soil cover | 0.7 | 1 | 1 |
Rainfall | 0.4 | 0.6 | 0.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marsala, V.; Galli, A.; Paglia, G.; Miccadei, E. Landslide Susceptibility Assessment of Mauritius Island (Indian Ocean). Geosciences 2019, 9, 493. https://doi.org/10.3390/geosciences9120493
Marsala V, Galli A, Paglia G, Miccadei E. Landslide Susceptibility Assessment of Mauritius Island (Indian Ocean). Geosciences. 2019; 9(12):493. https://doi.org/10.3390/geosciences9120493
Chicago/Turabian StyleMarsala, Vincenzo, Alberto Galli, Giorgio Paglia, and Enrico Miccadei. 2019. "Landslide Susceptibility Assessment of Mauritius Island (Indian Ocean)" Geosciences 9, no. 12: 493. https://doi.org/10.3390/geosciences9120493
APA StyleMarsala, V., Galli, A., Paglia, G., & Miccadei, E. (2019). Landslide Susceptibility Assessment of Mauritius Island (Indian Ocean). Geosciences, 9(12), 493. https://doi.org/10.3390/geosciences9120493